JPS63148158A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPS63148158A
JPS63148158A JP61293965A JP29396586A JPS63148158A JP S63148158 A JPS63148158 A JP S63148158A JP 61293965 A JP61293965 A JP 61293965A JP 29396586 A JP29396586 A JP 29396586A JP S63148158 A JPS63148158 A JP S63148158A
Authority
JP
Japan
Prior art keywords
electrode
porous body
insulating substrate
biosensor
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61293965A
Other languages
Japanese (ja)
Other versions
JPH07122623B2 (en
Inventor
Hirokazu Sugihara
宏和 杉原
Shiro Nankai
史朗 南海
Mariko Kawaguri
真理子 河栗
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61293965A priority Critical patent/JPH07122623B2/en
Publication of JPS63148158A publication Critical patent/JPS63148158A/en
Publication of JPH07122623B2 publication Critical patent/JPH07122623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To permit easy measurement of a specific component in a vital sample by integrating an insulating substrate, electrode systems and a porous body on which oxidation reduction enzyme and electron receptor are deposited. CONSTITUTION:Thermosetting conductive carbon paste is printed on the insulating substrate 1 to form the electrode system consisting of a counter electrode 2, a measuring electrode 3 and a reference electrode 4. The electrode system is partially coated to form an insulating layer 5 except electrochemically acting parts 2'-4' of the respective electrodes. A holding frame 6 opened with a hole is adhered to the layer 5 and the porous body 7 is held in the hole so as to cover the electrode systems 2'-4'. A cover having an aperture is further adhered thereto to integrate the entire part. A standard glucose liquid is dropped as a sample liquid to the porous body of the glucose sensor constituted in the above-mentioned manner and pulse voltage is applied in the anode direction to the electrode 3 with the electrode 4 as a reference. The oxidation current value after the specified time is then measured. The measured current value corresponds to the concn. of the glucose which is a substrate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、種々の微量の生体試料中の特定成分について
、試料液を希釈することなく迅速かつ簡易に定量するこ
とのできるバイオセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a biosensor that can quickly and easily quantify specific components in various minute amounts of biological samples without diluting the sample liquid.

従来の技術 従来、血液などの生体試料中の特定成分について、試料
液の希釈や攪拌などの操作を行なうことなく高精度に定
量する方式としては、第4図に示すようなバイオセンサ
が提案されている(例えば、特開昭59−166852
号公報)。
Conventional technology In the past, a biosensor as shown in Figure 4 has been proposed as a method for quantifying specific components in biological samples such as blood with high precision without performing operations such as diluting or stirring the sample solution. (For example, Japanese Patent Application Laid-Open No. 59-166852
Publication No.).

このバイオセンサば、絶縁基板9にリード12゜13を
それぞれ有する白金などからなる測定極10および対極
11を埋設し、これらの電極系の露出部分を酸化還元酵
素および電子受容体を担持した多孔体で覆ったものであ
る。試料液を多孔体上へ滴下すると、試料液に多孔体中
の酸化還元酵素と電子受容体が溶解し、試料液中の基質
との間で酵素反応が進行し受容体が還元される。酵素反
応終了後、この還元された電子受容体を電気化学的に酸
化し、このとき得られる酸化電流値から試料液中の基質
濃度を求める。
In this biosensor, a measuring electrode 10 and a counter electrode 11 made of platinum or the like, each having leads 12 and 13, are embedded in an insulating substrate 9, and the exposed portions of these electrode systems are covered with a porous material carrying an oxidoreductase and an electron acceptor. It is covered with When the sample liquid is dropped onto the porous body, the oxidoreductase and electron acceptor in the porous body are dissolved in the sample liquid, and an enzymatic reaction proceeds with the substrate in the sample liquid to reduce the acceptor. After the enzymatic reaction is completed, the reduced electron acceptor is electrochemically oxidized, and the substrate concentration in the sample solution is determined from the oxidation current value obtained at this time.

