JPH0419902B2 - - Google Patents

Info

Publication number
JPH0419902B2
JPH0419902B2 JP60170285A JP17028585A JPH0419902B2 JP H0419902 B2 JPH0419902 B2 JP H0419902B2 JP 60170285 A JP60170285 A JP 60170285A JP 17028585 A JP17028585 A JP 17028585A JP H0419902 B2 JPH0419902 B2 JP H0419902B2
Authority
JP
Japan
Prior art keywords
gas
catalyst
reaction
water
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60170285A
Other languages
Japanese (ja)
Other versions
JPS6230554A (en
Inventor
Choichi Furuya
Satoru Motoo
Yoshihiko Shirakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP60170285A priority Critical patent/JPS6230554A/en
Publication of JPS6230554A publication Critical patent/JPS6230554A/en
Publication of JPH0419902B2 publication Critical patent/JPH0419902B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、触媒との接触面積が大きく、かつ
反応気体の透過効率が高い気・気反応用撥水性微
細孔性触媒と、それを使用した気・気反応方法に
関するものである。そして、特に水素または酸素
の中に含まれる、それぞれ少量の酵素及び水素を
触媒的に反応させて除くプロセスに適用するのに
好適な触媒及びかかる触媒を用いた気・気反応方
法を提供するものである。
The present invention relates to a water-repellent microporous catalyst for gas-gas reactions that has a large contact area with the catalyst and high permeation efficiency of reaction gas, and a gas-gas reaction method using the same. In particular, the present invention provides a catalyst suitable for application to a process of catalytically reacting and removing small amounts of enzymes and hydrogen contained in hydrogen or oxygen, respectively, and a gas-gas reaction method using such a catalyst. It is.

【従来の技術】 従来、上記プロセスにはアルミナモレキユラー
シーブ等の担体に、白金やパラジウム等の触媒を
担持したペレツトが用いられている。そしてこの
ペレツトを反応容器に入れ、反応ガスを流す方式
である。
[Prior Art] Conventionally, the above process uses pellets in which a catalyst such as platinum or palladium is supported on a carrier such as an alumina molecular sieve. The pellets are then placed in a reaction vessel and a reaction gas is passed through.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

この方式においては、反応ガス中に多量の水蒸
気が含まれるとペレツトが水分を吸収し、水で覆
われるため、反応が著しく進行しなくなる。この
ため、反応ガスを予め加熱、または除湿する必要
がある。 また、担体の表面層に担持した触媒しか反応に
は寄与せず、担体の内部に担持した触媒は未反応
のまま廃棄、回収されるのが実情であつた。 本発明の従来例の上記欠点を解消したもので、
反応ガスを予め加熱、または除湿する必要のない
触媒を提供しようとするものである。 ところで、気・気の反応用触媒としては従来、
親水性触媒にポリテトラフルオロエチレンをコー
テイングして(特公昭51−32800号公報)撥水性
を持たせたもの、あるいは撥水性の有機物のポリ
マーに白金、ロジウム、ニツケルなどの触媒性成
分を担持させる方法(特公昭51−41195号公報)
が提案されている。これらの触媒は粒状で、触媒
活性成分を含浸されており、反応管に充填して使
用される。 しかしながら上記気・気反応用触媒は充填中の
表面で三相界面が生じることにより進み、充填部
分の内部はほとんど利用されていない。 これを解消する目的で第8図に示すように、板
状または膜状を有し気体透過性と液体不透過性と
を有する撥水性多孔質担体21と、前記担体21
の少なくとも片面に担持された触媒活性成分22
とを有することを特徴とする気・気反応用触媒
(特開昭58−122046号公報)が提案されている。
しかしながら上記気・気反応用触媒は、担体21
の表面にしか触媒活性成分22が担持されていな
いので、担体21を透過する気体は担体21の片
面に形成された触媒活性成分22の層でのみ反応
する。したがつて反応層が少なく、充分な反応が
行なわれないという欠点があつた。また担体21
が撥水性のあるもので構成してあり、触媒活性成
分22が確実に担持され得るかどうか疑問であ
る。 この発明の気・気反応撥水性微細孔性触媒にお
いては、触媒の両側の気体が担体内の微細孔の壁
面に形成された触媒活性成分においても反応す
る。したがつて本発明においては、非常に微量な
気体の反応に適した気・気反応用撥水性微細孔性
触媒を提供することができる。
In this method, if a large amount of water vapor is contained in the reaction gas, the pellets will absorb water and become covered with water, making it difficult for the reaction to proceed significantly. Therefore, it is necessary to heat or dehumidify the reaction gas in advance. In addition, only the catalyst supported on the surface layer of the carrier contributes to the reaction, and the actual situation is that the catalyst supported inside the carrier is discarded or recovered unreacted. This eliminates the above-mentioned drawbacks of the conventional example of the present invention,
The present invention aims to provide a catalyst that does not require preheating or dehumidification of reaction gas. By the way, conventional catalysts for gas-air reactions are
Hydrophilic catalysts are coated with polytetrafluoroethylene (Japanese Patent Publication No. 51-32800) to make them water repellent, or water-repellent organic polymers support catalytic components such as platinum, rhodium, and nickel. Method (Special Publication No. 51-41195)
is proposed. These catalysts are granular, impregnated with catalytically active components, and used by being filled into reaction tubes. However, the gas-gas reaction catalyst described above progresses due to the formation of a three-phase interface on the surface during filling, and the interior of the filled portion is hardly utilized. In order to solve this problem, as shown in FIG.
a catalytically active component 22 supported on at least one side of the
A gas-gas reaction catalyst (Japanese Unexamined Patent Publication No. 122046/1983) has been proposed.
However, the above-mentioned gas-gas reaction catalyst
Since the catalytically active component 22 is supported only on the surface of the carrier 21, the gas passing through the carrier 21 reacts only on the layer of the catalytically active component 22 formed on one side of the carrier 21. Therefore, there was a drawback that the reaction layer was small and sufficient reaction could not be carried out. Also carrier 21
is made of a water-repellent material, and it is questionable whether the catalytically active component 22 can be supported reliably. In the gas-gas reaction water-repellent microporous catalyst of the present invention, the gas on both sides of the catalyst also reacts with the catalytically active components formed on the walls of the micropores in the carrier. Therefore, the present invention can provide a water-repellent microporous catalyst for gas-gas reactions that is suitable for reactions involving very small amounts of gas.

