JPS6314811B2 - - Google Patents

Info

Publication number
JPS6314811B2
JPS6314811B2 JP55079260A JP7926080A JPS6314811B2 JP S6314811 B2 JPS6314811 B2 JP S6314811B2 JP 55079260 A JP55079260 A JP 55079260A JP 7926080 A JP7926080 A JP 7926080A JP S6314811 B2 JPS6314811 B2 JP S6314811B2
Authority
JP
Japan
Prior art keywords
signal
supplied
scanning
quadrupole
astigmatism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55079260A
Other languages
Japanese (ja)
Other versions
JPS574533A (en
Inventor
Takeshi Sato
Shunichi Suzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIDENSHI TECHNICS KK
Original Assignee
NICHIDENSHI TECHNICS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIDENSHI TECHNICS KK filed Critical NICHIDENSHI TECHNICS KK
Priority to JP7926080A priority Critical patent/JPS574533A/en
Publication of JPS574533A publication Critical patent/JPS574533A/en
Publication of JPS6314811B2 publication Critical patent/JPS6314811B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】 本発明は走査電子顕微鏡における非点収差の補
正操作を容易にするための非点収差検知方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an astigmatism detection method for facilitating the astigmatism correction operation in a scanning electron microscope.

走査電子顕微鏡における走査画像の分解能は一
義的に電子プローブの大きさにより決定されるた
め、高分解能観察にあたつては、プローブ径をで
きるだけ小さくすることが要求される。プローブ
径を決定する要素としては種々あるが、球面収差
や色収差等は装置に個有のものであるから、実際
には与えられた装置における最小のプローブ径を
得るには、最適な対物レンズのフオーカス合せ
と、非点収差補正が必要となる。このうち、フオ
ーカス合せについては従来から充分に研究され、
既に自動焦点合せ装置も実用化され、操作上特別
な問題は生じていない。しかし乍ら、非点収差に
ついてはその検知が困難で専ら、熟練したオペレ
ータの勘に頼るしかなく、素人には大変厄介な操
作である。
Since the resolution of a scanning image in a scanning electron microscope is primarily determined by the size of the electron probe, it is required to make the probe diameter as small as possible for high-resolution observation. There are various factors that determine the probe diameter, but since spherical aberration, chromatic aberration, etc. are unique to each device, in reality, in order to obtain the minimum probe diameter for a given device, it is necessary to select the optimal objective lens. Focus adjustment and astigmatism correction are required. Of these, focus alignment has been well researched,
Automatic focusing devices have already been put into practical use, and no special problems have arisen in their operation. However, astigmatism is difficult to detect and must be relied solely on the intuition of a skilled operator, which is a very troublesome operation for an amateur.

最近一つのアイデアとして、例えば特開昭55−
19798号公開公報明細書に示されるような非点収
差補正方法が提案された。これは、二つの4極子
レンズからなるX、Y型非点収差補正装置の夫々
の4極子レンズに水平走査信号及び垂直走査信号
を与えて電子線の試料面走査に同期して非点収差
補正装置を変調せしめ、これによつて得られた試
料からの情報信号を前記電子線走査と同期した陰
極線管に輝度変調信号として導入してマツプ状の
X−Y像を表示せしめ、該像中の最もフオーカス
の合つたX及びYの座標位置にX及びY方向の輝
線を合わせ、この輝線の位置に対応する直流電流
を前記両4極子レンズに供給するように構成した
ものである。
As an idea recently, for example, JP-A-55-
An astigmatism correction method as shown in the specification of the published publication No. 19798 has been proposed. This corrects astigmatism by applying a horizontal scanning signal and a vertical scanning signal to each quadrupole lens of an X- and Y-type astigmatism correction device consisting of two quadrupole lenses, and synchronizing with the scanning of the sample surface by an electron beam. The apparatus is modulated, and the information signal obtained from the sample is introduced as a brightness modulation signal into the cathode ray tube synchronized with the electron beam scanning to display a map-shaped X-Y image, and the information signal in the image is The bright line in the X and Y directions is aligned with the most focused X and Y coordinate position, and the direct current corresponding to the position of this bright line is supplied to both quadrupole lenses.

この様な方法を用いれば、非点収差の程度を画
像上のX、Y座標位置で表わすので、素人にも補
正操作が容易に行えそうである。所が、実際に
は、フオーカスの合つている座標位置、つまり殆
んど点を選択しなければならないので、大きな模
様の中に最適位置が重なつた場合には補正操作が
できなくなる。従つて、観察試料に制限があると
共に観察倍率が数千倍止りであり、高分解能観察
の行われる数万倍では全く使用不可能である。
If such a method is used, the degree of astigmatism is expressed by the X and Y coordinate positions on the image, so even an amateur can easily perform the correction operation. However, in reality, it is necessary to select the coordinate positions that are in focus, that is, most of the points, so if the optimal position overlaps within a large pattern, the correction operation will not be possible. Therefore, there is a limit to the number of samples to be observed, and the observation magnification is only a few thousand times, making it completely unusable at tens of thousands of times, which is where high-resolution observation is performed.

而して本発明は上記欠点を解決することを目的
とするもので、補正操作を極めて容易にする新規
な非点収差検知方法を提供するものである。
SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned drawbacks, and provides a novel astigmatism detection method that makes the correction operation extremely easy.

第1図は本発明の方法を実施した一装置例を示
すブロツク線図で、1は走査電子顕微鏡カラムを
示す。該カラム内の上端には電子銃2が設けら
れ、この電子銃より出た電子線(プローブ)は集
束レンズ3及び対物レンズ4により集束され、試
料5上に投射される。集束レンズ3と対物レンズ
4との間には、一段又は二段のX、Y偏向コイル
6X及び6Yが置かれ、水平走査電源7X及び垂
直走査電源7Yから倍率調整回路8を介して走査
用鋸歯状波信号が供給される。これにより電子線
は試料5上の一定領域を二次元的に走査すること
になる。この電子線走査により試料各部から散乱
する反射電子或いは二次電子は検出器9により検
出され、増幅器10、加算器11を介して陰極線
管12に輝度変調信号として供給される。該陰極
線管の偏向コイル13X,13Yには前記水平、
垂直走査電源7X及び7Yから走査信号が供給さ
れ、前記試料の電子線走査と同期したラスター走
査がなされているので、その画面上には、輝度変
調された試料走査画像が表示される。14X,1
4Yは非点収差補正用4極子レンズで、実際には
対物レンズ4の中に組み込まれ、又、互いに各磁
極(又は電極)が45度ずつずれるように配置され
る。前記4極レンズの内X方向の14Xにはクリ
ツプ回路15a,15b、可変直流電源16及び
加算回路17からなる電源より電流が供給され
る。又、14Yにはクリツプ回路18a,18
b、可変直流電源19及び加算回路20からなる
電源より電流が供給される。前記クリツプ回路1
5a,15bにはスイツチ21を介して水平走査
電源7Xより第2図aに示す如き水平走査鋸歯状
信号が供給される。又、Y方向クリツプ回路18
a,18bには、前記スイツチ21と連動したス
イツチ22を介して垂直走査電源7Yからの第2
図には示さないがaよりも周期のはるかに長い鋸
歯状信号が供給される。前記スイツチは夫々三個
の切換端子を有しており、スイツチ21において
はa端子が水平走査電源7Xに接続され、他のb
及びc端子は非接続である。又、スイツチ22は
端子bが垂直走査電源7Yに接続され、他のaと
cは非接続である。
FIG. 1 is a block diagram showing an example of an apparatus for carrying out the method of the present invention, and 1 indicates a scanning electron microscope column. An electron gun 2 is provided at the upper end of the column, and an electron beam (probe) emitted from the electron gun is focused by a focusing lens 3 and an objective lens 4 and projected onto a sample 5. One or two stages of X and Y deflection coils 6X and 6Y are placed between the focusing lens 3 and the objective lens 4, and a scanning sawtooth is connected to the horizontal scanning power source 7X and the vertical scanning power source 7Y via a magnification adjustment circuit 8. A wave signal is provided. As a result, the electron beam scans a certain area on the sample 5 two-dimensionally. Reflected electrons or secondary electrons scattered from various parts of the sample by this electron beam scanning are detected by a detector 9 and supplied to a cathode ray tube 12 as a brightness modulation signal via an amplifier 10 and an adder 11. The deflection coils 13X, 13Y of the cathode ray tube have the horizontal
Scanning signals are supplied from the vertical scanning power supplies 7X and 7Y, and raster scanning is performed in synchronization with the electron beam scanning of the sample, so that a luminance-modulated sample scanning image is displayed on the screen. 14X, 1
4Y is a quadrupole lens for astigmatism correction, which is actually incorporated into the objective lens 4, and arranged so that each magnetic pole (or electrode) is shifted by 45 degrees from each other. A current is supplied to 14X of the four-pole lens in the X direction from a power source consisting of clip circuits 15a and 15b, a variable DC power source 16, and an adder circuit 17. Moreover, clip circuits 18a and 18 are connected to 14Y.
b. Current is supplied from a power source consisting of a variable DC power source 19 and an adder circuit 20. The clip circuit 1
A horizontal scanning sawtooth signal as shown in FIG. 2a is supplied to switches 5a and 15b from a horizontal scanning power supply 7X via a switch 21. In addition, the Y direction clip circuit 18
A, 18b are supplied with a second voltage from the vertical scanning power source 7Y via a switch 22 interlocked with the switch 21.
Although not shown in the figure, a sawtooth signal having a much longer period than a is supplied. Each of the switches has three switching terminals, and in the switch 21, the a terminal is connected to the horizontal scanning power supply 7X, and the other b terminal is connected to the horizontal scanning power supply 7X.
and c terminals are not connected. Further, the switch 22 has a terminal b connected to the vertical scanning power supply 7Y, and the other terminals a and c are not connected.

前記スイツチ21からの水平走査信号は比較回
路23a,23bにも送られ、基準電源24a,
24bからの基準電圧と比較され、両信号が一致
したとき、第2図e,fの如き巾の狭いパルス信
号を発生する。又、スイツチ22からの垂直走査
信号を比較回路25a,25bに送られ、基準電
源26a,26bの基準電圧と比較され、両信号
強度が一致したとき、前記と同様のパルスを発生
する。各比較回路23a,23b,25a及び2
5bからの出力パルス信号はオア回路27を介し
て加算回路11に送られ、試料情報を含む映像信
号に加算して陰極線管12に供給される。
The horizontal scanning signal from the switch 21 is also sent to comparison circuits 23a, 23b, and reference power supplies 24a,
When the two signals match, a narrow pulse signal as shown in FIG. 2e and f is generated. Further, the vertical scanning signal from the switch 22 is sent to comparison circuits 25a and 25b, and compared with the reference voltages of the reference power supplies 26a and 26b, and when the signal strengths match, a pulse similar to that described above is generated. Each comparison circuit 23a, 23b, 25a and 2
The output pulse signal from 5b is sent to the addition circuit 11 via the OR circuit 27, added to the video signal containing sample information, and supplied to the cathode ray tube 12.

斯様な構成において、先ず直流電源16及び1
9の出力を零に調整しておき、又、スイツチ21
及び22をa端子に接続した状態で陰極線管12
上に試料像を表示する。この状態ではスイツチ2
2は非接続で、スイツチ21を通して水平走査信
号(第2図a)のみがクリツプ回路15a,15
b及び比較回路23a,23bに供給される。ク
リツプ回路15aにおいては−V1以上の水平走
査信号をクリツプし、第2図bに示すような信号
を出力する。この信号は、一水平走査信号の負側
の1/3の期間のみ時間的に強度が変化する走査信
号となし、他の期間は一定の強度をなしている。
一方クリツプ回路15bは、+V1以下の水平走査
信号をクリツプし、第2図cに示す如く、一水平
走査信号の正側の1/3の期間のみ時間的に強度が
変化する走査信号を出力する。クリツプ回路15
a及び15bの出賄信号は加算回路17に送ら
れ、可変直流電源16からの出力と加算される。
最初の状態では、該電源は零にセツトしてあるの
で、加算回路の出力信号は、第2図dの如く中央
の期間は零となつている。この信号が非点収差補
正用X方向4極レンズ14Xに供給されるので、
各水平走査に関連して、4極レンズは最初の1/3
の期間では連続的に変化する負の強度に励起さ
れ、次の中央の1/3の期間では強度が零になり、
(非励起)更に最後の1/3の期間は連続的に変化す
る正の強度に励起される。その結果陰極線管12
の画面上には第3図aに示す如く、画面を横に3
等分した中央部領域Bに4極レンズ14Xを非励
起(一定強度)にしたときの画像が、又、左側の
領域Aには、連続的に変化する負の強度に励起し
たときの画像が、更に右側の領域Cには連続的に
変化する正の強度に励磁したときの画像が表示さ
れる。従つて、この画像は、中央領域Bは全てフ
オーカス状態の等しい画像となるが、A及びCの
領域では、横方向で連続してフオーカスの異つた
画像となる。図では表示を簡略化する為、縦線の
粗密でフオーカス状態を表わし、密になる程フオ
ーカスが合つている、つまり非点収差がない状態
を表わしている。
In such a configuration, first, the DC power supplies 16 and 1
Adjust the output of switch 9 to zero, and also switch 21
and 22 are connected to the a terminal, the cathode ray tube 12
The sample image is displayed above. In this state, switch 2
2 is not connected, and only the horizontal scanning signal (FIG. 2a) is sent through the switch 21 to the clip circuits 15a and 15.
b and comparison circuits 23a and 23b. The clipping circuit 15a clips the horizontal scanning signal of -V1 or higher and outputs a signal as shown in FIG. 2b. This signal is a scanning signal whose intensity changes over time only during one-third of the period on the negative side of one horizontal scanning signal, and has a constant intensity during the other periods.
On the other hand, the clip circuit 15b clips the horizontal scanning signal of +V 1 or less, and outputs a scanning signal whose intensity changes over time only during the positive 1/3 period of one horizontal scanning signal, as shown in Fig. 2c. do. Clip circuit 15
The bribe signals a and 15b are sent to an adder circuit 17 and added to the output from the variable DC power supply 16.
In the initial state, the power supply is set to zero, so the output signal of the adder circuit is zero during the center period as shown in FIG. 2d. This signal is supplied to the X-direction quadrupole lens 14X for astigmatism correction, so
For each horizontal scan, the quadrupole lens
In the period of , it is excited to a continuously changing negative intensity, and in the next middle 1/3 period, the intensity becomes zero,
(Unexcited) Furthermore, during the last 1/3 period, it is excited to a continuously changing positive intensity. As a result, the cathode ray tube 12
As shown in Figure 3a, there are three
The equally divided central region B shows an image when the quadrupole lens 14X is not excited (constant intensity), and the left region A shows an image when it is excited to a continuously changing negative intensity. , In area C further to the right, an image is displayed when the magnet is excited to a continuously changing positive intensity. Therefore, in this image, the central area B is an image with the same focus state, but the areas A and C are images with consecutively different focuses in the horizontal direction. In the figure, to simplify the display, the focus state is expressed by the density of the vertical lines, and the denser the vertical lines, the better the focus is, that is, the state where there is no astigmatism.

所で、前記スイツチ21からの水平走査信号は
比較回路23a,23bにも送られ、基準電圧と
比較されているので、該基準電圧を、クリツプ電
圧と同一の−V1,+V1に設定すると、第2図e、
fの如きパルス信号が得られ、オア回路27を通
して、gの信号が輝度変調信号として陰極線管1
2に導入される。その結果、X1,X2で示す様
に、領域AとB及びBとCの間に各領域を区分け
する輝線(又は暗線)が表示される。第3図aに
おいて、中央部の領域Bの画像は全体に同様にぼ
けており、A領域では、更にぼけが激しく且つ左
にいくに従つて、ぼけは大きくなる。これに対
し、C領域は縦線がA領域に比べ極めて密であ
り、Pに沿う線上にフオーカスが合つていること
がわかる。即ち、第2図dのP′で示す強度の電流
(又は電圧)が4極レンズに供給されたとき、非
点収差は最適に補正されることがわかる。そこ
で、第1図の可変直流電源16を操作して、中央
部の一定値信号のレベルを正の方向にP′まで持ち
上げると、第3図bに示す如く、中央領域Bに表
示された画像は最適フオーカス状態となり、A、
C領域は、B領域から遠ざかるにつれてぼけの多
い且つ、AとCとで略対称的なぼけになるような
画像が得られる。X方向の補正が終了したら、可
変直流電源をその値に固定した状態でスイツチ2
1及び22をb端子に切換える。これにより、水
平走査信号は供給されなくなり、垂直走査信号が
スイツチ22を介してクリツプ回路18a,18
b及び比較回路25a,25bに供給される。そ
の結果、Y方向4極レンズには第2図dに類似の
信号が供給され、陰極線管12画面には第3図c
に示す如き、画像が表示される。同図中D、E、
Fは第3図a、bにおけるA、B、Cに夫々対応
する領域であり、Y1及びY2は比較回路25
a,25bからの出力に基づく各領域を区分する
輝線である。該Y方向についても、前述のX方向
と同じで、画像中のD、E及びFの領域のフオー
カス状態を観察することにより、非点収差の大き
さを検知できる。そして、可変直流電源19を調
整することにより、中央領域Eに最適フオーカス
の画像を得ることができる。この状態が得られた
なら電源19をその値に固定し、スイツチ21及
び22をCに切換えると、クリツプ回路及び比較
回路には水平、垂直走査信号のいずれも供給され
なくなるので、陰極線管12上には第3図dに示
す如き、非点収差の補正された鮮明な画像が表示
される。
By the way, since the horizontal scanning signal from the switch 21 is also sent to the comparison circuits 23a and 23b and compared with the reference voltage, if the reference voltage is set to -V 1 and +V 1 which are the same as the clip voltage, , Figure 2e,
A pulse signal such as f is obtained, and the signal g is transmitted through the OR circuit 27 to the cathode ray tube 1 as a brightness modulation signal.
2 will be introduced. As a result, bright lines (or dark lines) dividing each area are displayed between areas A and B and between B and C, as shown by X1 and X2. In FIG. 3a, the image in area B in the center is similarly blurred as a whole, and in area A, the blur is even more severe, and the blur becomes larger as it goes to the left. On the other hand, in area C, the vertical lines are much denser than in area A, and it can be seen that the focus is on the line along P. That is, it can be seen that astigmatism can be optimally corrected when a current (or voltage) with an intensity shown by P' in FIG. 2d is supplied to the quadrupole lens. Therefore, by operating the variable DC power supply 16 shown in Fig. 1 and raising the level of the constant value signal in the central area to P' in the positive direction, an image displayed in the central area B as shown in Fig. 3b is generated. becomes the optimal focus state, A,
In area C, an image is obtained in which blur increases as the distance from area B increases, and the blur in areas A and C becomes approximately symmetrical. After completing the correction in the X direction, turn switch 2 with the variable DC power supply fixed at that value.
Switch 1 and 22 to b terminals. As a result, the horizontal scanning signal is no longer supplied, and the vertical scanning signal is supplied to the clip circuits 18a and 18 via the switch 22.
b and comparison circuits 25a and 25b. As a result, the Y-direction quadrupole lens is supplied with a signal similar to that shown in Figure 2d, and the cathode ray tube 12 screen is supplied with a signal similar to that shown in Figure 3c.
An image as shown is displayed. In the same figure, D, E,
F is the area corresponding to A, B, and C in FIG.
These are bright lines that divide each area based on the outputs from a and 25b. In the Y direction as well, the magnitude of astigmatism can be detected by observing the focus state of the regions D, E, and F in the image, similar to the above-mentioned X direction. Then, by adjusting the variable DC power supply 19, an image with optimal focus on the central region E can be obtained. When this state is obtained, fix the power supply 19 to that value and switch the switches 21 and 22 to C. Since neither horizontal nor vertical scanning signals are supplied to the clip circuit and the comparator circuit, the cathode ray tube 12 A clear image with astigmatism corrected is displayed as shown in FIG. 3d.

以上の様な方法となせば、各領域A、B、C又
はD、E、F内に生じている画像のフオーカス状
態を観察することにより、非点収差の状態(大き
さ、方向又は補正の程度)を知ることができ、
又、中央領域B及びEの画像が最良にフオーカス
されるように各4極レンズの励磁を調整すれば良
いので、非点補正操作は素人にも極めて容易に行
うことができる。更に、補正は広い面積をもつ中
央領域内の画像のフオーカスを最良にすることに
よりなされるので、画像の模様の大、小には無関
係で、試料の制限もなく、且つ、倍率も非常に高
く5万倍以上でも充分に利用できる。
Using the method described above, by observing the focus state of the image occurring in each area A, B, C or D, E, F, the state of astigmatism (size, direction, or correction) can be determined. degree),
Further, since the excitation of each quadrupole lens is adjusted so that the images in the central regions B and E are best focused, even an amateur can perform the stigmatization correction operation very easily. Furthermore, since the correction is made by optimizing the focus of the image within the central area, which has a large area, it is independent of the size of the pattern in the image, there is no restriction on the sample, and the magnification is very high. It can be fully utilized even at a magnification of 50,000 times or more.

尚、以上は本発明の例示であり、種々な変更が
可能である。例えば、前述の例では画面を3つに
区画したが、これに限らず5つ或いはそれ以上の
奇数個であつても良い。又、X方向の表示とY方
向の表示を時間的に分離して行つたが、垂直走査
の途中でスイツチ21,22を切り換えて一画面
中でXとY両方向の表示を行うようにしても良
い。更に水平走査信号のみを用い、垂直走査の途
中で該水平走査信号をクリツプ回路15a,15
bへ供給していたのを18a,18bに切換えて
供給するようにすると、第4図に示す如くX方向
とY方向とで同様な画像が得られ、補正操作が容
易になる。更に又、クリツプ回路15a,15b
及び18a,18bに水平、垂直走査信号を同時
に供給し、4極レンズ14X及び14Yを同時に
働かせるようにしても良い。
Note that the above is an illustration of the present invention, and various changes are possible. For example, in the above example, the screen is divided into three sections, but the screen is not limited to this and may be divided into five or more odd numbers. Furthermore, although the display in the X direction and the display in the Y direction are temporally separated, it is also possible to display both the X and Y directions on one screen by switching the switches 21 and 22 during vertical scanning. good. Furthermore, using only the horizontal scanning signal, the horizontal scanning signal is clipped to clip circuits 15a and 15 during vertical scanning.
If the supply is switched from 18a and 18b to 18a and 18b, similar images can be obtained in the X and Y directions, as shown in FIG. 4, and the correction operation will be easier. Furthermore, clip circuits 15a and 15b
Horizontal and vertical scanning signals may be simultaneously supplied to 18a and 18b so that the quadrupole lenses 14X and 14Y work simultaneously.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する一装置例を示す
図、第2図及び第3図はその動作を説明するため
の図、第4図は本発明の他の例を示す図である。 2…電子銃、3…集束レンズ、4…対物レン
ズ、5…試料、6X及び6Y…偏向コイル、7X
…水平走査電源、7Y…垂直走査電源、9…検出
器、11…加算回路、12…陰極線管、14X及
び14Y…4極子レンズ、15a,15b及び1
8a,18b…クリツプ回路、16及び19…可
変直流電源、17及び20…加算回路、21及び
22…切換スイツチ、23a,23b及び25
a,25b…比較回路、24a,24b及び26
a,26b…基準電源、27…オア回路。
FIG. 1 is a diagram showing an example of an apparatus for implementing the method of the present invention, FIGS. 2 and 3 are diagrams for explaining its operation, and FIG. 4 is a diagram showing another example of the present invention. 2... Electron gun, 3... Focusing lens, 4... Objective lens, 5... Sample, 6X and 6Y... Deflection coil, 7X
...Horizontal scanning power supply, 7Y...Vertical scanning power supply, 9...Detector, 11...Addition circuit, 12...Cathode ray tube, 14X and 14Y...Quadrupole lens, 15a, 15b and 1
8a, 18b... Clip circuit, 16 and 19... Variable DC power supply, 17 and 20... Addition circuit, 21 and 22... Changeover switch, 23a, 23b, and 25
a, 25b...comparison circuit, 24a, 24b and 26
a, 26b...Reference power supply, 27...OR circuit.

Claims (1)

【特許請求の範囲】 1 電子線を二次元的に走査する装置における該
電子線の非点収差を独立して調整される2組の4
極レンズを用いて補正するにあたり、一方の組
(X方向)の4極レンズに供給する信号を水平走
査の一周期を3つ以上の奇数個に時間的に分割し
て、所定幅を有したその中央部領域を一定値信号
となし、両周辺領域は前記水平走査に関連して時
間的に変化する信号となし、又、他方の組(Y方
向)の4極レンズに供給する信号を垂直走査の一
周期を3つ以上の奇数個に分割して、所定幅を有
したその中央部領域は一定値信号となし、両周辺
領域は前記垂直走査に関連して時間的に変化する
信号となし、各4極レンズに供給する夫々の領域
の信号に対応する試料像を陰極線管画面上に区画
して表示することを特徴とする非点収差を検知す
る方法。 2 前記一方の組(X方向)の4極レンズに供給
する信号と前記他方の組(Y方向)の4極レンズ
に供給する信号とを同時に供給する特許請求の範
囲第1項に記載の非点収差を検知する方法。 3 前記一方の組(X方向)の4極レンズへの信
号の供給と前記他方の組(Y方向)の4極レンズ
への信号の供給とは、時間的に分けて行う特許請
求の範囲第1項に記載の非点収差を検知する方
法。
[Scope of Claims] 1. Two sets of four that independently adjust the astigmatism of the electron beam in a device that scans the electron beam two-dimensionally.
When performing correction using a polar lens, one period of horizontal scanning is temporally divided into an odd number of three or more for the signal supplied to one set (X direction) of the quadrupole lens, and a signal having a predetermined width is divided into an odd number of three or more. The central region is used as a constant value signal, both peripheral regions are used as a signal that changes over time in relation to the horizontal scanning, and the signal supplied to the other set (Y direction) of the quadrupole lens is vertically One period of scanning is divided into an odd number of three or more, and a central region having a predetermined width is a constant value signal, and both peripheral regions are a signal that changes over time in relation to the vertical scanning. A method for detecting astigmatism characterized by dividing and displaying sample images corresponding to signals of respective regions supplied to each quadrupole lens on a cathode ray tube screen. 2. The non-contact device according to claim 1, which simultaneously supplies a signal to be supplied to the quadrupole lens of the one set (X direction) and a signal to be supplied to the quadrupole lens of the other set (Y direction). How to detect point aberration. 3. The supply of signals to the quadrupole lenses of one set (X direction) and the supply of signals to the quadrupole lenses of the other set (Y direction) are performed separately in time. The method for detecting astigmatism according to item 1.
JP7926080A 1980-06-12 1980-06-12 Detecting method of astigmatism Granted JPS574533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7926080A JPS574533A (en) 1980-06-12 1980-06-12 Detecting method of astigmatism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7926080A JPS574533A (en) 1980-06-12 1980-06-12 Detecting method of astigmatism

Publications (2)

Publication Number Publication Date
JPS574533A JPS574533A (en) 1982-01-11
JPS6314811B2 true JPS6314811B2 (en) 1988-04-01

Family

ID=13684879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7926080A Granted JPS574533A (en) 1980-06-12 1980-06-12 Detecting method of astigmatism

Country Status (1)

Country Link
JP (1) JPS574533A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218161A (en) * 1975-08-01 1977-02-10 Hitachi Ltd Sample scan type sample image display unit
JPS5222225A (en) * 1975-08-12 1977-02-19 Honda Motor Co Ltd Front wheel suspension device for car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218161A (en) * 1975-08-01 1977-02-10 Hitachi Ltd Sample scan type sample image display unit
JPS5222225A (en) * 1975-08-12 1977-02-19 Honda Motor Co Ltd Front wheel suspension device for car

Also Published As

Publication number Publication date
JPS574533A (en) 1982-01-11

Similar Documents

Publication Publication Date Title
JP3101114B2 (en) Scanning electron microscope
JPS6114630B2 (en)
JPH07262950A (en) Scanning electron microscope
JPS6314811B2 (en)
US4439681A (en) Charged particle beam scanning device
KR830002233B1 (en) Astigmatism Correction Method
WO2021229732A1 (en) Charged particle beam device, and method for controlling charged particle beam device
JPS5811073B2 (en) Sample scanning type sample image display device using particle beam
JPS63307652A (en) Focus detection device for electron microscope
JPS6114631B2 (en)
JPS6155735B2 (en)
JPS6324617Y2 (en)
JPS6089047A (en) Scanning electron microscope
JPH0896737A (en) Electron microscope
JPH07130321A (en) Scanning electron microscope
JPS6129645B2 (en)
JP2002319361A (en) Method of setting different magnification for scanning electron microscope
JPH0228601Y2 (en)
JPH0355935B2 (en)
JPS5840758A (en) Astigmatism correction in sample-scanning-type sample- image displayer by means of particle rays
JPS5986141A (en) Method of detecting axial shift of diaphragm in electron beam irradiation system
JPS606070B2 (en) scanning electron microscope
JPH0636726A (en) Scanning microscope
JPS60131748A (en) Scanning image display device
JPH0629886Y2 (en) Electron beam equipment