JPS6314888B2 - - Google Patents

Info

Publication number
JPS6314888B2
JPS6314888B2 JP56060433A JP6043381A JPS6314888B2 JP S6314888 B2 JPS6314888 B2 JP S6314888B2 JP 56060433 A JP56060433 A JP 56060433A JP 6043381 A JP6043381 A JP 6043381A JP S6314888 B2 JPS6314888 B2 JP S6314888B2
Authority
JP
Japan
Prior art keywords
pyroelectric
film
calorimeter
thickness
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56060433A
Other languages
Japanese (ja)
Other versions
JPS57173729A (en
Inventor
Choe Yamanaka
Sadao Nakai
Kenichi Nakamura
Naohiro Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP56060433A priority Critical patent/JPS57173729A/en
Publication of JPS57173729A publication Critical patent/JPS57173729A/en
Publication of JPS6314888B2 publication Critical patent/JPS6314888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は焦電性高分子フイルムを光電変換素子
とするカロリメーターに関するもので、特にパル
スレーザー光用のカロリメーターに関する。 レーザー光線は種々の方面に利用されている
が、例えば核融合開始時の初期エネルギー供給用
や軍事用などとして、極めて高出力のものの開発
が行なわれている。これらの高出力のレーザー光
線の開発および利用に当つては、そのレーザー光
の出力を測定する必要がある。しかし現在使用さ
れているレーザー光用カロリメーターは必ずしも
測定値に信頼のおけるものではなく、より正確な
レーザー光用カロリメーターの出現が望まれてい
た。 本願発明者等は出力測定用素子として、高分子
圧電性フイルム素子を用いたカロリメーターにつ
いて種々検討を行なつた。まず高出力のレーザー
光を測定する場合、連続レーザー光では殆んどの
物質は簡単に融解してしまうので、その測定対象
はパルスレーザー光に限定されるが、そのパルス
レーザー光のパルス巾やビーム径が相異しても、
同一出力ならば同一の測定値が得られることが好
ましい。一方焦電性物質の素子を赤外線の検知や
測定に使用する場合、その焦電性素子は薄い程d
※が良く、ノイズの影響が少なくなることが従来
より知られており、焦電性素子をできる限り薄く
する方向にあり、高分子焦電性フイルムとしては
通常10μm以下の薄いフイルムが使用されている。
発明者等の研究によればパルスレーザー光用のカ
ロリメーターの場合は、高分子焦電性フイルム素
子の厚さがあまり薄い場合には、上述したパルス
巾依存性や、ビーム径依存性が大きいが、高分子
焦電性フイルムの厚みが50μm以上であればこれ
らの依存性が極めて少なくなることが見出され
た。 このように厚い焦電性フイルムを使用すること
は従来の技術常識に反することであるが、レーザ
ー光の場合には、その光のエネルギーは極めて大
きいのでd※はあまり問題とならず、それよりパ
ルス巾およびビーム径依存性をなくするほうが合
理的である。 パルス巾およびビーム径依存性が、薄い焦電性
フイルム程大きい原因については、まだ良く解明
されたわけではないが、発明者等は次のように考
えている。即ち従来焦電性素子が一般に使用され
る火災検知器や侵入検知器の場合には、焦電素子
に入力される赤外線エネルギー量は極めて僅か
で、素子の温度変化も極めて僅かであり、素子が
吸熱した熱の再放出による測定値の変動は殆んど
問題とする必要はないが、高出力の赤外線レーザ
ーパルスでは素子の温度上昇が極めて大きく、ま
た同一エネルギーを受光した場合には、受光面積
が同一ならば素子の温度上昇はその厚みに反比例
するので、薄い素子程温度上昇が大きく、また放
出速度も早いので、測定値に影響する。厚みが大
きければ温度上昇も少なく、放出速度も遅くなる
ので、一定限度以上となればこの放熱の影響によ
る測定値の変動が少なくなることが1つの原因と
思われる。 本発明は以上の知見に基いてなされたもので、
その要旨とするところは、焦電性高分子フイルム
を光電変換素子とするレーザー光線用カロリメー
ターに於て、焦電性高分子フイルムの膜厚を
50μm以上1000μm以下の範囲とするパルスレーザ
ー光用カロリメーターに係るものである。 本発明に使用する焦電性高分子フイルムとして
は、例えばフツ化ビニル、フツ化ビニリデン、ト
リフロロエチレン、フロロクロロビニリデンなど
の極性の大きい単量体を一成分とする重合体、又
は共重合体、若しくはこれら重合体又は共重合体
を主体とする組成物を成極させたものであり、中
でもフツ化ビニリデンの単重合体若しくはフツ化
ビニリデンを40モル%以上含有する共重合体は極
めて高い焦電性を有するので特に好ましい。更に
又フツ化ビニリデン重合体又は共重合体を主成分
とし、これに例えばPZTその他の無機圧電体を
混合した組成物よりなるフイルムも高い焦電性を
有するので使用することができる。 これらの焦電性高分子フイルムを光電変換素子
とする場合は、フイルムの両面に電極が付される
が、その光入射側の電極は、例えば金黒やカーボ
ン塗料などの光吸収性の良い膜を金属導電体電極
の表面に被覆したものよりなる、赤外線吸収性電
極を使用するか、或いは酸化錫などの透明導電体
若しくは金、ニツケル等の極薄膜で光を透過し得
るものなどよりなる透明電極を使用する。膜厚は
50μm未満ではかなりのパルス巾依存性およびパ
ルス径依存性が認められるので好ましくない。更
に好ましくは80μm以上であり、これ以上では、
例えば1ミリジユール以上の熱量を有する高出力
パルスレーザーでも、パルス巾およびビーム径に
対する依存性は殆んど認められなくなる。また膜
厚があまり大きくなると、焦電性フイルム製造時
の成極電圧が高くなる不利のほか、出力測定に使
用して温度が上昇したフイルムの放熱が極めて悪
くなるので、迅速な繰返し使用が困難となり、こ
のために1000μm以下とする必要がある。更に好
ましくは500μm以下である。 以下実施例および対照例について本発明の詳細
な効果を説明する。 実施例1〜3及び対照例1〜2 T―ダイ押出しにより得られたポリフツ化ビニ