【問題点を解決するための手段】[Means to solve the problem]

すなわち本発明は、気体と気体を触媒反応させ
る撥水性微細孔性触媒であつて、この触媒はカー
ボンブラツクをポリテトラフルオロエチレンで結
着させて触媒の内部に連続する多数の細孔を有す
るようにし、各細孔の直径はクヌーセン拡散する
ことのできる0.1μm以下の大きさであり、各細孔
の壁面には触媒活性成分が散在していることを特
徴とするものである。 そしてより詳細には、本発明の気・気反応用撥
水性微細孔性触媒は、第1図に示すように膜状成
形体1の内部に、連続する細孔2を形成した撥水
性多孔質担体3と、細孔2の壁面4に担持された
触媒活性成分5を有している。 そして担体3の表面には、触媒活性成分5が担
持されているものが散在している。このような構
成を有する本発明の触媒においては、担体3を構
成する素材6の表面に触媒活性成分5が担持さ
れ、そのような各担体構成素材6の間を触媒活性
成分5を担持しない撥水性のある担体構成素材7
が連結している。そのとき担体構成素材7は、隣
接する各担体構成素材6の触媒活性成分5表面の
一部分に橋架けするようにして素材6を連結す
る。したがつて素材6,7間には連続する細孔2
が形成され、しかも触媒活性成分5の露出表面は
不連続で、その間には撥水性のある担体構成素材
7が存在している。そのため、触媒活性成分5の
位置で水等の液体が生成ないし付着したとしても
非常に薄く、撥水性作用によつてすぐに膜状成形
体1表面に排出されるため、触媒反応を阻害する
ことはほとんどない。それゆえ気体の透過性は何
等低下しない。このような効果は、本発明の触媒
がペレツト状をなしていてもペレツトの内部にお
いて上述のような構成を有していて、同様に発揮
されるのである。 また、本件出願の第2の発明は、気体と気体を
触媒反応させ、反応後の水分含有生成気体を隔壁
によつて反応前の気体と分離する方法であつて、
隔壁として使用する触媒がカーボンブラツクをポ
リテトラフルオロエチレンで結着させたものであ
り、かつ触媒の内部には連続する多数の細孔を有
するようにし、各細孔の直径はクヌーセン拡散す
ることのできる0.1μm以下の大きさであり、各細
孔の壁面には触媒活性成分が散在している触媒で
あることを特徴とするものである。 本発明の触媒は、多量に水蒸気を含む反応ガス
を導入しても多孔質担体が撥水性を有するため、
触媒内部の細孔が水で置きかわることがない。し
たがつて、細孔内の触媒活性成分は有効に使われ
る。もしも水が結露しても触媒表面で水滴となり
容易に除かれる。すなわち、液体中においてされ
反応気体は触媒活性成分の表面に到達でき、細孔
内の触媒活性成分の表面がすべて利用できるので
ある。 触媒活性成分を担持する担体は、カーボンブラ
ツクからなる親水性の担体を使用することができ
る。上記担体に触媒活性成分を担持させ、ポリテ
トラフルオロエチレンからなる撥水性物質の溶液
あるいは懸濁液などで処理することにより、撥水
性を持ち、かつ直径がクヌーセン拡散することの
できる0.1μm以下の大きさの細孔がある本発明の
触媒を作ることができる。 第9図は得られた細孔径と細孔体積の関係を求
めたグラフである。グラフにおいて縦軸は、材料
の比重とできた膜の比重から求めた膜の細孔体積
(0.851ml/g)を100とした、平均細孔径が0.05μ
mでその分布はシヤープであること、またすべて
の細孔が水に進入できることから、0.05μmの孔
径の連続した細孔を有する三次元化された多孔質
膜が製造されていることが明らかである。 上記多孔質膜の細孔径はカーボンブラツクの粒
径(0.49μm)と関係する。しかしながらもう一
方のポリテトラフルオロエチレンは結着材として
働くので、その粒径(0.3μm)は上記細孔径には
無関係である。 上記触媒活性成分は例えば金属塩溶液を有機溶
液(アセトン、イソプロピルアルコール、ブタノ
ール等)に溶解し、これを担体成分中、または担
体成分を成形して得た、撥水性多孔質担体中に含
浸させることによつて担持させることができる。 触媒活性成分はPt、Pd、Ir等の白金族、Ni、
Co、Fe、W等の金属、もしくはそれらの合金、
またはこれらの酸化物、有機金属錯体等を使用す
ることができる。 なお触媒活性成分を担持しない担体には、上記
の撥水性の担体を用いる。 本発明の触媒を用いた場合、第2図ないし第3
図に示すような膜あるいは板状、またはパイプ状
を有する隔壁8,9によつて反応気体と生成気体
とを分離することが望ましい。このようにすると
触媒活性成分の有効利用率が大幅に向上する。 本発明で使用される撥水性多孔質担体は、その
片面または両面に、また積層してその内部に支持
部を有していても良い。そしてこの支持部材は、
好ましくは金網、プラスチツク網、多孔質グラフ
アイト、カーボンの成形体、炭素繊維布、カーボ
ンペーパー等からなる群から選ばれる。 なお上記の場合、撥水性多孔質担体の細孔径を
0.1μm以下、好ましくは0.05μm以下にすれば、
耐圧を20〜30Kg/cm2にうることができ、このとき
の気体の流れはいわゆるクヌーセン拡散となる。
そして対圧強度を飛躍的に向上させることができ
る。 このクヌーセン拡散を介して撥水性多孔質担体
の細孔内でも触媒反応させることができるのが本
発明の特徴である。 一般的にはクヌーセン拡散は次式で表現され
る。 k=λ/a>1 λ……気体分子の平均自由行路 a……貫通孔の径(例えば球を過ぎる流れでは球
の直径、管を通る流れでは管径) このクヌーセン拡散は希薄気体については知ら
れているが、本発明の細孔によつても生じること
がわかつた。本発明の場合、このクヌーセン拡散
は差圧がなくても気体移動が生じるが、ただし、
この場合には触媒の両側に温度差がなければなら
ず、加温装置等の設備が要求される。なお、触媒
の表面に冷却部を形成したときは、触媒部分にお
ける反応熱と、冷却部とによる温度差とで気体は
高温側に移動する。
That is, the present invention is a water-repellent microporous catalyst that causes a catalytic reaction between gases. The diameter of each pore is 0.1 μm or less to allow Knudsen diffusion, and the catalytic active component is scattered on the wall of each pore. More specifically, the water-repellent microporous catalyst for gas-gas reactions of the present invention is a water-repellent porous catalyst in which continuous pores 2 are formed inside a membrane-like molded body 1, as shown in FIG. It has a carrier 3 and a catalytically active component 5 supported on the wall surface 4 of the pore 2. The surface of the carrier 3 has catalyst active components 5 supported thereon scattered thereon. In the catalyst of the present invention having such a configuration, the catalytically active component 5 is supported on the surface of the material 6 constituting the carrier 3, and a repellent material that does not support the catalytically active component 5 passes between each of the carrier components 6. Aqueous carrier constituent material 7
are connected. At this time, the carrier constituent material 7 connects the materials 6 by bridging a portion of the surface of the catalytically active component 5 of each adjacent carrier constituent material 6. Therefore, there are continuous pores 2 between the materials 6 and 7.
is formed, and the exposed surface of the catalytically active component 5 is discontinuous, with a water-repellent carrier constituent material 7 existing therebetween. Therefore, even if liquid such as water is generated or attached to the catalytically active component 5, it will be very thin and will be immediately discharged onto the surface of the film-like molded body 1 due to its water repellency, so that it will not inhibit the catalytic reaction. There are almost no Gas permeability is therefore not reduced in any way. Even if the catalyst of the present invention is in the form of pellets, it has the above-mentioned structure inside the pellets, and the same effects can be achieved. Further, the second invention of the present application is a method of causing a catalytic reaction between gases and separating the moisture-containing product gas after the reaction from the gas before the reaction by a partition,