発明が解決しようとする問題点 このような従来の構成では、多孔体については測定毎に
取り替えることにより簡易に測定に供することができる
が、電極系については洗浄等の操作が必要である。一方
電極系をも含めて測定毎の使い棄でか可能となれば、測
定操作上、極めて簡易となるものの、白金等の電極材料
や構成等の面から、非常に高価なものにならざるをえな
い。
Problems to be Solved by the Invention In such a conventional configuration, the porous body can be easily used for measurement by replacing it every measurement, but the electrode system requires operations such as cleaning. On the other hand, if the electrode system, including the electrode system, could be disposed of after each measurement, the measurement operation would be extremely simple, but it would be extremely expensive due to the electrode materials such as platinum and the structure. No.

また、カーボンを主体とし揮発性溶媒を含むペースト等
により電極系を構成すれば、安価となるものの、酸化還
元酵素や試料中に含まれる蛋白質等の電極表面への吸着
により測定値にばらつきが生じると予想される。
In addition, if the electrode system is constructed from a paste that is mainly composed of carbon and contains a volatile solvent, it will be cheaper, but measurement values will vary due to adsorption of oxidoreductases and proteins contained in the sample to the electrode surface. It is expected to be.

本発明は、電極系と多孔体を一体化し、電極系を吸着の
おこりにくい材料で構成することにより、生体試料中の
特定成分を極めて容易に迅速かつ高精度に定量すること
のできる安価なディスポーザブルタイプのバイオセンサ
を提供するものである。
The present invention integrates an electrode system and a porous body, and by configuring the electrode system from a material that does not easily cause adsorption, the present invention provides an inexpensive, disposable product that allows specific components in biological samples to be quantified extremely easily, quickly, and with high precision. The present invention provides a type of biosensor.

問題点を解決するだめの手段 本発明は上記問題点を解決するため、絶縁性の基板上に
少なくとも測定極と対極からなる電極系を設け、酵素と
電子受容体と試料液を反応させ、前記反応に際しての物
質濃度変化を電気化学的に前記電極系で検知し、試料液
中の基質濃度を検知するバイオセンサにおいて、酸化還
元酵素および電子受容体を担持した多孔体で前記電極系
を覆い、前記電極系および前記基板と一体化した。
Means for Solving the Problems In order to solve the above problems, the present invention provides an electrode system consisting of at least a measurement electrode and a counter electrode on an insulating substrate, allows the enzyme, electron acceptor, and sample solution to react, and In a biosensor that electrochemically detects a change in substance concentration during a reaction using the electrode system and detects the substrate concentration in a sample solution, the electrode system is covered with a porous material carrying an oxidoreductase and an electron acceptor; It was integrated with the electrode system and the substrate.

さらに、前記電極系を、カーボンを主体とする揮発性溶
媒を含まないペーストで形成し、予め予想される酸化還
元酵素や試料液中の蛋白質等の吸着による測定のばらつ
きを防いだ。
Furthermore, the electrode system was formed from a paste containing no volatile solvent, mainly consisting of carbon, to prevent measurement variations due to the adsorption of oxidoreductases, proteins, etc. in the sample solution, which were expected in advance.

作用 本発明によれば、電極系を安価に構成することができる
ので、電極系をも含めたディスポーザブルタイプのバイ
オセンサとすることが可能であり、試料液を多孔体に添
加することにより、極めて容易に基質濃度を測定するこ
とができる。また電極系を揮発性溶媒を含まないペース
トで形成しているため、乾燥時に揮発性溶媒が揮発する
ことにより形成される電極上の凹凸がなく、試料液を多
孔体に添加した際に溶出する酸化還元酵素および電子受
容体、さらには試料液中に含まれる各種蛋白質等の電極
表面への吸着による測定のばらつきを防ぐことができ、
精度のよい測定が可能となった。
Effects According to the present invention, the electrode system can be configured at low cost, so it is possible to create a disposable type biosensor including the electrode system. Substrate concentration can be easily measured. In addition, since the electrode system is made of a paste that does not contain volatile solvents, there are no irregularities on the electrodes that are formed due to volatile solvents evaporating during drying, and when a sample liquid is added to a porous body, it will not elute. It is possible to prevent measurement variations due to adsorption of oxidoreductases, electron acceptors, and various proteins contained in the sample solution to the electrode surface.
It has become possible to measure with high precision.

