JPS6314810A - Production of pig iron - Google Patents
Production of pig ironInfo
- Publication number
- JPS6314810A JPS6314810A JP15751786A JP15751786A JPS6314810A JP S6314810 A JPS6314810 A JP S6314810A JP 15751786 A JP15751786 A JP 15751786A JP 15751786 A JP15751786 A JP 15751786A JP S6314810 A JPS6314810 A JP S6314810A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- gas
- ore
- preheating
- carbonaceous material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 229910000805 Pig iron Inorganic materials 0.000 title claims description 8
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 23
- 239000007789 gas Substances 0.000 claims description 44
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 238000009628 steelmaking Methods 0.000 claims description 11
- 239000006227 byproduct Substances 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 238000007664 blowing Methods 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 40
- 229910052742 iron Inorganic materials 0.000 abstract description 20
- 239000002994 raw material Substances 0.000 abstract description 20
- 238000002844 melting Methods 0.000 abstract description 8
- 230000008018 melting Effects 0.000 abstract description 8
- 239000002893 slag Substances 0.000 abstract description 5
- PMVSDNDAUGGCCE-TYYBGVCCSA-L Ferrous fumarate Chemical compound [Fe+2].[O-]C(=O)\C=C\C([O-])=O PMVSDNDAUGGCCE-TYYBGVCCSA-L 0.000 abstract 1
- 238000012856 packing Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 24
- 238000007670 refining Methods 0.000 description 13
- 238000003723 Smelting Methods 0.000 description 11
- 239000000446 fuel Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000003245 coal Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 235000019738 Limestone Nutrition 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- 239000006028 limestone Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000002801 charged material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005456 ore beneficiation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- -1 ~13% Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、銑鉄製造法、特に、鉱石と炭材とを炉内に充
填した製鉄炉を複数基使い、熔解と予熱とを分離したこ
とを特徴とする銑鉄製造法に関す(従来の技術)
鉄鉱石を還元、溶解して溶銑を製造する方法としては、
今日、次のような各種方法が公知である。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing pig iron, and in particular, to a method for producing pig iron, in particular, a method that uses a plurality of iron making furnaces filled with ore and carbonaceous materials, and separates melting and preheating. Regarding a pig iron production method characterized by (conventional technology) A method for producing hot metal by reducing and melting iron ore is:
Various methods are known today, such as:
高炉法:
この方法は、現在の製銑法の主流をなすものであって、
塊鉱と塊コークスとを充填した向流型反応器、つまり高
炉内にあって還元性ガスによって還元と溶解が行われる
のである。この方法は熱効率は高い。しかし、還元性ガ
スが塊鉱と塊コークスとの間をそれらに十分に接触しな
がら通過するため、それらの原料装入物としてはその通
気性確保のため、整粒化された高強度のものが必要であ
るという難点がある。かかる装入物の予備処理には大規
模な設備が必要となり、小さい規模の製鉄には不適であ
る。Blast furnace method: This method is the mainstream of current ironmaking methods.
It is located in a countercurrent reactor filled with lump ore and lump coke, that is, a blast furnace, and reduction and melting are performed using reducing gas. This method has high thermal efficiency. However, since the reducing gas passes between the lump ore and the lump coke in sufficient contact with them, the raw material charge for these is a sized, high-strength material to ensure air permeability. The problem is that it requires Pretreatment of such a charge requires large-scale equipment, which is unsuitable for small-scale steel manufacturing.
溶解還元法:
この方法は、溶融鉄浴炉を使い、炭材を酸素で燃焼させ
て、生成するガスおよびその熱で鉱石を溶解還元して銑
鉄を製造するのである。この方法では鉱石の事前処理が
必要でないため、同炉法と比較して節便に実施できる可
能性はある。Smelting reduction method: This method uses a molten iron bath furnace to burn carbonaceous material with oxygen, and uses the generated gas and heat to melt and reduce ore to produce pig iron. Since this method does not require pre-treatment of the ore, it may be easier to implement than the furnace method.