The catalyst used as the partition wall is made of carbon black bound with polytetrafluoroethylene, and the inside of the catalyst has a large number of continuous pores, and the diameter of each pore is determined by Knudsen diffusion. The catalyst is characterized by having a size of 0.1 μm or less, and having catalytically active components scattered on the walls of each pore. In the catalyst of the present invention, even when a large amount of water vapor-containing reaction gas is introduced, the porous carrier has water repellency.
The pores inside the catalyst are not replaced by water. Therefore, the catalytically active components within the pores are effectively used. Even if water condenses, it forms droplets on the catalyst surface and is easily removed. That is, the reaction gas contained in the liquid can reach the surface of the catalytically active component, and the entire surface of the catalytically active component within the pores can be utilized. As the carrier supporting the catalytically active component, a hydrophilic carrier made of carbon black can be used. By supporting the catalytically active component on the above-mentioned carrier and treating it with a solution or suspension of a water-repellent substance made of polytetrafluoroethylene, the carrier has water repellency and a diameter of 0.1 μm or less that is capable of Knudsen diffusion. Catalysts of the invention can be made with pores of any size. FIG. 9 is a graph showing the relationship between the obtained pore diameter and pore volume. In the graph, the vertical axis is the average pore diameter of 0.05μ, where 100 is the pore volume of the membrane (0.851ml/g) determined from the specific gravity of the material and the specific gravity of the resulting membrane.
It is clear that a three-dimensional porous membrane with continuous pores with a pore size of 0.05 μm has been produced because the distribution is sharp at m and all pores can enter water. be. The pore diameter of the porous membrane is related to the particle diameter (0.49 μm) of carbon black. However, since the other polytetrafluoroethylene acts as a binder, its particle size (0.3 μm) is unrelated to the pore size. The above catalytically active component is obtained by dissolving a metal salt solution in an organic solution (acetone, isopropyl alcohol, butanol, etc.) and impregnating it into the carrier component or into a water-repellent porous carrier obtained by molding the carrier component. It can be supported by Catalytic active components include platinum group metals such as Pt, Pd, and Ir, Ni,
Metals such as Co, Fe, W, etc., or alloys thereof,
Alternatively, oxides, organometallic complexes, etc. of these can be used. Note that the above-mentioned water-repellent carrier is used as the carrier that does not support the catalytically active component. When using the catalyst of the present invention, Figs.
It is desirable to separate the reaction gas and the produced gas by partition walls 8 and 9 having a membrane, plate shape, or pipe shape as shown in the figure. In this way, the effective utilization rate of the catalytically active component is greatly improved. The water-repellent porous carrier used in the present invention may have a supporting portion on one or both sides thereof, or may be laminated and have a support portion therein. And this support member is
Preferably, the material is selected from the group consisting of wire mesh, plastic mesh, porous graphite, carbon molded body, carbon fiber cloth, carbon paper and the like. In the above case, the pore diameter of the water-repellent porous carrier is
If it is 0.1μm or less, preferably 0.05μm or less,
A pressure resistance of 20 to 30 Kg/cm 2 can be achieved, and the gas flow at this time is so-called Knudsen diffusion.
And the pressure resistance strength can be dramatically improved. A feature of the present invention is that the catalytic reaction can be carried out even within the pores of the water-repellent porous carrier through this Knudsen diffusion. Generally, Knudsen diffusion is expressed by the following equation. k=λ/a>1 λ...Mean free path of gas molecules a...Diameter of the through hole (for example, the diameter of the sphere for flow past a sphere, the diameter of the tube for flow through a tube) This Knudsen diffusion is Although this is known, it has been found that this phenomenon is also caused by the pores of the present invention. In the case of the present invention, this Knudsen diffusion causes gas movement even without a pressure difference, but, however,
In this case, there must be a temperature difference on both sides of the catalyst, and equipment such as a heating device is required. Note that when a cooling section is formed on the surface of the catalyst, the gas moves to the high temperature side due to the reaction heat in the catalyst section and the temperature difference due to the cooling section.