リデン(PVDF)の単重合体フイルムを一軸方向
に延伸したものに、両面に電極を施した後、120
℃で30分間電極強度700KV/cmで分極処理して高
分子焦電体を得た。 同上の同一条件下で出発原料のシートの厚みを
変化させて、焦電体フイルムの厚さが28μm、
58μm、113μmのものを作成した。これらの焦電
体フイルムの23℃での焦電率は3.5×10-9c/cm2
deg、であつた。これら厚みの異なる3種類の焦
電性フイルムを内径100mmφのアルミニウム製治
具で架張した後、レーザー光の入射面の電極上に
金黒又はカーボン微粒子液(3M社製Velvet
coating:商品名)をスプレーして光吸収膜を施
した焦電素子を試料とし、これらの各素子をポリ
エチレン製の入射窓を有するケース中に取りつ
け、素子両面の電極より増幅回路を経て端子に配
線されたカロリメーターを製作した。 そして図面に示すように、炭酸ガスQスイツチ
レーザー1(発振波長λ=10.6μm)よりポツケ
ルスセルシヤツター2により、パルス幅100nsec
及び1nsecのレーザー光を前置増幅器3を通して
ビーム径の面積が3cm2のレーザー光を得、更にこ
のレーザー光を凸面鏡4に照射してビーム径を拡
大させた。そしてビーム径3cm2の原レーザー光お
よびビーム径を拡大したレーザー光(凸面鏡4よ
りの距離によりビーム径は変化する)を前記各カ
ロリメーター5に入射させたときの焦電素子の感
度を測定した。なお焦電素子の出力電圧はオツシ
ロスコープ6で観測した。結果を表に示す。表よ
り明らかなようにPVDFフイルムの厚みが28μm
の場合はパルス巾およびビーム径依存性が共に悪
く、信頼性に乏しかつたが、厚さ58μmのものは
これらの依存性が極めて少なく、また113μmのも
のでは使用したレーザー光出力調整の誤差範囲内
(約±5%)で一定の測定値が得られた。
The present invention relates to a calorimeter using a pyroelectric polymer film as a photoelectric conversion element, and particularly to a calorimeter for pulsed laser light. Laser beams are used in various fields, and extremely high-power laser beams are being developed, for example, to provide initial energy at the start of nuclear fusion and for military purposes. In developing and using these high-power laser beams, it is necessary to measure the output of the laser beams. However, the laser beam calorimeters currently in use do not necessarily provide reliable measurements, and there has been a desire for a more accurate laser beam calorimeter. The inventors of the present application have conducted various studies on calorimeters using polymer piezoelectric film elements as output measuring elements. First, when measuring high-power laser light, the measurement target is limited to pulsed laser light, since most substances are easily melted by continuous laser light, but the pulse width of the pulsed laser light and the beam Even if the diameters are different,
It is preferable that the same measured value can be obtained with the same output. On the other hand, when using a pyroelectric element to detect or measure infrared rays, the thinner the pyroelectric element is, the d
It has been known for a long time that pyroelectric elements are made as thin as possible, and a thin film of 10 μm or less is usually used as a polymer pyroelectric film. There is.
According to research by the inventors, in the case of calorimeters for pulsed laser light, if the thickness of the polymer pyroelectric film element is too thin, the above-mentioned pulse width dependence and beam diameter dependence are large. However, it has been found that these dependencies become extremely small when the thickness of the polymer pyroelectric film is 50 μm or more. Using such a thick pyroelectric film goes against conventional technical common sense, but in the case of laser light, the energy of the light is extremely large, so d* is not much of a problem; It is more rational to eliminate the dependence on pulse width and beam diameter. Although the reason why the pulse width