実施例 以下、本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

バイオセンサの一例として、グルコースセンサについて
説明する。第1図は、グルコースセンサの一実施例につ
いて示したもので、構成部分の分解図である。ポリエチ
レンテフタレートからなる絶縁性の基板1に、スクリー
ン印刷により熱硬化性の導電性カーボンペーストを印刷
し、加熱乾燥することにより、対極2.測定極3.参照
極4からなる電極系を形成する。次に、電極系を部分的
に覆い、各々の電極の電気化学的に作用する部分となる
2’  、3’  、4’  (各1−)を残すように
、絶縁性ペーストを前記同様印刷し、加熱処理して絶縁
層5を形成する。
A glucose sensor will be described as an example of a biosensor. FIG. 1 shows an embodiment of a glucose sensor, and is an exploded view of the constituent parts. A thermosetting conductive carbon paste is printed on an insulating substrate 1 made of polyethylene terephthalate by screen printing and dried by heating to form a counter electrode 2. Measuring pole 3. An electrode system consisting of a reference electrode 4 is formed. Next, insulating paste is printed in the same manner as above to partially cover the electrode system and leave 2', 3', and 4' (each 1-) which are the electrochemically active parts of each electrode. , heat treatment is performed to form the insulating layer 5.

次に、穴を開けた樹脂性の保持枠6を絶縁層5に接着し
、前記電極系2/  、 3/  、 4/ を覆うよ
□うに多孔体7を穴の中に保持する。さらに多孔体より
小さい径の開孔部を有する樹脂性カバーを接着し、全体
を一体化する。この一体化されたバイオセンサについて
、測定極3に沿った断面図を第2図に示す。上記に用い
た多孔体は、酸化還元酵素としてグルコースオキシダー
ゼ200mg 、 及び電子受容体としてフェリシアン
化カリウム400mgをP H5,6のリン酸緩衝液1
ml iC溶解した液をナイロン不織布に含浸後、減圧
乾燥して作成したものである。
Next, a resin holding frame 6 with holes is adhered to the insulating layer 5, and the porous body 7 is held in the hole so as to cover the electrode systems 2/, 3/, and 4/. Furthermore, a resin cover having apertures with a diameter smaller than that of the porous body is adhered to integrate the entire body. A cross-sectional view along the measurement electrode 3 of this integrated biosensor is shown in FIG. The porous body used above was prepared by adding 200 mg of glucose oxidase as an oxidoreductase and 400 mg of potassium ferricyanide as an electron acceptor in a phosphate buffer solution of pH 5,6.
It was created by impregnating a nylon nonwoven fabric with a solution containing ml iC and drying it under reduced pressure.

上記の様に構成したグルコースセンサの多孔体へ試料液
としてグルコース標準液を滴下し、滴下2分後に、参照
極を基準にして測定極に対してアノード方向へ700m
V、10秒のパルス電圧を加え、一定時間後(例えば1
0秒後)の酸化電流値を測定した。この場合、添加され
たグルコースは多孔体に担持されたグルコースオキシダ
ーゼの作用でフェリシアン化カリウムと反応してフェロ
シアン化カリウムを生成する。そこで、上記の如くアノ
ード方向のパルス電圧を加えたことにより生成したフェ
ロシアン化カリウム濃度に基づく酸化電流が得られ、こ
の電流値は基質であるグルコース濃度に対応する。
Glucose standard solution is dropped as a sample solution into the porous body of the glucose sensor configured as described above, and after 2 minutes of dropping, 700 m towards the anode from the measurement electrode with respect to the reference electrode.
V, a pulse voltage of 10 seconds is applied, and after a certain period of time (for example, 1
The oxidation current value was measured after 0 seconds). In this case, the added glucose reacts with potassium ferricyanide by the action of glucose oxidase supported on the porous material to produce potassium ferrocyanide. Therefore, an oxidation current based on the concentration of potassium ferrocyanide generated by applying a pulse voltage in the anode direction as described above is obtained, and this current value corresponds to the concentration of glucose, which is the substrate.