【作用】[Effect]

この発明の気・気反応用微細孔性触媒は以上の
ように構成してあるので、製造が容易で、蒸気を
含む反応ガスを導入しても多孔質担体が撥水性を
有するため、触媒内部の細孔が水で置きかわるこ
とがなく、細孔内の触媒活性成分は有効に使われ
る。もしも水が結露しても触媒表面で水滴となり
容易に除かれる。すなわち、液体中においてさえ
反応気体は触媒活性成分の表面に到達でき、細孔
内の触媒活性成分の表面がすべて利用できる。 また本発明の気・気反応方法は以上のように、
触媒成分を有する撥水性多孔質担体の隔壁によつ
て反応気体の流路と生成気体の流路とを分離し、
反応物気体と反応後の気体とを混合させないよう
にしたので、撥水性多孔質担体中を触媒との接触
なしに通過する反応気体はなく、反応気体は確実
に触媒と反応して生成気体中に未反応気体が残る
可能性はほとんどない。
Since the microporous catalyst for gas-gas reactions of the present invention is constructed as described above, it is easy to manufacture, and even when a reaction gas containing steam is introduced, the porous carrier has water repellency. The pores are not replaced by water, and the catalytic active components within the pores are effectively used. Even if water condenses, it forms droplets on the catalyst surface and is easily removed. That is, even in liquid, the reaction gas can reach the surface of the catalytically active component, and the entire surface of the catalytically active component within the pores is available. Furthermore, the gas-gas reaction method of the present invention is as described above.
A reaction gas flow path and a product gas flow path are separated by a partition wall of a water-repellent porous carrier having a catalyst component,
Since the reactant gas and the post-reaction gas are not mixed, no reactant gas passes through the water-repellent porous carrier without contacting the catalyst, and the reactant gas reliably reacts with the catalyst and is absorbed into the product gas. There is little possibility that unreacted gas will remain.

【発明の効果】【Effect of the invention】

この発明の気・気反応用微細孔性触媒は以上の
ように構成してあるので、多量に水蒸気を含む反
応ガスを導入しても多孔質担体が撥水性を有する
ため、触媒内部の細孔が水で置きかわることがな
く、細孔内の触媒活性成分は有効に使われる。し
たがつて従来のように触媒が濡れて加熱しなけれ
ば再利用することができないということもなく、
継続して長時間使用することができるようになつ
た。もしも水が結露しても触媒表面で水滴となり
容易に除かれる。すなわち、液体中においてさえ
反応気体は触媒活性成分の表面に到達でき、細孔
内の触媒活性成分の表面がすべて利用できる。 また本発明の気・気反応方法は以上のように、
触媒成分を有する撥水性多孔性担体の隔壁によつ
て反応気体の流路と生成気体の流路とを分離し、
反応物気体と反応後の気体とを混合させないよう
にしたので、撥水性多孔質担体中を触媒との接触
なしに通過する反応気体はなく、反応気体は確実
に触媒と反応して生成気体中に未反応気体が残る
可能性はほとんどない。 この発明の気・気反応用微細孔触媒及びそれを
使用して気・気反応方法は、水の電気分解におけ
る電極部分で発生したH2ないしO2ガス中に混合
した微量のO2ないしH2ガスの除去に使用するこ
とができる。 またガスボンベ中に混入した微量ガス成分の除
去にも使用することができる。 さらにまた、N2やHe等の不活性ガス中に数%
含まれている水素ガスを低温燃焼によつて除去す
る場合にも使用することができる。 いずれの場合にも、本発明の気・気反応用微細
孔性触媒を使用することにより爆発等の心配をす
ることなく除去することができる。
Since the microporous catalyst for gas-gas reactions of the present invention is constructed as described above, the porous carrier has water repellency even when a large amount of water vapor-containing reaction gas is introduced. is not replaced by water, and the catalytic active components within the pores are effectively used. Therefore, unlike conventional methods, the catalyst does not have to be wet and heated before it can be reused.
It has become possible to use it continuously for a long time. Even if water condenses, it forms droplets on the catalyst surface and is easily removed. That is, even in liquid, the reaction gas can reach the surface of the catalytically active component, and the entire surface of the catalytically active component within the pores is available. Furthermore, the gas-gas reaction method of the present invention is as described above.
A reaction gas flow path and a product gas flow path are separated by a partition wall of a water-repellent porous carrier having a catalyst component,
Since the reactant gas and the post-reaction gas are not mixed, no reactant gas passes through the water-repellent porous carrier without contacting the catalyst, and the reactant gas reliably reacts with the catalyst and is absorbed into the product gas. There is little possibility that unreacted gas will remain. The microporous catalyst for gas-gas reactions and the gas-gas reaction method using the same of the present invention provide a microporous catalyst for gas-gas reactions and a gas - gas reaction method using the same . 2 Can be used for gas removal. It can also be used to remove trace gas components mixed into gas cylinders. Furthermore, several percent in inert gas such as N 2 or He
It can also be used to remove contained hydrogen gas by low-temperature combustion. In either case, by using the microporous catalyst for gas-gas reactions of the present invention, it can be removed without worrying about explosions or the like.