and beam diameter dependence are larger for thinner pyroelectric films has not yet been fully elucidated, the inventors think as follows. In other words, in the case of conventional fire detectors and intrusion detectors in which pyroelectric elements are generally used, the amount of infrared energy input to the pyroelectric element is extremely small, and the temperature change of the element is also extremely small. Fluctuations in measured values due to re-release of absorbed heat are hardly a problem, but high-power infrared laser pulses cause an extremely large temperature rise in the element, and when receiving the same energy, the light-receiving area If they are the same, the temperature rise of the element is inversely proportional to its thickness, so the thinner the element, the larger the temperature rise and the faster the emission rate, which will affect the measured value. One reason seems to be that the larger the thickness, the smaller the temperature rise and the slower the release rate, so that if it exceeds a certain limit, the fluctuations in measured values due to the influence of heat release will be reduced. The present invention was made based on the above findings,
The gist of this is that in a laser beam calorimeter that uses a pyroelectric polymer film as a photoelectric conversion element, the film thickness of the pyroelectric polymer film is
This relates to a calorimeter for pulsed laser light in the range of 50 μm or more and 1000 μm or less. Examples of the pyroelectric polymer film used in the present invention include polymers or copolymers containing highly polar monomers such as vinyl fluoride, vinylidene fluoride, trifluoroethylene, and fluorochlorovinylidene. , or a composition mainly composed of these polymers or copolymers. Among them, monopolymers of vinylidene fluoride or copolymers containing 40 mol% or more of vinylidene fluoride have extremely high polarization. It is particularly preferred because it has electrical properties. Furthermore, a film made of a composition containing a vinylidene fluoride polymer or copolymer as a main component, mixed with, for example, an inorganic piezoelectric material such as PZT, can also be used because it has high pyroelectricity. When these pyroelectric polymer films are used as photoelectric conversion elements, electrodes are attached to both sides of the film, and the electrodes on the light incident side are coated with a film with good light absorption, such as gold black or carbon paint. Use an infrared absorbing electrode made by coating the surface of a metal conductor electrode, or use a transparent conductor such as tin oxide or an ultra-thin film such as gold or nickel that can transmit light. Use electrodes. The film thickness is
If it is less than 50 μm, considerable pulse width dependence and pulse diameter dependence are observed, which is not preferable. More preferably, it is 80 μm or more, and if it is more than 80 μm,