β−D−グルコース90mgを水1oomlに溶解した
溶液を上記のグルコースセンサに滴下し、2分後に70
0mV、1o秒のパルスを加え、パルス発生後10秒た
った時点での電流値を測定した結果を第3図人に示す。
A solution of 90 mg of β-D-glucose dissolved in 1 ooml of water was dropped onto the above glucose sensor, and after 2 minutes, 70 mg of β-D-glucose was dissolved in 1 ooml of water.
A pulse of 0 mV and 10 seconds was applied, and the current value was measured 10 seconds after the pulse was generated. The results are shown in Figure 3.

標本数10個での測定電流の平均値は3.19μ人、変
動係数は1.72%であった。第3図Bは、同様の実験
を揮発性有機溶媒を含む導電性カーボンペーストを用い
て印刷した電極系を持つ一体化型グルコースセンサにつ
いて行なった結果である。標本数10個での測定電流の
平均値は3.29μ人、変動係数は4.48%であり、
前者に比べ測定電流値のばらつきが太きい。これは、電
極材料が揮発性有機溶媒を含むカーボンペーストである
ため乾燥時に溶媒が揮発し電極表面に凹凸が形成され、
この様な電極上にグルコースオキシダーゼや界面活性剤
が吸着され、その吸着の度合いにより電極反応に有効な
表面積が変化し測定電流がばらついたものと考えられる
The average value of the measured current with 10 samples was 3.19μ, and the coefficient of variation was 1.72%. FIG. 3B shows the results of a similar experiment performed on an integrated glucose sensor with an electrode system printed using a conductive carbon paste containing a volatile organic solvent. The average value of the measured current with 10 samples was 3.29μ, and the coefficient of variation was 4.48%.
The variation in measured current values is wider than in the former case. This is because the electrode material is a carbon paste containing a volatile organic solvent, so the solvent evaporates during drying, forming unevenness on the electrode surface.
It is thought that glucose oxidase and surfactant were adsorbed onto such an electrode, and the surface area effective for electrode reaction changed depending on the degree of adsorption, causing the measured current to vary.

しかし電極形成に熱硬化性カーボンベ−スミ−用いれば
上記のような溶媒の揮発にともなう凹凸の形成は無く、
電極表面は平滑となる。このためグルコースオキシダー
ゼ、界面活性剤などの吸着を防ぐことができ、再現性の
良い応答が得られる。
However, if a thermosetting carbon base material is used to form the electrode, there will be no unevenness caused by the volatilization of the solvent as described above.
The electrode surface becomes smooth. Therefore, adsorption of glucose oxidase, surfactant, etc. can be prevented, and a response with good reproducibility can be obtained.

電極系を形成する方法としてのスクリーン印刷は、均一
な特性を有するディスポーザブルタイプのバイオセンナ
を安価に製造することができ、特に、価格が安く、しか
も安定した電極材料であるカーボンを用いて、電極を形
成するのに好都合な方法である。
Screen printing as a method for forming electrode systems can produce disposable biosenna with uniform properties at low cost. This is a convenient method for forming.