【実施例】【Example】

以下、この発明の気・気反応用微細孔性触媒及
びそれを使用した気・気反応方法を実施例に基づ
いて詳細に説明する。 実施例 1 カーボンブラツクに重量%で10%の白金を担持
するように塩化白金酸のイソプロピルアルコール
溶液を含浸させ、乾燥後、大気中で200℃、2時
間焼成し、また水素雰囲気中で200℃で2時間保
持して還元した。この白金担持カーボンブラツク
をポリテトラフルオロエチレンとをソルベントナ
フサで混合し、ロールで0.5mmのシートを得た。
このシートを空気中で280℃で焼成してソルベン
トナフサを完全に除き、膜状の本発明に係る触媒
を得た。この触媒の平均細孔径は500A、耐水圧
19Kg/cm2であつた。 この膜状の触媒から直径5cmの円板を取り出し
円筒ガラス管に貼り付けて80℃の湯を注いだとこ
ろ、触媒表面から空気が大量に発生し、クヌーセ
ン拡散が確認できた。 実施例 2 上記実施例1に代え、触媒活性成分を担持させ
ていないカーボンブラツクをポリテトラフルオロ
エチレンをソルベントナフサで混合し、ロールで
0.5mmのシートを得た。これを320℃、100Kg/cm2
でプレスした。このシート(0.46mm)に塩化白金
酸のイソプロピルアルコール溶液を含浸させて乾
燥後、水素雰囲気中で200℃、2時間還元した。
この触媒の平均細孔径は450A、耐水圧21Kg/cm2
白金担持量は3.5重量%であつた。 この膜状の触媒から直径5cmの円板を取り出し
円筒ガラス管に貼り付けて80℃の湯を注いだとこ
ろ、触媒表面から空気が大量に発生し、クヌーセ
ン拡散が確認できた。 実施例 3 塩化白金酸を塩化パラジウムに置き換えた以外
は実施例1と同様の方法で、膜状触媒を得た。こ
の触媒の平均細孔径は500A、耐水圧19Kg/cm2
パラジウムの担持量は2.9重量%であつた。 この膜状の触媒から直径5cmの円板を取り出し
円筒ガラス管に貼り付けて80℃の湯を注いだとこ
ろ、触媒表面から空気が大量に発生し、クヌーセ
ン拡散が確認できた。 上記膜状触媒11を用いて水素中に酸素が0.5
%ある気体を第4図の側に加圧導入した。そし
て、側の反応生成物をガスクロマトグラフで分
析した。その結果、ガスクロマトグラフの酸素検
出限度の2ppm以下であることが解つた。以下次
表にその分析結果を示す。
Hereinafter, the microporous catalyst for gas-gas reactions of the present invention and the gas-gas reaction method using the same will be explained in detail based on Examples. Example 1 Carbon black was impregnated with an isopropyl alcohol solution of chloroplatinic acid to support 10% by weight of platinum, and after drying, it was calcined in the air at 200°C for 2 hours, and then heated at 200°C in a hydrogen atmosphere. It was held for 2 hours and reduced. This platinum-supported carbon black was mixed with polytetrafluoroethylene using solvent naphtha, and a 0.5 mm sheet was obtained using a roll.
This sheet was calcined in air at 280°C to completely remove the solvent naphtha, thereby obtaining a membrane-shaped catalyst according to the present invention. The average pore size of this catalyst is 500A, water pressure resistant
It was 19Kg/ cm2 . When a disk with a diameter of 5 cm was taken from this membrane-like catalyst and attached to a cylindrical glass tube and 80°C hot water was poured into it, a large amount of air was generated from the catalyst surface, confirming Knudsen diffusion. Example 2 Instead of Example 1 above, carbon black, which does not support a catalytically active component, was mixed with polytetrafluoroethylene using solvent naphtha, and then mixed with a roll.
A 0.5 mm sheet was obtained. This at 320℃, 100Kg/cm 2
I pressed it. This sheet (0.46 mm) was impregnated with an isopropyl alcohol solution of chloroplatinic acid, dried, and then reduced at 200° C. for 2 hours in a hydrogen atmosphere.
The average pore diameter of this catalyst is 450A, water pressure resistance is 21Kg/cm 2 ,
The amount of platinum supported was 3.5% by weight. When a disk with a diameter of 5 cm was taken from this membrane-like catalyst and attached to a cylindrical glass tube and 80°C hot water was poured into it, a large amount of air was generated from the catalyst surface, confirming Knudsen diffusion. Example 3 A membrane catalyst was obtained in the same manner as in Example 1 except that chloroplatinic acid was replaced with palladium chloride. The average pore diameter of this catalyst is 500A, water pressure resistance 19Kg/cm 2 ,
The amount of palladium supported was 2.9% by weight. When a disk with a diameter of 5 cm was taken from this membrane-like catalyst and attached to a cylindrical glass tube and 80°C hot water was poured into it, a large amount of air was generated from the catalyst surface, confirming Knudsen diffusion. Oxygen in hydrogen is 0.5% using the above membrane catalyst 11.
A certain amount of gas was introduced under pressure into the side shown in FIG. Then, the side reaction product was analyzed using a gas chromatograph. As a result, it was found to be below the oxygen detection limit of a gas chromatograph, which is 2 ppm. The analysis results are shown in the table below.

【表】 実施例 4 上記実施例1で得た膜状触媒を使用し、第5図
に示すように、この膜状触媒11を一辺が0.5mm
の細孔13を2.5mm間隔で形成した、銅板12の
細孔13側の面に積層した。この積層された触媒
を用いて水素中に酸素が0.5%ある、水蒸気から
なる気体を第5図の側に加圧導入した。そし
て、側から生成した反応生成物をガスクロマト
グラフで分析した。その結果、ガスクロマトグラ
フの酸素検出限度の2ppm以下であることが解つ
た。 しかも冷却板としての銅板12の細溝13部分
に水蒸気が水滴として取出され、簡単に取除くこ
とができた。そのため長時間使用しても触媒の気
体透過性が損なわれることがなく、連続運転が可
能となつた。またこの実施例の触媒はいわゆるク
ヌーセン膜として機能し、H2+O2での反応熱と、
冷却板によつて生じた温度差で気体の透過量が飛
躍的に増大した。 実施例 5 カーボンブラツクに重量%で10%の白金を担持
するように塩化白金酸のブタノール溶液を含浸さ
せ、乾燥後大気中で200℃、2時間焼成し、また
水素雰囲気中で200℃で2時間保持して還元した。
この白金担持カーボンブラツクをポリテトラフル
オロエチレンとをソルベントナフサで混合し、押
出機で3mmの径の棒状に押出した。これを280℃
で乾燥後、5mmの長さに切断してペレツト状の触
媒を得た。このペレツト状は乾燥時にソルベント
ナフサが揮散して連続する細孔を有していた。 上記ペレツト状触媒15を使用し、これを第6
図に示す反応管16内に収納して水素中に酸素が
0.5%ある水蒸気で飽和した気体を第6図の側
に加圧導入した。そして側から生成した反応生
成物をガスクロマトグラフで分析した。その結
果、ガスクロマトグラフの酸素検出限度の2ppm
以下であることが解つた。 しかも、反応によつて生成したH2Oがペレツ
ト状触媒15の表面から水滴として取出され、こ
れらが反応管16内を滴下して簡単に取除くこと
ができた。そのため長時間使用しても触媒の気体
透過性が損なわれることがなく、連続運転が可能
となつた。 実施例 6 上記実施例5のペレツト状触媒15を使用し、
これを第6図に示す反応管16内に収納して、今
度は逆に酸素中に水素が0.5%ある水蒸気で飽和
した気体を第6図の側に加圧導入した。そして
側から生成した反応生成物をガスクロマトグラ
フで分析した。その結果、ガスクロマトグラフの
水素検出限度の1ppm以下であることが解つた。 しかも、反応によつて生成したH2Oがペレツ
ト状触媒15の表面から水滴として取出され、こ
れらが反応管16内を滴下して簡単に取除くこと
ができた。そのため長時間使用しても触媒の気体
透過性が損なわれることがなく、連続運転が可能
となつた。 実施例 7 実施例1と同様の方法で厚さ0.1mmの膜状触媒
17を得た。また別途カーボンブラツクをポリテ
トラフルオロエチレンとをソルベントナフサで混
合し、ロールで0.5mmのシートを得た。このシー
トを空気中で280℃で焼成してソルベントナフサ
で完全に除き、撥水性を有する多孔質膜18を得
た。上記両者を積層して得た第7図に示す積層物
19を用い、水素中に酸素が0.5%ある水蒸気か
らなる気体を第7図の側に加圧導入した。そし
て側から生成した反応生成物をガスクロマトグ
ラフで分析した。その結果、ガスクロマトグラフ
の水素検出限度の2ppm以下であることが解つた。 しかも、積層物19の耐水圧は23Kg/cm2に向上
しており、気体の透過効率も撥水性多孔質膜18
の厚さを変えることによつて調節できることが判
明した。 従来例 1 モレキユラーシーブ5A(細孔径5Å)に1%
白金を担持し、実施例5に示すように第6図に示
す反応管に収納して水素中に酸素が0.5%ある水
蒸気で飽和した気体を第6図の側に加圧導入し
た。導入して1時間後、側から生成した反応物
をガスクロマトグラフで分析した。その結果、酸
素濃度は0.46%とあまり減少しないことがわかつ
た。 これはモレキユラーシーブの内部の細孔まで水
が入り込んで、反応に使用される触媒が減少した
ためであることがわかつた。 従来例 2 平均細孔径2000Åのアルミナセラミツクス円板
(板厚0.5mm、直径5cm)に0.4%の白金を担持す
るように塩化白金塩のイソプロピルアルコール溶
液を含浸させ乾燥後、大気中で200℃で2時間焼
成し、また水素雰囲気中で200℃で2時間保持し
て還元した。この触媒を円筒ガラス管に貼り付け
て80℃の湯を注いだところ、全く反応がなく、ク
ヌーセン拡散は生じなかつた。
[Table] Example 4 The membrane catalyst obtained in Example 1 was used, and as shown in FIG.
The copper plate 12 was laminated on the surface of the copper plate 12 on the pore 13 side, in which pores 13 were formed at 2.5 mm intervals. Using this stacked catalyst, a gas consisting of water vapor containing 0.5% oxygen in hydrogen was introduced under pressure into the side shown in FIG. Then, the reaction product produced from the side was analyzed using a gas chromatograph. As a result, it was found to be below the oxygen detection limit of a gas chromatograph, which is 2 ppm. Furthermore, water vapor was taken out as water droplets in the narrow grooves 13 of the copper plate 12 serving as a cooling plate, and could be easily removed. Therefore, the gas permeability of the catalyst was not impaired even after long-term use, making continuous operation possible. In addition, the catalyst of this example functions as a so-called Knudsen membrane, and the reaction heat with H 2 + O 2 and
The temperature difference created by the cooling plate dramatically increased the amount of gas permeation. Example 5 Carbon black was impregnated with a butanol solution of chloroplatinic acid so as to support 10% by weight of platinum, and after drying, it was calcined in the air at 200°C for 2 hours, and in a hydrogen atmosphere at 200°C for 2 hours. I kept it for a while and returned it.
This platinum-supported carbon black was mixed with polytetrafluoroethylene using solvent naphtha and extruded into a rod shape with a diameter of 3 mm using an extruder. 280℃
After drying, the catalyst was cut into 5 mm lengths to obtain a pellet-like catalyst. This pellet form had continuous pores due to solvent naphtha volatilization during drying. Using the above pellet catalyst 15, this
Oxygen is stored in the reaction tube 16 shown in the figure.
A gas saturated with 0.5% water vapor was introduced under pressure into the side shown in Figure 6. The reaction products produced from the side were analyzed using a gas chromatograph. As a result, the oxygen detection limit of the gas chromatograph was 2ppm.
It turns out that the following is true. Moreover, the H 2 O produced by the reaction was taken out as water droplets from the surface of the pellet-like catalyst 15, and these water droplets dripped into the reaction tube 16 and could be easily removed. Therefore, the gas permeability of the catalyst was not impaired even after long-term use, making continuous operation possible. Example 6 Using the pellet catalyst 15 of Example 5 above,
This was housed in the reaction tube 16 shown in FIG. 6, and a gas saturated with water vapor containing 0.5% hydrogen in oxygen was then introduced under pressure into the side shown in FIG. The reaction products produced from the side were analyzed using a gas chromatograph. As a result, it was found that the hydrogen detection limit of a gas chromatograph was 1 ppm or less. Moreover, the H 2 O produced by the reaction was taken out as water droplets from the surface of the pellet-like catalyst 15, and these water droplets dripped into the reaction tube 16 and could be easily removed. Therefore, the gas permeability of the catalyst was not impaired even after long-term use, making continuous operation possible. Example 7 A membrane catalyst 17 having a thickness of 0.1 mm was obtained in the same manner as in Example 1. Separately, carbon black was mixed with polytetrafluoroethylene using solvent naphtha, and a 0.5 mm sheet was obtained using a roll. This sheet was fired at 280° C. in air and completely removed with solvent naphtha to obtain a water-repellent porous membrane 18. Using a laminate 19 shown in FIG. 7 obtained by laminating the above two materials, a gas consisting of water vapor containing 0.5% oxygen in hydrogen was introduced under pressure into the side shown in FIG. The reaction products produced from the side were analyzed using a gas chromatograph. As a result, it was found that the hydrogen detection limit of a gas chromatograph was 2 ppm or less. Furthermore, the water pressure resistance of the laminate 19 has been improved to 23Kg/cm 2 , and the gas permeation efficiency has also improved.
It has been found that this can be adjusted by changing the thickness of the material. Conventional example 1 1% in molecular sieve 5A (pore diameter 5 Å)
Platinum was supported and placed in a reaction tube shown in FIG. 6 as shown in Example 5, and a gas saturated with water vapor containing 0.5% oxygen in hydrogen was introduced under pressure into the side shown in FIG. One hour after the introduction, the reaction product produced from the side was analyzed by gas chromatography. As a result, it was found that the oxygen concentration did not decrease much at 0.46%. It was found that this was because water entered the pores inside the molecular sieve, reducing the amount of catalyst used in the reaction. Conventional Example 2 An alumina ceramic disk (thickness: 0.5 mm, diameter: 5 cm) with an average pore diameter of 2000 Å was impregnated with an isopropyl alcohol solution of platinum chloride to support 0.4% platinum, dried, and then heated at 200°C in the air. The mixture was calcined for 2 hours and kept at 200° C. for 2 hours in a hydrogen atmosphere for reduction. When this catalyst was attached to a cylindrical glass tube and hot water at 80°C was poured into it, there was no reaction at all, and no Knudsen diffusion occurred.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の気・気反応用微細孔性触媒
の一実施例を示す概略図、第2図は本発明の気・
気反応用微細孔性触媒を使用した気・気反応装置
の一例を示す断面図、第3図はパイプ状に形成し
た触媒の斜視図、第4図は他の気・気反応装置の
例を示す断面図、第5図はさらに他の気・気反応
装置の一例を示す断面図、第6図は別の気・気反
応装置の例を示す断面図、第7図はさらに別の
気・気反応装置の一例を示す断面図、第8図は従
来例の気・液反応用微細孔性触媒の例を示す概略
図、第9図は本発明で得られた細孔径と細孔体積
の関係を求めたグラフである。 1……膜状成形体、2……細孔、3……撥水性
担体、4……壁面、5……触媒活性成分、6……
担体構成素材、7……撥水性担体構成素材。
FIG. 1 is a schematic diagram showing an embodiment of the microporous catalyst for gas-gas reactions of the present invention, and FIG.
A cross-sectional view showing an example of a gas-gas reaction device using a microporous catalyst for gas reactions, FIG. 3 is a perspective view of a catalyst formed in a pipe shape, and FIG. 4 is an example of another gas-gas reaction device. 5 is a cross-sectional view showing an example of another gas-gas reaction device, FIG. 6 is a cross-sectional view showing another example of gas-gas reaction device, and FIG. 7 is a cross-sectional view showing yet another example of gas-gas reaction device. FIG. 8 is a schematic diagram showing an example of a conventional gas-liquid reaction microporous catalyst, and FIG. 9 is a diagram showing the pore diameter and pore volume obtained in the present invention. This is a graph that shows the relationship. DESCRIPTION OF SYMBOLS 1... Membrane-like molded body, 2... Pore, 3... Water-repellent carrier, 4... Wall surface, 5... Catalyst active component, 6...
Carrier constituent material, 7...Water-repellent carrier constituent material.

Claims (1)

【特許請求の範囲】 1 気体と気体とを触媒反応させる撥水性微細孔
性触媒であつて、この触媒はカーボンブラックを
ポリテトラフルオロエチレンで結着させて触媒の
内部に連続する多数の細孔を有するようにし、各
細孔の直径はクヌーセン拡散することのできる
0.1μm以下の大きさであり、各細孔の壁面には触
媒活性成分が散在していることを特徴とする気・
気反応用撥水性微細孔触媒。 2 気体とを気体を触媒反応させ、反応後の水分
含有生成気体を隔壁によつて反応前の気体と分離
する方法において、隔壁として使用する触媒がカ
ーボンブラツクをポリテトラフルオロエチレンで
結着させたものであり、かつ触媒の内部には連続
する多数の細孔を有するようにし、各細孔の直径
はクヌーセン拡散することのできる0.1μm以下の
大きさであり、各細孔の壁面には触媒活性成分が
散在している触媒であることを特徴とする気・気
反応方法。
[Scope of Claims] 1. A water-repellent microporous catalyst that causes a catalytic reaction between gases. and the diameter of each pore can be Knudsen diffused.
It has a size of 0.1 μm or less, and the walls of each pore are scattered with catalytically active components.
Water-repellent microporous catalyst for gas reactions. 2 In a method in which a gas is subjected to a catalytic reaction with a gas and the water-containing product gas after the reaction is separated from the gas before the reaction using a partition wall, the catalyst used as the partition wall is carbon black bound with polytetrafluoroethylene. The inside of the catalyst has a large number of continuous pores, and the diameter of each pore is 0.1 μm or less to allow Knudsen diffusion. A gas-gas reaction method characterized by a catalyst having active ingredients scattered therein.
JP60170285A 1985-07-31 1985-07-31 Water repellent microporous catalyst for gas-gas reaction and gas-gas reaction method using same Granted JPS6230554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60170285A JPS6230554A (en) 1985-07-31 1985-07-31 Water repellent microporous catalyst for gas-gas reaction and gas-gas reaction method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60170285A JPS6230554A (en) 1985-07-31 1985-07-31 Water repellent microporous catalyst for gas-gas reaction and gas-gas reaction method using same

Publications (2)

Publication Number Publication Date
JPS6230554A JPS6230554A (en) 1987-02-09
JPH0419902B2 true JPH0419902B2 (en) 1992-03-31

Family

ID=15902111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60170285A Granted JPS6230554A (en) 1985-07-31 1985-07-31 Water repellent microporous catalyst for gas-gas reaction and gas-gas reaction method using same

Country Status (1)

Country Link
JP (1) JPS6230554A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135842A (en) * 1987-11-21 1989-05-29 Agency Of Ind Science & Technol Photocatalyst-immobilized membrane
JP2503069Y2 (en) * 1990-12-20 1996-06-26 セイレイ工業株式会社 Combine cabin air conditioning compressor
DE19743673C2 (en) 1997-10-02 2002-05-08 Xcellsis Gmbh Device for producing hydrogen from hydrocarbons and method for producing a catalyst
JP4549802B2 (en) * 2004-10-08 2010-09-22 花王株式会社 Film catalyst and method for producing film catalyst
EP1859861A1 (en) * 2005-03-18 2007-11-28 Nippon Shokubai Co.,Ltd. Catalyst for removing oxygen and method for removing oxygen using the catalyst
JP5274802B2 (en) * 2006-09-15 2013-08-28 株式会社日本触媒 Oxygen removal method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141195A (en) * 1974-10-01 1976-04-06 Miura Seisakusho Kk ITSUHONNOSUIMENKENSHUTSUBONYORU SUIMENSEIGYOHOSHIKI
JPS58122046A (en) * 1982-01-18 1983-07-20 Hitachi Ltd Water-repellent catalyst for reaction of gas and liquid and gas-liquid reacting method using said catalyst
JPS58124543A (en) * 1982-01-22 1983-07-25 Hitachi Ltd Layered catalyst structure for reaction between gaseous and liquid phase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141195A (en) * 1974-10-01 1976-04-06 Miura Seisakusho Kk ITSUHONNOSUIMENKENSHUTSUBONYORU SUIMENSEIGYOHOSHIKI
JPS58122046A (en) * 1982-01-18 1983-07-20 Hitachi Ltd Water-repellent catalyst for reaction of gas and liquid and gas-liquid reacting method using said catalyst
JPS58124543A (en) * 1982-01-22 1983-07-25 Hitachi Ltd Layered catalyst structure for reaction between gaseous and liquid phase

Also Published As

Publication number Publication date
JPS6230554A (en) 1987-02-09

Similar Documents

Publication Publication Date Title
US8445402B2 (en) Preferential oxidation catalyst containing platinum, copper and iron
US3395049A (en) Method of making a porous electrode
US4256609A (en) Catalysts
Basile Handbook of membrane reactors: fundamental materials science, design and optimisation
US5158654A (en) Ozone decomposing reactor and regeneration thereof
JPH0451211B2 (en)
US4329260A (en) Integral shaped replication supports
JP2003530999A (en) Separation of fluid mixtures using filmed sorbents
CN101185904B (en) Selectivity liquid phase hydrogenation catalyst and preparation method and use thereof
US4631263A (en) Water-repellent catalyst for gas/liquid reactions and process for gas/liquid reactions by using the same
JPH0419902B2 (en)
Guan et al. Catalytic combustion of methane over Pd-based catalyst supported on a macroporous alumina layer in a microchannel reactor
Vital et al. Polymeric membranes for membrane reactors
JPWO2007116874A1 (en) Method for treating exhaust gas in liquid fuel direct supply type fuel cell
Lu et al. Microfibrous entrapped ZnO-support sorbents for high contacting efficiency H2S removal from reformate streams in PEMFC applications
JPH0419903B2 (en)
EP0089425B1 (en) Method for the preparation of integral shaped replications of shaped, porous and dissolvable materials for use as adsorbents in fixed bed adsorption processes
JPS624446A (en) Catalyst carrier
JP2002320851A (en) Catalyst for cleaning exhaust gas and method for manufacturing the same
JP4159647B2 (en) Activated carbon material and manufacturing method thereof
JPS59112840A (en) Catalyst composition for preparing fuel gas
Park et al. Effect of solvents on pore characteristics and catalytic activities of heteropolyacid-polymer composite film catalyst
JPS6313732B2 (en)
WO1985004118A1 (en) A catalyst element, a process for the preparation thereof as well as a use thereof
JPH07130374A (en) Water repellent treating method for carbon paper in fuel cell electrode