For example, even in the case of a high-power pulsed laser having a heat amount of 1 millijoule or more, the dependence on the pulse width and beam diameter becomes almost unrecognizable. In addition, if the film thickness becomes too large, not only will the polarization voltage during production of the pyroelectric film become high, but also the heat dissipation of the film will be extremely poor when the temperature rises when used for output measurement, making it difficult to use it repeatedly quickly. Therefore, it needs to be 1000 μm or less. More preferably, it is 500 μm or less. The detailed effects of the present invention will be explained below with reference to Examples and Control Examples. Examples 1 to 3 and Control Examples 1 to 2 A monopolymer film of polyvinylidene fluoride (PVDF) obtained by T-die extrusion was stretched in the uniaxial direction, and electrodes were applied on both sides, and then
A polymer pyroelectric material was obtained by polarization treatment at an electrode strength of 700 K V /cm at ℃ for 30 minutes. By changing the thickness of the starting material sheet under the same conditions as above, the thickness of the pyroelectric film was 28 μm,
We created 58μm and 113μm ones. The pyroelectric constant of these pyroelectric films at 23℃ is 3.5×10 -9 c/cm 2
It was deg. After stretching these three types of pyroelectric films with different thicknesses using an aluminum jig with an inner diameter of 100 mm, gold black or carbon fine particle liquid (Velvet manufactured by 3M Co., Ltd.
The sample is a pyroelectric element coated with a light-absorbing film sprayed with a coating (product name).Each element is mounted in a case with a polyethylene entrance window, and the electrodes on both sides of the element are connected to terminals via an amplifier circuit. I made a wired calorimeter. Then, as shown in the drawing, a pulse width of 100 ns is generated using a Pockels cell shutter 2 from a carbon dioxide gas Q switch laser 1 (oscillation wavelength λ = 10.6 μm).
A laser beam of 1 nsec was passed through a preamplifier 3 to obtain a laser beam with a beam diameter area of 3 cm 2 , and the convex mirror 4 was further irradiated with this laser beam to enlarge the beam diameter. Then, the sensitivity of the pyroelectric element was measured when the original laser beam with a beam diameter of 3 cm 2 and the laser beam with an expanded beam diameter (the beam diameter changes depending on the distance from the convex mirror 4) were incident on each of the calorimeters 5. . Note that the output voltage of the pyroelectric element was observed using an oscilloscope 6. The results are shown in the table. As is clear from the table, the thickness of the PVDF film is 28μm.
In the case of , both pulse width and beam diameter dependence were poor and reliability was poor, but in the case of 58 μm thick, these dependencies were extremely small, and in the case of 113 μm, the error range of the laser light output adjustment used was Constant measured values were obtained within (approximately ±5%).

【表】 以上本発明を実施例につき述べたが、本発明は
従来よりも厚い50〜1000μmの焦電性高分子フイ
ルムによつてパルスレーザー光用カロリメーター
を構成したものである。従つてパルス巾及びビー
ム径の依存性の少ないカロリメーターを提供する
ことができ、またこのカロリメーターによつて信
頼性の高い測定を行うことが可能となる。
[Table] Although the present invention has been described above with reference to examples, the present invention constitutes a pulsed laser light calorimeter using a pyroelectric polymer film having a thickness of 50 to 1000 μm thicker than conventional ones. Therefore, it is possible to provide a calorimeter that is less dependent on pulse width and beam diameter, and it is also possible to perform highly reliable measurements with this calorimeter.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例1〜3に用いられる感度
測定装置の要部正面図である。 なお図面に用いた符号において、1…炭酸ガス
Qスイツチレーザー、5…カロリメーターであ
る。
The drawing is a front view of a main part of a sensitivity measuring device used in Examples 1 to 3 of the present invention. In addition, in the symbols used in the drawings, 1... carbon dioxide gas Q switch laser, 5... calorimeter.

Claims (1)

【特許請求の範囲】[Claims] 1 焦電性高分子フイルムを光電変換素子とする
レーザー光用カロリメーターに於て、厚さ50μm
乃至1000μmの範囲の焦電性高分子フイルムを用
いたことを特徴とするパルスレーザー光用カロリ
メーター。
1. In a laser light calorimeter that uses a pyroelectric polymer film as a photoelectric conversion element, the thickness is 50 μm.
A calorimeter for pulsed laser light characterized by using a pyroelectric polymer film in the range of 1000 μm to 1000 μm.
JP56060433A 1981-04-20 1981-04-20 Calorimeter for laser ray Granted JPS57173729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56060433A JPS57173729A (en) 1981-04-20 1981-04-20 Calorimeter for laser ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56060433A JPS57173729A (en) 1981-04-20 1981-04-20 Calorimeter for laser ray

Publications (2)

Publication Number Publication Date
JPS57173729A JPS57173729A (en) 1982-10-26
JPS6314888B2 true JPS6314888B2 (en) 1988-04-02

Family

ID=13142110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56060433A Granted JPS57173729A (en) 1981-04-20 1981-04-20 Calorimeter for laser ray

Country Status (1)

Country Link
JP (1) JPS57173729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334387U (en) * 1986-08-22 1988-03-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334387U (en) * 1986-08-22 1988-03-05

Also Published As

Publication number Publication date
JPS57173729A (en) 1982-10-26

Similar Documents

Publication Publication Date Title
EP0219531B1 (en) Infrared electronic thermometer and method for measuring temperature
USRE34789E (en) Infrared electronic thermometer and method for measuring temperature
Logothetis et al. Three-photon photoelectric effect in gold
Dyer et al. Novel method for measuring excimer laser ablation thresholds of polymers
JPH0542634B2 (en)
EP0269161A3 (en) Infrared radiation detection device
US3245261A (en) Temperature measurement of plastic film
US3459945A (en) Laser calorimeter with cavitated pyroelectric detector and heat sink
JPS6314888B2 (en)
Roundy et al. A 170 psec pyroelectric detector
EP0682237A1 (en) Radiation detector
RU2452924C1 (en) Method of determining circular polarisation sign of laser radiation
Blevin et al. Development of a scale of optical radiation
Killick et al. Power and energy measuring techniques for solid state lasers
Block et al. Thin metal film room-temperature IR bolometers with nanosecond response time
Bauer et al. A heat wave method for the measurement of thermal and pyroelectric properties of pyroelectric films
Newnam et al. 4.6 SPECTRAL DEPENDENCE OF DAMAGE RESISTANCE OF REFRACTORY OXIDE OPTICAL COATINGS
Maaswinkel Reflectance measurements on laser-produced plasmas at 0.26 μm
Anthes et al. Absorption of laser radiation by Al, Fe, and Au planar metallic targets
JPS6132335Y2 (en)
Uchida et al. Plasma calorimeter for absorption measurement of laser produced plasma
RU2631919C1 (en) Method for determining polarization sign of circular and elliptically polarized laser radiation
Touayar et al. Study and realization of a pyroelectric detector for absolute pulsed laser energy measurement
JPH02152281A (en) Photoelectric conversion device
US4631414A (en) Radiological instrument