本発明のバイオセンナにおける一体化の方法としては、
実施例に示した枠体、カバーなどの形や組合せに限定さ
れるものではない。まだ、用いる多孔体としては、ナイ
ロン不織以外に、セルロース、レーヨン、セラミック、
ポリカーボネート等からなる多孔体を単独、あるいは組
合せて用いることができる。さらに酸化還元酵素と電子
受容体の組合せも前記実施例に限定されることはなく、
本発明の主旨に合致するものであれば用いることができ
る。一方、上記実施例においては、電極系として3電極
方式の場合について述べたが、対極と測定極からなる2
電極方式でも測定は可能である。
The method of integration in the biosenna of the present invention is as follows:
The present invention is not limited to the shapes and combinations of frames, covers, etc. shown in the examples. In addition to nylon non-woven materials, cellulose, rayon, ceramic,
Porous bodies made of polycarbonate or the like can be used alone or in combination. Furthermore, the combination of oxidoreductase and electron acceptor is not limited to the above examples,
Any material can be used as long as it meets the gist of the present invention. On the other hand, in the above embodiment, a three-electrode system was described as the electrode system, but two electrodes each consisting of a counter electrode and a measuring electrode
Measurement is also possible using an electrode method.

発明の効果 本発明のバイオセンサは、絶縁性の基盤、電極系および
酸化還元酵素と電子受容体を担持した多孔体を一体化す
ることにより、極めて容易に生体試料中の基質濃度を測
定することができる。さらに、電極系をカーボンを主体
とした揮発性溶媒を用いないペーストで構成し、測定再
現性を向上させた。
Effects of the Invention The biosensor of the present invention can extremely easily measure the substrate concentration in a biological sample by integrating an insulating base, an electrode system, and a porous body carrying an oxidoreductase and an electron acceptor. I can do it. Furthermore, the electrode system was composed of a carbon-based paste that does not use volatile solvents, improving measurement reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のバイオセンサの分解斜視図
、第2図は同バイオセンサの縦断面図、第3図は同バイ
オセンサの応答特性図、第4図は従来のバイオセンサの
縦断面図である。 1・・・・・絶縁性基板、2,2′・・・・・・対極、
3,3′・・・・・・測定極、4,4′・・・・・参照
極、5・・・・・・絶縁層、6・・・・・・保持枠、7
・・・・・・多孔体、8・・・・・カバー、9・・・・
・・絶縁基板、10・・・・・・測定極、11・・・・
対極、12.13・・・・・リード、14・・・・・多
孔体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図 第 3 図 t134s67δデ10 クルコースくンy (イ固p
Fig. 1 is an exploded perspective view of a biosensor according to an embodiment of the present invention, Fig. 2 is a longitudinal sectional view of the biosensor, Fig. 3 is a response characteristic diagram of the biosensor, and Fig. 4 is a conventional biosensor. FIG. 1... Insulating substrate, 2, 2'... Counter electrode,
3, 3'... Measuring electrode, 4, 4'... Reference electrode, 5... Insulating layer, 6... Holding frame, 7
... Porous body, 8 ... Cover, 9 ...
...Insulating substrate, 10...Measurement electrode, 11...
Counter electrode, 12.13... Lead, 14... Porous body. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure t134s67δde10

