JPS5986141A - Method of detecting axial shift of diaphragm in electron beam irradiation system - Google Patents

Method of detecting axial shift of diaphragm in electron beam irradiation system

Info

Publication number
JPS5986141A
JPS5986141A JP19695282A JP19695282A JPS5986141A JP S5986141 A JPS5986141 A JP S5986141A JP 19695282 A JP19695282 A JP 19695282A JP 19695282 A JP19695282 A JP 19695282A JP S5986141 A JPS5986141 A JP S5986141A
Authority
JP
Japan
Prior art keywords
electron beam
ray tube
sample
line
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19695282A
Other languages
Japanese (ja)
Inventor
Akira Miyamori
宮森 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP19695282A priority Critical patent/JPS5986141A/en
Publication of JPS5986141A publication Critical patent/JPS5986141A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To accurately and easily detect axial shift by switching the focusing condition of an electron lens into two steps or more, line-scanning an electron beam on the specific area of a sample in the X or Y direction, detecting diffused electrons and x-rays, and plotting line profiles on a cathode-ray tube. CONSTITUTION:A switch is connected to a terminal (a) and a sample area B with an exceeding contrast is focused on a CRT screen. Then, the switch is changed over into a terminal (b) and excitation intensity is switched into two steps by the power supply 14 of an objective lens every horizontal scanning. In addition, the line-scanning is made on specific area B in the X direction indicated by a line L and a sample information signal is sent to the y deflector 13y of the cathode-ray tube and then a focal point profile P1 and a non-focal point profile P2 are displayed on the cathode-ray tube. When the axis of a diaphragm is aligned, both P1 and P2 appear in the center of the screen and the left and right skirts are intersected symmetrically. When the axis is not aligned, they are not intersected symmetrically. In this case, the axis must be aligned by actuating a drive mechanism 9. Furthermore, the axial alignment of the diaphragm in the Y direction is performed by changing the switch to a terminal (c).

Description

【発明の詳細な説明】 本発明は走査電子顕微鏡、透過電子顕微鏡、オージェ電
子分光装置等における電子線照射系の絞りの軸ずれを検
知する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting axis deviation of an aperture of an electron beam irradiation system in a scanning electron microscope, a transmission electron microscope, an Auger electron spectrometer, or the like.

例えば、走査電子顕微鏡の電子線照射系は電子銃、複数
段の集束レンズ、電子線を試料上で走査づるための電子
線偏向系等から構成されるが、試料上における電子線の
スポット径を小さくするために電子線の開き角制限用の
絞りを最終段集束レンズ(対物レンズ)の中、又はその
近傍に設ける必要がある。この絞りの大きさは大変に小
さく、通常数十ミクロン乃至数百ミクロンの直径のもの
が使用されるため、光軸への軸合ゼが非常に厄介になる
For example, the electron beam irradiation system of a scanning electron microscope consists of an electron gun, multiple stages of focusing lenses, an electron beam deflection system for scanning the electron beam on the sample, etc. In order to reduce the size, it is necessary to provide a diaphragm for limiting the opening angle of the electron beam in or near the final stage focusing lens (objective lens). The size of this diaphragm is very small, and a diameter of several tens of microns to several hundred microns is usually used, making it extremely difficult to align the aperture with the optical axis.

従来の軸合せ方法は対物レンズの励磁強度、つまり焦点
距1llIIをアンダー側からオーバー側へ複数段に繰
返し変化させながら電子線を試料上で走査し、そのとき
試料から散乱リ−る電子、例えば2次電子を検出し、そ
の信号を陰極線管に輝度変調信号として導入して試料像
を形成せしめ、該陰極線管に映し出された像の動きを最
小にするように絞り位置を調整している。第1図及び第
2図はその絞りの軸合せを説明するもので、第1図は陰
極線管上の試1′+1像の動きを示し、第2図(zl)
は絞りが合っている場合の電子線の光学図、第2図(b
)は絞りが含っCいない場合の光学図Cある。第1図に
おいて、八は対物レンズをシトストフォーカスに励磁し
た場合の試料の特定領域の画像であり、A′及びA″は
前記対物レンズをアンダーフォーカス及びA−バーフォ
ーカスにした場合の同一試料領域の画像である。図から
解るように、絞りが光軸と合っていないど対物レンズの
励磁条件により画像はボケど共に位置の変化を生ずる。
In the conventional alignment method, an electron beam is scanned over a sample while repeatedly changing the excitation intensity of the objective lens, that is, the focal length 1llII, from the under side to the over side in multiple steps, and at this time, the electron beam scattered from the sample, e.g. Secondary electrons are detected and the signal is introduced into a cathode ray tube as a brightness modulation signal to form a sample image, and the aperture position is adjusted to minimize movement of the image projected on the cathode ray tube. Figures 1 and 2 explain the alignment of the aperture. Figure 1 shows the movement of the sample 1'+1 image on the cathode ray tube, and Figure 2 (zl).
is an optical diagram of the electron beam when the aperture is adjusted, Figure 2 (b
) is an optical diagram C when the aperture C is not included. In FIG. 1, 8 is an image of a specific area of the sample when the objective lens is excited to the top focus, and A' and A'' are images of the same sample when the objective lens is set to underfocus and A-bar focus. This is an image of a region.As can be seen from the figure, the image will be blurred and its position will change depending on the excitation conditions of the objective lens, such as when the aperture is not aligned with the optical axis.

第2図はぞのj1]!山を図力了するもので、(a )
のように絞りAPの軸が光軸と合っているときには対物
レンズOLの励磁を切換え電子線をジ1シストフl−力
ス[EB+からA−バーフォーカスEB2に変えてら試
i3I S上におりる該両型子線の中心ビームは光軸と
一致している。しかし、(b )図の如く、絞りが光軸
ど一致していないとジVス1〜フォーカスE[3+から
A−バーフォーカスEB2に切換えた場合、試料S上で
はスポット径の変化のみならず中心ビームの位置が変化
している。この試料上での電子線スポットの位置変化が
第1図の画像の位置変化を招来するわけである。
Figure 2 hazono j1]! (a)
When the axis of the diaphragm AP is aligned with the optical axis as shown in the figure, the excitation of the objective lens OL is switched and the electron beam is focused on the di-1 cysteine force [after changing from EB+ to A-bar focus EB2, it lands on the i3I S. The central beams of both types of beams coincide with the optical axis. However, as shown in figure (b), if the aperture is not aligned with the optical axis, when switching from VS1 to focus E[3+ to A-bar focus EB2, not only the spot diameter will change on sample S. The position of the central beam is changing. This change in the position of the electron beam spot on the sample causes a change in the position of the image shown in FIG. 1.

而して、第1図の画像の変化(変動)を観察し/、1が
らその変動がなくなるように絞りの位置を調11λすれ
ば良いわけであるが、実際には前述したように画像A′
及びA IIは位置変化ど共にボケ°を生り゛るため、
Bi「L’tを容易にすべく位置変化を大きくするとボ
ケが大きくなり、そのボケを小さくすると位置変化が小
さくなるという矛盾があり、軸ずれの確認は大変に困難
となり、その操作上並びに正確さの上で問題がある。
Therefore, all you have to do is observe the changes (fluctuations) in the image shown in Figure 1 and adjust the aperture position by 11λ so that the fluctuations disappear, but in reality, as described above, the image A ′
and A II cause blurring as the position changes, so
There is a contradiction that if you increase the position change to make L't easier, the blur will increase, and if you reduce the blur, the position change will become smaller. This makes it very difficult to check the axis misalignment, and it is difficult to confirm the accuracy in operation and accuracy. There is a problem on the top.

本発明は上記欠点を解消することを目的とするもので、
その構成は電子線照射系の電子線通路上に絞りを挿入し
た状態で電子レンズににり電子線を集束して試料上に照
射し、該電子線が試料上の特定領域をX方向又はY方向
に横切るようにライン走査し、その走査により試料から
散乱する電子やX線を検出してドλ極I!Il管に供給
し、該陰極線管上にラインプロファイルを描かせるよう
になし、前記電子レンズの集束条件を少なくとも二段階
に切換えて、その各々の場合にお【ノるラインプロファ
イルを陰極線管上で重ね合せて表示・相互比較りる電子
線照射系における絞りの軸ずれを検知Mる方法に特徴を
有づる。
The present invention aims to eliminate the above-mentioned drawbacks.
Its configuration is such that an aperture is inserted into the electron beam path of the electron beam irradiation system, and an electron lens is used to focus the electron beam and irradiate it onto the sample. A line is scanned across the direction, and electrons and X-rays scattered from the sample are detected by the scanning to detect the λ pole I! the electron beam is supplied to an Il tube to draw a line profile on the cathode ray tube, and the focusing conditions of the electron lens are switched in at least two stages, in each case to draw a line profile on the cathode ray tube. The feature lies in the method of detecting the axis deviation of the aperture in the electron beam irradiation system, which is displayed and compared with each other in an overlapping manner.

以下本発明の一実施例を図面に基づき詳説する。An embodiment of the present invention will be explained in detail below based on the drawings.

第3図は本発明の一実施例を示リブロック図であり、1
は電子銃を示す。該電子銃1より放射されIζ電子線2
は集束レンズ3及び対物レンズ4にJ:り細く集束され
て試料5上に投射される。5x。
FIG. 3 is a block diagram showing one embodiment of the present invention.
indicates an electron gun. Iζ electron beam 2 emitted from the electron gun 1
is narrowly focused by the focusing lens 3 and objective lens 4 and projected onto the sample 5. 5x.

6■は電子線の偏向コイルで、人々水平1杏信号発生器
7x及び垂直走査信8発!1器7yに接続され、前記電
子線を試料5上で2次几的LJj、: +% U−る働
きをする。該偏向コイル6X、6Vは目串の如く対物レ
ンズの後方に置いても良いし、対物レンズ4ど集束レン
ズ3との間に買い(t)Nい1.前記対物レンズ4の近
傍には絞り8か仲人され、駆動I幾横9に1、りその位
置が可変される。該駆!e11何t:k x及びY方向
の機構を有し、その移動方向は前記偏向−コイル(3x
 、 6yによる電子線の偏向方向と一致させると良い
。前記試1′31の近傍には例えば2次電子検出器10
が設置されており、電子線の照射により試料から散乱す
る2次電子を検出する。
6■ is an electron beam deflection coil, 7x horizontal signal generator and 8 vertical scanning signals! It is connected to the single device 7y, and serves to direct the electron beam onto the sample 5 in a secondary manner. The deflection coils 6X and 6V may be placed behind the objective lens like an eyepiece, or they may be placed between the objective lens 4 and the focusing lens 3.1. A diaphragm 8 is disposed near the objective lens 4, and its position can be varied by 1 in every 9 directions of the drive I. The drive! e11Whatt:k It has a mechanism in the x and Y directions, and its movement direction is the deflection coil (3x
, 6y should match the deflection direction of the electron beam. For example, a secondary electron detector 10 is installed near the test 1'31.
is installed to detect secondary electrons scattered from the sample by electron beam irradiation.

その出力は増幅器11及びスイッチS1のa端子を介し
て陰極線管12の輝度変調グリッドに供給される。陰極
線管12の電子線偏向器13x、13yには前記走査信
号発生器7x、7Vより夫々スイッチS2及びS3のa
端子を介して照射電子線の走査に同期した信号が供給さ
れている。その結果、該陰極線管上には試料5の2次電
子走査像か表示されることになる。前記スイッチS1の
b端子は陰極線管のy偏向器13yに、又C端子はX偏
向器に接続されCいる。スイッチS2のa端子どC端子
は共通接続されて前記陰極線管の偏向器13yに接続さ
れ、b端子は解放端である。又、スイッチS3のa端子
とb端子は共通接続されて陰極線管の偏向器13xに接
続され、C°端子は解放端である。これらスイッチは連
動的に操作され、a端子が選択されているときは試料の
2次電子画像が陰極線管上に表示され、b端子が選択さ
れているときはy偏向器13yに映像信号が供給されC
陰Jii線管lにはX方向のラインプロノアイルが表示
される。更に、C端子が選択されているどきは前記検出
器からの映像信号がX偏向器13×に供給されC陰14
へ線管上にはX方向のラインプロフンフィルが表示され
る。尚、14は対物レンズの電源ぐあり、所望の直流電
流を供給Cさ、父型子線の走査と同期して励磁強度を複
数段、例えば2段階に切換え可能に構成しである。
Its output is supplied to the brightness modulation grid of the cathode ray tube 12 via the amplifier 11 and the a terminal of the switch S1. The electron beam deflectors 13x and 13y of the cathode ray tube 12 are supplied with switches S2 and S3 a from the scanning signal generators 7x and 7V, respectively.
A signal synchronized with the scanning of the irradiated electron beam is supplied via the terminal. As a result, a secondary electron scanned image of the sample 5 is displayed on the cathode ray tube. The B terminal of the switch S1 is connected to the Y deflector 13y of the cathode ray tube, and the C terminal is connected to the X deflector. The a terminal and the C terminal of the switch S2 are commonly connected to the deflector 13y of the cathode ray tube, and the b terminal is an open end. Further, the a terminal and the b terminal of the switch S3 are commonly connected to the deflector 13x of the cathode ray tube, and the C° terminal is an open end. These switches are operated in conjunction with each other; when the a terminal is selected, a secondary electron image of the sample is displayed on the cathode ray tube, and when the b terminal is selected, a video signal is supplied to the y deflector 13y. C
A line pronoisle in the X direction is displayed on Yin Jii line tube 1. Furthermore, when the C terminal is selected, the video signal from the detector is supplied to the X deflector 13
A line profile in the X direction is displayed on the line tube. Reference numeral 14 denotes a power supply for the objective lens, which is configured to supply a desired DC current and to switch the excitation intensity to a plurality of stages, for example, two stages, in synchronization with the scanning of the father-son beam.

1!11かる装買の動作を第4図を参照し゛(以トに説
明りる。
1!11 The loading operation will be explained below with reference to FIG.

先ず、スイッチをa端子に接続しておさ、電子線を試料
−Lに照射するど試わl−5L;L (の一定領域か電
子線により2次元的に走査され、その走査により試わ1
の各部から放射された2次電子が検出器10により検出
される。該2次電子の信号は陰極線管の輝度変調グリッ
ドに供給され該陰極線管には試料画像が表示される。そ
こで、該画1(zを観察しながら極端な」ン1〜ラスト
のある試料領域B(第4図(a))を探す1、該試料領
域Bを陰極FA管動画面中央部に移して焦点合せを行な
い、適切なイ8率にセットする。次に、スイッチをaか
らb端子に切換え同時に対物レンズの電源14から1水
平走査毎に励磁強度が例えば2段階に切換えられる電流
を供給Jる。この状態において、前記試料の特定領域B
は(a )図にラインLで示す如くX方向にライン走査
され、そのとき得られる試料情報信号は陰極線管のyg
I向器13Vに送られるため陰極線管上には第4図(b
 )に示づようにラインLに治ったプロファイルP1が
表示される。(b)図は丁度正焦点(ジャストフォーカ
ス)の場合のラインプロフンフィルでB領域による信号
変化が極端であり、又この部分が画面の中央部に現われ
ている。而して、次のライン走査においては対物レンズ
の励磁電流が変えられ、回じラインし上を走査する電子
線のフォーカスが例えばアンダー側にり゛らされる。そ
のときのラインプロファイルP2が0IJ記ジャストフ
A−カスのときのラインプロフッ・イルP1に重ねて陰
極線管上に表示される(第4図(c)、(d))。該ラ
インプロファイルは前記電子線の走査がある程度早いと
陰極線管の残光により同114表示としU9A察できる
。ll’l i:dラインプロノアイルP2はPlに比
し、照射電子線がデフォーカス状態であるためブロード
な変化を示すラインとなっている。そして、絞りの軸が
合っていない場合には(C)図の如<P2はPlの中心
からずれた位置に現われ、PlとP2との交叉が対称的
に4【らない。これに対し、(C)図に示づJζうに絞
りの軸が合っている場合にはPlとP2共画面中央に現
われ、左右の裾が対称的に交叉する。この状態を観察す
るのみで絞りの軸が合っているかどうか確認eき、もし
第4図(C)のにうな状態であれば第3図の絞り駆動機
構9を操作してラインプロノアイルP1とP2とが第4
図(d )の状態になるように調整する。このにうにし
て、X方向の調整が終了ずれば、今度はスイッチをC端
子に切換えて前述と同様な観察を行なうと、陰極線管上
にはY方向のラインプロノアイルが表示され、同様な操
作・調整によりY lj向の絞りの軸合Vが行なえる。
First, connect the switch to the a terminal, and try to irradiate the sample L with the electron beam. 1
Secondary electrons emitted from each part of the detector 10 are detected by the detector 10. The secondary electron signal is supplied to a brightness modulation grid of a cathode ray tube, and a sample image is displayed on the cathode ray tube. Therefore, while observing the image 1 (z), search for the sample area B (Fig. 4 (a)) with the extreme 1 to last 1, and move the sample area B to the center of the cathode FA tube video screen. Focus and set the appropriate A8 ratio.Next, switch the switch from terminal a to terminal b, and at the same time supply a current from the power supply 14 of the objective lens so that the excitation intensity can be switched to, for example, two levels every horizontal scan. In this state, the specific area B of the sample
(a) Line scanning is performed in the X direction as shown by line L in the figure, and the sample information signal obtained at that time is the yg of the cathode ray tube.
4 (b) on the cathode ray tube because it is sent to the
), the cured profile P1 is displayed on line L. (b) shows a line profile in the case of just focus, and the signal change due to region B is extreme, and this portion appears in the center of the screen. Then, in the next line scan, the excitation current of the objective lens is changed, and the focus of the electron beam scanning over the rotating line is moved, for example, to the under side. The line profile P2 at that time is displayed on the cathode ray tube superimposed on the line profile P1 at the time of 0IJ just-off A-cass (FIGS. 4(c) and 4(d)). The line profile can be seen as 114 display U9A due to the afterglow of the cathode ray tube if the scanning of the electron beam is fast to a certain extent. ll'l i:d line pronoisle P2 is a line that shows broad changes because the irradiated electron beam is in a defocused state compared to Pl. If the axes of the apertures are not aligned, P2 will appear at a position shifted from the center of Pl, as shown in Figure (C), and the intersection of Pl and P2 will not be symmetrical. On the other hand, when the axes of the diaphragm are aligned as Jζ shown in FIG. 3(C), both Pl and P2 appear at the center of the screen, and the left and right tails intersect symmetrically. Just by observing this condition, you can check whether the axis of the aperture is aligned, and if the condition is as shown in Fig. 4 (C), operate the aperture drive mechanism 9 shown in Fig. 3 to adjust the line pronoisle P1. P2 is the fourth
Adjust so that it becomes the state shown in figure (d). Once the adjustment in the X direction is completed in this way, if you change the switch to the C terminal and perform the same observation as above, the line pronoisle in the Y direction will be displayed on the cathode ray tube, and the same The axis alignment V of the aperture in the Y lj direction can be performed by operation and adjustment.

以上説明したような構成となUば、1(:ζ447ね管
上のラインプロノアイルの交叉の状態によって絞りの軸
の整合具合が簡単に、しかも正確に検知でき、絞りの輔
合せを正確に行なえるようになる。
With the configuration described above, the alignment of the axis of the aperture can be easily and accurately detected by the state of intersection of the line pronoisles on the ζ447 tube, and the alignment of the aperture can be accurately determined. Be able to do it.

尚、上記は本発明の一例であり、実施に当っては種々の
変更が可能である。例えば、上記説明では対物レンズの
励磁条件をジャストフォーカスとA−バーフォーカスの
2段階に切換える場合を示したが、更にアンダーフォカ
スまでの3段階或いはそれ以上の段数に切換えてライン
プロファイルを表示するようにしても良い。又、第3図
の実施例ではX方向のプロファイルとY方向のプロファ
イルとを陰極線管上で直交する方向に表示する構成とし
たが、Y方向のプロフIイルも第4図のX方向のプロフ
ァイルと同一方向に表示するように構成することもでき
る。更に、画像表示用の陰極線管とラインプロファイル
表示用の陰極線管とを別に;、H)でb良い。更に又、
試料からの情報は2次電子線に限られず、反射電子線、
透過電子線或いはX線等も同様に利用できる。
Note that the above is an example of the present invention, and various changes can be made when implementing the present invention. For example, in the above explanation, the excitation condition of the objective lens is switched to two stages: just focus and A-bar focus, but it is also possible to display a line profile by switching to three stages or more, up to under focus. You can also do it. Furthermore, in the embodiment shown in FIG. 3, the X-direction profile and the Y-direction profile are displayed in orthogonal directions on the cathode ray tube, but the Y-direction profile I is also the same as the X-direction profile in FIG. It can also be configured to be displayed in the same direction. Furthermore, the cathode ray tube for image display and the cathode ray tube for line profile display are separate; H) is good. Furthermore,
Information from the sample is not limited to secondary electron beams, but also reflected electron beams,
Transmission electron beams, X-rays, etc. can also be used in the same way.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の絞り軸合せの概略を説明する
ための図、第3図は本発明の方法を実施した装置のブD
ツク線図、第4図は第3図装置の動作説明図である。 1:電子銃     2:電子線 3:集束レンズ   4二対物レンズ 5:試料      5x 、 6y :偏向コイル8
:絞り      9二絞り駆動機構10:2次電子検
出器 12:陰極I!Jl管 13x、13y:電子線偏向器 14:対物レンズ電源 特許出願人 「1本電子株式会社 代表者 伊藤 −夫
Figures 1 and 2 are diagrams for explaining the outline of conventional aperture axis alignment, and Figure 3 is a block diagram of a device implementing the method of the present invention.
4 is an explanatory diagram of the operation of the device shown in FIG. 3. 1: Electron gun 2: Electron beam 3: Focusing lens 42 Objective lens 5: Sample 5x, 6y: Deflection coil 8
: Aperture 9 Two-aperture drive mechanism 10: Secondary electron detector 12: Cathode I! Jl tubes 13x, 13y: Electron beam deflector 14: Objective lens power supply Patent applicant: Ito Denshi Co., Ltd. Representative Mr. Ito

Claims (1)

【特許請求の範囲】[Claims] 電子線照射系の電子線通路上に絞りを挿入した状態で電
子レンズにより電子線を集束して試料上に照則し、該電
子線が試料上の特定領域をX方向又はY方向に横切るよ
うにライン走査し、その走査により試料から散乱する電
子やX線を検出して陰極線管に供給し、該陰極線管、に
にラインプロフ)lイルを描かけるようになし、前記電
子1ノンズの集束条件を少なくとも二段階に切換え”(
、その各々の場合におけるラインプロファイルを陰極線
管上で重ね合せて表示・相互比較することを特徴とり゛
る電子線照射系における絞りの幀fれを検知する方法。
An aperture is inserted into the electron beam path of the electron beam irradiation system, and an electron lens focuses the electron beam onto the sample so that the electron beam crosses a specific area on the sample in the X or Y direction. The electrons and X-rays scattered from the sample are detected by the scanning and supplied to the cathode ray tube, so that a line profile is drawn on the cathode ray tube, and the electrons are focused. Change the conditions to at least two stages” (
A method for detecting aperture deviation in an electron beam irradiation system characterized by displaying and mutually comparing line profiles in each case superimposed on a cathode ray tube.
JP19695282A 1982-11-10 1982-11-10 Method of detecting axial shift of diaphragm in electron beam irradiation system Pending JPS5986141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19695282A JPS5986141A (en) 1982-11-10 1982-11-10 Method of detecting axial shift of diaphragm in electron beam irradiation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19695282A JPS5986141A (en) 1982-11-10 1982-11-10 Method of detecting axial shift of diaphragm in electron beam irradiation system

Publications (1)

Publication Number Publication Date
JPS5986141A true JPS5986141A (en) 1984-05-18

Family

ID=16366381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19695282A Pending JPS5986141A (en) 1982-11-10 1982-11-10 Method of detecting axial shift of diaphragm in electron beam irradiation system

Country Status (1)

Country Link
JP (1) JPS5986141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276639A (en) * 2004-03-25 2005-10-06 Jeol Ltd Position adjusting method for objective lens diaphragm of scanning type electron beam device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276639A (en) * 2004-03-25 2005-10-06 Jeol Ltd Position adjusting method for objective lens diaphragm of scanning type electron beam device

Similar Documents

Publication Publication Date Title
US4983832A (en) Scanning electron microscope
US6740877B2 (en) Scanning electron microscope and sample observation method using the same
US6841775B2 (en) Electron microscope
JPH11148905A (en) Electron beam inspection method and apparatus therefor
JPH05343019A (en) Charged particle beam device and observation thereof
JP3101114B2 (en) Scanning electron microscope
JPH0244103B2 (en)
JPS6134221B2 (en)
US6800853B2 (en) Electron microscope and method of photographing TEM images
JPS614144A (en) Diffraction pattern display method by electron microscope
JPS5986141A (en) Method of detecting axial shift of diaphragm in electron beam irradiation system
US4006357A (en) Apparatus for displaying image of specimen
JP2002184336A (en) Charged particle beam microscope device, charged particle beam application device, charged particle beam microscopic method, charged particle beam inspection method and electron microscope
US6573502B2 (en) Combined electron microscope
JP2002343294A (en) Complex electron microscope
JP2964873B2 (en) Electron beam alignment system
JP2000208089A (en) Electron microscope device
JP2002015691A (en) Scanning electron microscope
JP3202857B2 (en) Focusing method and apparatus in charged particle beam apparatus
JPS6324617Y2 (en)
JPH10199463A (en) Image display device by electron beams
JP2000048749A (en) Scanning electron microscope, and electron beam axis aligning method
JP3112541B2 (en) Astigmatism correction method for electron beam device
JPS5811073B2 (en) Sample scanning type sample image display device using particle beam
JPH0521033A (en) Electric charge beam device