しかしながら、反応器が均一混合型になるため、または
溶鉄が安定して存在しうる状態(温度はぼ1500℃、
COt/(Co +co□)の比はぼ20%程度)のま
ま排出されるので、熱効率が低い。したがって、溶銑ト
ン当たりの燃料比を1000kg/を以下にするのは離
しい。However, because the reactor is of a homogeneous mixing type, or in a state where molten iron can exist stably (temperature is about 1500℃,
Since the ratio of COt/(Co + co□) is about 20%), the thermal efficiency is low. Therefore, it is difficult to reduce the fuel ratio per ton of hot metal to less than 1000 kg/ton.
また、ガスを多量に利用すれば、燃料比は低下するが、
その場合、スラグ中にFeOが多く混入し、鉄歩留りが
低下すると共に、耐火物が著しくt1耗する。Also, if a large amount of gas is used, the fuel ratio will decrease, but
In that case, a large amount of FeO is mixed into the slag, reducing the iron yield and causing significant wear of the refractory t1.
したがって、この方法はこれまでに実用化された例はな
い。Therefore, this method has never been put to practical use.
機能分離法:
溶鉄製造工程における還元と溶解製錬とを2つの炉に機
能分離する方法で、小規模製鉄を想定して開発された方
法である。例:特公昭59−18453号、特公昭60
−13401号、特公昭59−18443号。Functional separation method: This is a method that separates the functions of reduction and melting and smelting in the molten iron manufacturing process into two furnaces, and was developed with small-scale iron manufacturing in mind. Example: Special Publication No. 59-18453, Special Publication No. 18453, Special Publication No. 18453
-13401, Special Publication No. 59-18443.
代表例としては、SC法、用鉄法、KR法があり、それ
らの方法における1元炉と製錬炉との関係は次の表にま
とめて示すimりである。Typical examples include the SC method, the iron casting method, and the KR method, and the relationship between the single furnace and the smelting furnace in these methods is summarized in the following table.
第1表
機能分離により、製錬炉で副生ずるガスを還元炉で原料
の予熱、還元に利用するので、ガス利用効率が向上し、
燃料比を低下させることが可能となる。しかし、いずれ
の方法であっても、還元炉および/または製錬炉は一つ
の決められた役割を果すべく、決まった反応槽を使用し
、決まった状態、例えばシャフト炉では通気良好な充填
層、流動床では流動層が保持されなければならない。ま
た、装入原料も予備還元後、製錬炉に装入されるなどそ
の移送、取扱もやっかいな作業である。Table 1 Due to functional separation, gas by-produced in the smelting furnace is used for preheating and reducing raw materials in the reduction furnace, improving gas utilization efficiency.
It becomes possible to lower the fuel ratio. However, in either method, the reduction furnace and/or the smelting furnace use a specific reaction tank to fulfill a specific role, and in a specific state, such as a well-ventilated packed bed in a shaft furnace. , in a fluidized bed a fluidized bed must be maintained. In addition, the charging raw materials are charged into the smelting furnace after preliminary reduction, and transporting and handling them is a cumbersome task.
したがって、各々のプロセスに応じて、原料の整粒をは
じめとする事前処理、安定化のためのi1転操作が必要
となり、結果としてかえって大規模で複雑な設備を必要
とすることになる。Therefore, depending on each process, pre-processing including sizing of the raw material and I1 rotation operation for stabilization are required, and as a result, large-scale and complicated equipment is required.
(発明が解決しようとする問題点)
本発明の目的は、したがって、高炉法のように高強度の
整粒化された原料を使用せずに、かつ高炉法に匹適する
熱効率で、溶銑を製造することのできる方法を提供する
ことである。(Problems to be Solved by the Invention) Therefore, the purpose of the present invention is to produce hot metal without using high-strength sized raw materials as in the blast furnace method, and with thermal efficiency comparable to the blast furnace method. The aim is to provide a method that allows for
(問題点を解決するための手段)
か(して、かかる目的を達成すべく、本発明者らが種々
検討を重ねたところ、前述の機能分離法の考え方が最も
有望であり、この点に着目してさらに検討したところ、
同一炉りこ両機能をもたせることによって装入原料移送
の問題も回避でき、単に吹き込みガスの切り換えだけで
済み、むしろ操業が安定することを知り、本発明を完成
した。(Means for solving the problem) In order to achieve this objective, the present inventors conducted various studies and found that the concept of the above-mentioned functional separation method was the most promising. After further consideration, we found that
The present invention was completed based on the knowledge that by having the same furnace refueling function, the problem of transferring the charged material could be avoided, and the operation would become more stable by simply switching the blowing gas.
ここに、本発明の要旨とするところは、鉱石と炭材を炉
内に充填した製鉄炉を複数基用い、(al −の製鉄炉
の下部羽口より酸素を含むガスを送風し、前記炭材を燃
焼させ、得られた勢で前記鉱石を加熱、還元、溶解して
溶銑を製造すると共に、副生するガスを該製鉄炉から回
収して他の製鉄炉の下部羽口から吹き込み、その炉内に
充填した鉱石と炭材とを予熱すること、次いで、(1)
)この他の製鉄炉の下部羽目からの吹き込みガスを酸素
を含むガスに切り換えるとこと、そして前記(alおよ
び(blの操作を繰り返すことを特徴とする、銑鉄製造
法である。Here, the gist of the present invention is to use a plurality of iron making furnaces filled with ore and carbonaceous materials, blow gas containing oxygen from the lower tuyere of the iron making furnace (al-), The ore is heated, reduced, and melted using the resulting force to produce hot metal, and the by-product gas is recovered from the steelmaking furnace and blown into it through the lower tuyere of another steelmaking furnace. Preheating the ore and carbonaceous material filled in the furnace, then (1)
) This is another method for producing pig iron, characterized by switching the blown gas from the lower siding of the iron-making furnace to a gas containing oxygen, and repeating the operations (al and (bl) described above.
ここに、前記鉱石、炭材は必要により選鉱、脱灰などの
予備処理を行ったものであり、その粒径は、特に制限な
く、炉に充填した時に所要の通気性を確保できれば十分
である。一般には、いずれの装入原料も直径1〜501
1I11程度の粒径で十分である。実用的にはいわゆる
粗鉱を51篩で選別して篩上を原料として利用すればよ
い。Here, the ore and carbonaceous material have undergone preliminary treatment such as ore beneficiation and deashing as necessary, and the particle size is not particularly limited, as long as it can ensure the required air permeability when filled into the furnace. . Generally, any charging material has a diameter of 1 to 50 mm.
A particle size of about 1I11 is sufficient. Practically speaking, so-called coarse ore may be sorted through a 51 sieve and the sieved portion may be used as a raw material.
炭材としてはコークスおよび石炭の混合物を使用するの
が好ましい。その他方灰石等通常の副原料が使用される
。As carbonaceous material it is preferred to use a mixture of coke and coal. On the other hand, conventional auxiliary materials such as graystone are used.
なお、本発明の場合、炉相互の装入材の移送が行われな
いため従来法にみられるような装入材の粒度劣化等の問
題はなく、通気性6■保も容易にできる。これら原料の
炉装入形態は、特に制限されないが、炭材そして石灰石
等の副原料をまず装入し、そのうえに鉱石を載せるのが
好ましい。In the case of the present invention, since the charge material is not transferred between the furnaces, there is no problem such as particle size deterioration of the charge material as seen in the conventional method, and the air permeability can be easily maintained at 6. The form in which these raw materials are charged into the furnace is not particularly limited, but it is preferable to charge auxiliary raw materials such as carbonaceous material and limestone first, and then place ore thereon.
製鉄炉の下部羽目からは、最初、予熱ガスである8:1
生ガスを吹込むが、予熱完了後は酸素含有ガスへの吹込
みガスの切換えを行う。予熱に十分な時間を必要とする
場合には、同時に多くの数の製鉄炉を予熱に利用するよ
うにすることにより、各製鉄炉の予熱時間を長くするこ
とができる。Initially, from the lower part of the steelmaking furnace, the preheating gas is 8:1.
Raw gas is blown in, but after preheating is completed, the blown gas is switched to oxygen-containing gas. If sufficient time is required for preheating, the preheating time for each steelmaking furnace can be increased by using a large number of steelmaking furnaces for preheating at the same time.
酸素含有ガスは代表的には、酸素ガスであり、その吹込
みは羽口から行うが、必要によりさらに炉上部よりラン
スを介して補助的に行ってもよい。The oxygen-containing gas is typically oxygen gas, which is blown into the furnace through the tuyere, but may be auxiliaryly blown in through a lance from the upper part of the furnace, if necessary.
(作用)
次に、添付図面を参照しながら本発明をさらに具体的に
説明する。(Operation) Next, the present invention will be described in more detail with reference to the accompanying drawings.
図示例は2基の製鉄炉AおよびBを使用する場合を示す
ものである。The illustrated example shows a case where two iron making furnaces A and B are used.
第1図において、炉ASBにはそれぞれ装入口2.2を
経て鉱石と炭材6とが予め充填されている。炉ノ\にお
いてまず予熱を行うとすると、最初は別の適宜炉からの
副生ガスを羽口3から炉内に吹き込む。図中、符号9は
予熱後の回収ガスを示す。予熱完了後、このガスを酸素
含有ガス8に切り換え、炭素材の燃焼、還元、溶解を行
うのである。このとき同時に副生するガス10をガス回
収口4から回収し、別の炉Bの羽口3から吹き込む。In FIG. 1, the furnaces ASB are each prefilled with ore and carbon material 6 via charging ports 2.2. When the furnace is first preheated, by-product gas from another appropriate furnace is first blown into the furnace through the tuyere 3. In the figure, reference numeral 9 indicates the recovered gas after preheating. After the preheating is completed, this gas is switched to oxygen-containing gas 8 to burn, reduce, and dissolve the carbon material. At the same time, a by-product gas 10 is recovered from the gas recovery port 4 and blown into the tuyere 3 of another furnace B.
この炉Bにも炉Aと同様に鉱石と炭材6とが充填されて
いる。炉Aでの溶解が終了するまで炉Bでの予熱を継続
する。予熱終了後、吹き込みガスの切り換えを行い、一
方、炉Aではその間に溶鉄流7が溶滓とともに出銑口5
から回収され、鉱石と炭材との充填が行われる。炉Bで
の酸素含有ガスの吹込みが開始してから、上記の説明で
の炉へでの操作が炉Bでも繰り返えされる。Like the furnace A, this furnace B is also filled with ore and carbon material 6. Preheating in furnace B is continued until melting in furnace A is completed. After preheating, the blowing gas is switched, while in the furnace A, the molten iron flow 7 flows into the tap hole 5 together with the slag.
It is collected from the ground and filled with ore and carbonaceous material. After the introduction of oxygen-containing gas in furnace B is started, the operations for the furnace described above are repeated in furnace B as well.
第2図は炉AおよびBの操業順を併記した説明図である
。第2図からも分かるように:(1)炉へで原料(鉱石
と炭材)の予熱操業を行う間、炉Bでは予熱された原料
の熔解製錬操業を行い、副生ずるガスを炉Aにおける予
熱ガスとして使用する。FIG. 2 is an explanatory diagram that also shows the operating order of furnaces A and B. As can be seen from Figure 2: (1) While the raw materials (ore and carbonaceous materials) are preheated to the furnace, the preheated raw materials are melted and smelted in the furnace B, and the by-product gas is transferred to the furnace A. Used as preheating gas in
(2)炉Bで溶解製錬操業が完結したら銑鉄、溶滓を抽
出後、新しい原料を装入し、炉Aを製錬操業に、炉Bを
予熱操業に、それぞれ役割を切り替える。なお、溶解製
錬操業は、炉に酸素を含有するガスを吹き込み、酸素で
炭材を燃焼させて発生ずる熱を利用して行う。(2) When the melting and smelting operation is completed in Furnace B, the pig iron and slag are extracted, new raw materials are charged, and the roles of Furnace A are switched to smelting operation and Furnace B to preheating operation. Note that the melting and smelting operation is performed by blowing oxygen-containing gas into the furnace and using the heat generated by burning carbonaceous materials with oxygen.
このように、本発明によれば、各製鉄炉における予熱、
!!ui1!操業は、共にバッチ操業で行われる。As described above, according to the present invention, preheating in each steelmaking furnace,
! ! ui1! Both operations are conducted in batch mode.
したがって、原料は炉内で荷下りや、流動等の特定の運
動をする必要がないので、原料の粒度、強度などの制約
が緩和され、劣質原料の使用が可能になる。Therefore, the raw material does not need to be unloaded in the furnace or undergo specific movements such as flow, so restrictions such as particle size and strength of the raw material are relaxed, and inferior quality raw materials can be used.
また、製鉄操業で副生されるガスを予熱操業に使用する
ことにより、ガス利用率を向上させ、燃料比を低下させ
ることができる。Furthermore, by using gas by-produced during the steelmaking operation for the preheating operation, the gas utilization rate can be improved and the fuel ratio can be lowered.
次に、実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.
実施例
本例にあっては、第1図に示す2基の製鉄炉を備えた装
置を使って、下掲第2表にまとめて示す鉄鉱石および炭
材そして石灰石を装入して、製鉄操業を行った。製鉄炉
の各形状寸法は、第3表に示す通りであった。Example In this example, iron ore, carbonaceous materials, and limestone, which are summarized in Table 2 below, are charged into an apparatus equipped with two iron-making furnaces shown in Fig. 1, and iron-making is carried out. The operation was carried out. The shapes and dimensions of the steelmaking furnace were as shown in Table 3.
第2表 「 注)傘:51の篩上を使用。Table 2 " Note) Umbrella: Use No. 51 sieve top.
工1表
炉本体:直径2m 、 iAさ5巾の円筒状炉2基羽口
:口径50mm φ×4本、炉底+1゜5mの側壁に
設置
送酸口:炉上部から突込み式1本
装入口:炉上部に1ケ設置
ガス回収口:炉上部に1ヶ設置
なお、両炉共に、炉床から順次、コークス、石炭、石灰
石の混合物を装入、その上に鉱石を装入した。Furnace 1 Main body: 2 cylindrical furnaces with a diameter of 2 m and an iA width of 5 Tuyere: Diameter 50 mm φ x 4, installed on the side wall of the furnace bottom + 1° 5 m Acid feed port: 1 thrust type from the top of the furnace Inlet: 1 installed at the top of the furnace Gas recovery port: 1 installed at the top of the furnace In both furnaces, a mixture of coke, coal, and limestone was charged sequentially from the hearth, and ore was charged on top of it.
予熱完了後、直ちに片方の炉の羽口および送酸口から、
酸素ガスを合計688Nm/hで吹込み、精錬操業を行
った。その片方の炉の精錬操業時に炉上部より回収され
た精錬副生ガスをもう一方の炉の羽口を介してその炉に
吹込み、装入原料の予熱を行った。Immediately after preheating is completed, from the tuyere and acid inlet of one of the furnaces,
Refining operation was performed by blowing oxygen gas at a total rate of 688 Nm/h. During the refining operation of one of the furnaces, the refining byproduct gas recovered from the upper part of the furnace was blown into the furnace through the tuyere of the other furnace to preheat the charged raw material.
精錬操業に当っては、送酸約2時間で精錬炉内原料が全
量溶落ち、精錬が完了した。副生ガスは、精錬初期〜8
00℃、末期1400℃、成分は平均で、00〜70%
、CO□〜14%、H,〜13%、H20≧5%、N2
〜0.5%であった。During the refining operation, all of the raw material in the refining furnace was melted down in about 2 hours, and the refining was completed. By-product gas is from the initial stage of refining to 8
00℃, final stage 1400℃, average composition: 00-70%
, CO□ ~14%, H, ~13%, H20≧5%, N2
It was ~0.5%.
かかる組成の精錬炉副生ガスを羽口から送風したとき、
炉頂ガス温度は、初期常温、末期〜800℃、組成は平
均で、CO〜52.6%、CO,〜37.1%、■!〜
9.7%、N、〜0.6%、量は2315 N+d/h
であった。When smelting furnace byproduct gas having such a composition is blown from the tuyeres,
The furnace top gas temperature is room temperature at the beginning, ~800°C at the end, and the average composition is ~52.6% CO, ~37.1% CO, ■! ~
9.7%, N, ~0.6%, amount is 2315 N+d/h
Met.
本例による結果は、第4表にまとめて示す。The results of this example are summarized in Table 4.
芽」し及
1サイクル
操業時間:精錬2hrs十予熱2hrs = 4hrs
送酸景 :精錬2hrs X 1375N m/hr
= 275ON g出銑量 =10トン 1500℃
(C−4,5%、Si =0.5%、Mn = 0.1
%、P = 0.12%、S=0.03%)
出滓m : =2.1トン1550℃ (CaO=4
5%、5iOz=35%)回収ガス: =9260 N
rrr(カロリー1830kcal/N r+?)ガス
中ダスト:合計170kg
凰至佼−
鉱石比 : 1470kg/を
石灰石 : 177kg/を
燃料 : 600kg/l コークス: 300
kg/を石炭 : 300kg/l
Ot :275Nイ/を
回収ガス: 1695Mcal/を
生皮性
10t/サイクル×サイクル/4hrs X 24 =
60仁/d炉容積16M’ ×2 = 32m3.
、 、出銑比1.88t/dm’(発明の効果)
上述の実施例でも明らかになったように、本発明により
精錬炉を2基用い、両炉共にバッチ式装入を行い、片方
で精錬を行う間、他方では精錬副生ガスを用いて予熱を
行い、2基の炉で予熱、精錬を繰り返すことにより溶銑
を製造する方法を用いれば、
(1)荷下りや流動化等、炉内の原料運動状態を規定す
る必要のないバッチ操業形式になるため、原料の粒度管
理が緩和されるので、高炉法の如き粒度の上、下限管理
が不要である。実施例では粗鉱を下限5■の篩のみで区
分しただけで使用し得た。Sprout and 1 cycle operation time: Refining 2 hrs, preheating 2 hrs = 4 hrs
Oxidation: Refining 2hrs x 1375N m/hr
= 275ON g Tapping amount = 10 tons 1500℃ (C-4.5%, Si = 0.5%, Mn = 0.1
%, P = 0.12%, S = 0.03%) Slag m: = 2.1 tons 1550℃ (CaO = 4
5%, 5iOz=35%) Recovery gas: =9260 N
rrr (Calorie 1830kcal/Nr+?) Dust in gas: Total 170kg Ore ratio: 1470kg/Limestone: 177kg/Fuel: 600kg/L Coke: 300
kg/coal: 300kg/l Ot: 275N/recovered gas: 1695Mcal/rawhide 10t/cycle x cycle/4hrs x 24 =
60 kernels/d Furnace volume 16M' x 2 = 32m3.
, , Tapping ratio: 1.88 t/dm' (Effect of the invention) As clarified in the above-mentioned examples, two smelting furnaces are used according to the present invention, batch charging is performed in both furnaces, and one During refining, on the other hand, if a method is used in which hot metal is produced by preheating using refining by-product gas and repeating preheating and refining in two furnaces, (1) unloading, fluidization, etc. Since it is a batch operation mode in which there is no need to specify the movement state of the raw material within the furnace, particle size control of the raw material is relaxed, so there is no need to control the upper and lower limits of particle size as in the blast furnace method. In the example, the crude ore could be used by simply separating it with a sieve with a lower limit of 5 dia.
(2)同じく、原料の強度制約が不要である。したがっ
て、塊状石炭も使用できる。石炭は予熱中に粉化するが
、予熱操業時間(〜2hr)の間、通気を保障するのに
支障はない。(2) Similarly, there is no need to limit the strength of raw materials. Therefore, lump coal can also be used. Although the coal is pulverized during preheating, there is no problem in ensuring ventilation during the preheating operation time (~2 hr).
(3)精錬副生ガスを予熱に使用できるので、ガス利用
率〜40%が可能であり、結果として燃料比〜600k
g/lが小型炉ながら達成できる。(3) Since refining byproduct gas can be used for preheating, a gas utilization rate of ~40% is possible, resulting in a fuel ratio of ~600k.
g/l can be achieved even though it is a small furnace.
第1図は、本発明の操業例を概略する説明図;および
第2図は、本発明にかかる2つの製鉄炉の操業順の同じ
く説明図である。FIG. 1 is an explanatory diagram schematically illustrating an example of the operation of the present invention; and FIG. 2 is an explanatory diagram of the order of operation of two iron-making furnaces according to the present invention.
Claims (1)
)一の製鉄炉の下部羽口より酸素を含むガスを送風し、
前記炭材を燃焼させ、得られた熱で前記鉱石を加熱、還
元、溶解して溶銑を製造すると共に、副生するガスを該
製鉄炉から回収して他の製鉄炉の下部羽口から吹き込み
、その炉内に充填した鉱石と炭材とを予熱すること、次
いで、(b)この他の製鉄炉の下部羽口からの吹き込み
ガスを酸素を含むガスに切り換えること、そして前記(
a)および(b)の操作を繰り返すことを特徴とする、
銑鉄製造法。Using multiple ironmaking furnaces filled with ore and carbonaceous materials, (a
) A gas containing oxygen is blown from the lower tuyere of the first steelmaking furnace,
Burning the carbonaceous material and using the resulting heat to heat, reduce, and melt the ore to produce hot metal, the by-product gas is recovered from the steelmaking furnace and blown into the lower tuyere of another steelmaking furnace. , preheating the ore and carbonaceous materials filled in the furnace, then (b) switching the blowing gas from the lower tuyere of the other iron-making furnace to a gas containing oxygen, and (
characterized by repeating the operations a) and (b),
Pig iron manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15751786A JPS6314810A (en) | 1986-07-04 | 1986-07-04 | Production of pig iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15751786A JPS6314810A (en) | 1986-07-04 | 1986-07-04 | Production of pig iron |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6314810A true JPS6314810A (en) | 1988-01-22 |
Family
ID=15651403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15751786A Pending JPS6314810A (en) | 1986-07-04 | 1986-07-04 | Production of pig iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6314810A (en) |
-
1986
- 1986-07-04 JP JP15751786A patent/JPS6314810A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4007034A (en) | Method for making steel | |
JP2698525B2 (en) | Smelting reduction method of metal ore | |
CA2236587C (en) | Duplex procedure for the production of metals and metal alloys from oxidic metal ores | |
CN105838838B (en) | Method for preparing pure steel by coal gas direct reduction one-step method | |
EP0864658B1 (en) | Refining iron ore | |
JPS62267409A (en) | Accumulation mill apparatus and its operation | |
KR940008926B1 (en) | Mill arrangement and a process of operating the same using off gases to refine pig iron | |
CA1149175A (en) | Recovery of steel from high phosphorous iron ores | |
CN114317852A (en) | 2500m3Low-carbon iron-making method of blast furnace gas carbon cycle | |
JP2002509194A (en) | Sustainable steelmaking process by effective direct reduction of iron oxide and solid waste | |
JP4060986B2 (en) | How to use dust in converter steelmaking. | |
KR100360111B1 (en) | Method For Manufacturing Molten Iron Using Non-Coking Coal And Fine Iron Ore And Device For Manufacturing Molten Iron | |
JPS6314810A (en) | Production of pig iron | |
EP0950117B1 (en) | A method for producing metals and metal alloys | |
US4412862A (en) | Method for the production of ferrochromium | |
JPH03130314A (en) | Production of iron by smelting reduction method | |
CN116949282B (en) | Method and equipment for treating laterite nickel ore leaching slag | |
RU2217505C1 (en) | Method of processing nickel-bearing iron ore raw material | |
JPH01162711A (en) | Smelting reduction method | |
JPS62188714A (en) | Production of molten iron | |
JPH075951B2 (en) | Composite type direct iron making method | |
RU2166555C1 (en) | Method of processing cinder of roasting of nickel concentrate from flotation separation of copper-nickel converter matte | |
JP2666397B2 (en) | Hot metal production method | |
JPH0723490B2 (en) | Batch production method of hot metal | |
JPH032933B2 (en) |