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁性基板と、前記絶縁性基板にカーボンを主体
として不揮発性溶媒を用いたペーストで形成された電極
と、酵素と電子受容体となる酸化還元酵素を担持した多
孔体を具備し、前記電極は少なくとも測定極と対極から
なり、前記絶縁性基板と多孔体を一体化したことを特徴
とするバイオセンサ。
(1) An insulating substrate, an electrode formed of a paste made of carbon as a main ingredient and a nonvolatile solvent on the insulating substrate, and a porous body supporting an enzyme and an oxidoreductase serving as an electron acceptor, A biosensor characterized in that the electrode includes at least a measurement electrode and a counter electrode, and the insulating substrate and the porous body are integrated.
(2)電極系が測定極、対極および参照極から構成され
る特許請求の範囲第1項記載のバイオセンサ。
(2) The biosensor according to claim 1, wherein the electrode system includes a measurement electrode, a counter electrode, and a reference electrode.
(3)熱硬化性の樹脂中にカーボンを主体とする材料を
混合したペーストを用いた電極系を、絶縁性の基盤上に
スクリーン印刷で形成した特許請求の範囲第1項または
第2項記載のバイオセンサ。
(3) Claim 1 or 2 in which an electrode system using a paste made of a thermosetting resin mixed with a carbon-based material is formed on an insulating substrate by screen printing. biosensor.
(4)光硬化性の樹脂中にカーボンを混合したペーース
トを用いた電極系を、絶縁性の基板上にスクリーン印刷
で形成した特許請求の範囲第1項または第2項記載のバ
イオセンサ。
(4) The biosensor according to claim 1 or 2, wherein an electrode system using a paste containing carbon mixed into a photocurable resin is formed on an insulating substrate by screen printing.
JP61293965A 1986-12-10 1986-12-10 Biosensor Expired - Fee Related JPH07122623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61293965A JPH07122623B2 (en) 1986-12-10 1986-12-10 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61293965A JPH07122623B2 (en) 1986-12-10 1986-12-10 Biosensor

Publications (2)

Publication Number Publication Date
JPS63148158A true JPS63148158A (en) 1988-06-21
JPH07122623B2 JPH07122623B2 (en) 1995-12-25

Family

ID=17801483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61293965A Expired - Fee Related JPH07122623B2 (en) 1986-12-10 1986-12-10 Biosensor

Country Status (1)

Country Link
JP (1) JPH07122623B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100692783B1 (en) 2005-07-19 2007-03-12 케이엠에이치 주식회사 Patch for extracting glucose
CN107063330A (en) * 2017-04-17 2017-08-18 重庆市计量质量检测研究院 Porous plate standard and joint error detection method for multi-sensor measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550342A (en) * 1978-10-05 1980-04-12 Tdk Electronics Co Ltd Silverrsilver chloride electrode
JPS59166852A (en) * 1983-03-11 1984-09-20 Matsushita Electric Ind Co Ltd Biosensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550342A (en) * 1978-10-05 1980-04-12 Tdk Electronics Co Ltd Silverrsilver chloride electrode
JPS59166852A (en) * 1983-03-11 1984-09-20 Matsushita Electric Ind Co Ltd Biosensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100692783B1 (en) 2005-07-19 2007-03-12 케이엠에이치 주식회사 Patch for extracting glucose
CN107063330A (en) * 2017-04-17 2017-08-18 重庆市计量质量检测研究院 Porous plate standard and joint error detection method for multi-sensor measurement system
CN107063330B (en) * 2017-04-17 2019-03-15 重庆市计量质量检测研究院 Porous plate standard and joint error detection method for multi-sensor measurement system

Also Published As

Publication number Publication date
JPH07122623B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
US6863800B2 (en) Electrochemical biosensor strip for analysis of liquid samples
JP2502635B2 (en) Biosensor
JPH02310457A (en) Biosensor
JPS63317758A (en) Manufacture of biosensor
JPH0262952A (en) Biosensor and its production
JPS63128252A (en) Biosensor
JPS61294351A (en) Biosensor
JPH0816664B2 (en) Biosensor and manufacturing method thereof
JPH102874A (en) Glucose biosensor
JP2502665B2 (en) Biosensor
JP3437016B2 (en) Biosensor and method of quantifying substrate using the same
JP2502656B2 (en) Biosensor manufacturing method
JPS63148158A (en) Biosensor
JP2596017B2 (en) Biosensor
JPS62232554A (en) Biosensor
JPS63317095A (en) Biosensor
JPS633248A (en) Biosensor
JPS63144246A (en) Biosensor
JPS60211350A (en) Biosensor
JPS633249A (en) Biosensor
JPH02157646A (en) Biosensor
JP2548147B2 (en) Biosensor
JPS63139244A (en) Glucose sensor
JPS63144249A (en) Biosensor
JP2590802B2 (en) Biosensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees