JPS63147954A - Method of controlling supply of fuel for internal combustion engine - Google Patents

Method of controlling supply of fuel for internal combustion engine

Info

Publication number
JPS63147954A
JPS63147954A JP29428586A JP29428586A JPS63147954A JP S63147954 A JPS63147954 A JP S63147954A JP 29428586 A JP29428586 A JP 29428586A JP 29428586 A JP29428586 A JP 29428586A JP S63147954 A JPS63147954 A JP S63147954A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
time
valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29428586A
Other languages
Japanese (ja)
Other versions
JPH0573911B2 (en
Inventor
Yuzuru Koike
譲 小池
Kiyoshi Tsukimura
月村 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP29428586A priority Critical patent/JPS63147954A/en
Priority to US07/131,225 priority patent/US4819604A/en
Priority to DE19873741915 priority patent/DE3741915A1/en
Publication of JPS63147954A publication Critical patent/JPS63147954A/en
Publication of JPH0573911B2 publication Critical patent/JPH0573911B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make it possible to precisely control the metering of fuel during an engine operates at a high rotational speed with a high load, by providing such an arrangement, when the time of fuel injection exceeds a time corresponding to the intervals of generation of crank angle signals, fuel in an amount relating to the value by which the time of fuel injection exceeds the time corresponding to the intervals of generation of the crank angle signals, is fed from a predetermined fuel injection valve. CONSTITUTION:In an internal combustion engine 1 comprising a plurality of engine cylinders, a fuel injection valve 6 and an auxiliary fuel injection valve 6a are disposed respectively upstream and downstream of a throttle valve 3', and an ECU 5 controls the supply of fuel. During an engine operating condition other than a predetermined low load condition, in which fuel is fed from the fuel injection valve 6, the intervals of crank angle signals generated from an engine rotational speed sensor 10 are measured, and the time corresponding to thus measured intervals is compared with the time of fuel injection. When the time of fuel injection exceeds the time corresponding to the intervals of the signals, fuel in an amount relating to the value by which the former time exceeds the latter time is fed from the fuel injection valve 6a. With this arrangement, it is possible to make the atomization of fuel satisfactory during low load operation of the engine 1, and to precisely control the metering of fuel during the engine operates at a high rotational speed with a high load.

Description

【発明の詳細な説明】 (技術分野) 本発明は内燃エンジンの燃料供給制御方法に関し、特に
、吸低管の途中のスロットル弁の上流側及び下流側に各
1個設けられた燃料噴射弁から複数の気筒に燃料を供給
する場合における制御方法に関する。
[Detailed Description of the Invention] (Technical Field) The present invention relates to a fuel supply control method for an internal combustion engine, and in particular, to a method for controlling fuel supply to an internal combustion engine, and in particular, to a method for controlling fuel supply to an internal combustion engine. The present invention relates to a control method when supplying fuel to multiple cylinders.

(発明の技術的背景とその問題点) 内燃エンジンの複数の気筒に共通の1個の燃料噴射弁か
ら燃料を分配供給する形式の従来の燃料供給制御装置と
しては、エンジンの中・高負荷時に、吸気管集合部上流
のスロットル弁の上流側に設けられた通常の即ち大流敬
用の燃料噴射弁により燃料供給を行う一方、エンジンの
低負荷時にはスロットル弁下流側に設けられた補助燃料
噴射弁により燃料供給を行うタイプがある(特開昭47
−35422号)。上記補助燃料噴射弁として霧化特性
の優れたものを使用してエンジン低負荷時の少量燃料の
各気筒への分配性を確保するようにしている。
(Technical background of the invention and its problems) A conventional fuel supply control device that distributes and supplies fuel from a single fuel injection valve common to multiple cylinders of an internal combustion engine has been designed to , fuel is supplied by a normal, high-flow fuel injection valve installed upstream of the throttle valve upstream of the intake pipe assembly, while an auxiliary fuel injection valve installed downstream of the throttle valve is used when the engine is under low load. There is a type that uses a valve to supply fuel (Japanese Patent Laid-Open No. 47
-35422). As the auxiliary fuel injection valve, one having excellent atomization characteristics is used to ensure distribution of a small amount of fuel to each cylinder when the engine is under low load.

ところで、燃料噴射弁や補助燃料噴射弁は開弁時間によ
って燃料供給量が決定されるものである。
By the way, the amount of fuel supplied to a fuel injection valve or an auxiliary fuel injection valve is determined by the valve opening time.

このため、エンジンが高負荷のときは、燃料供給量が多
くなり、開弁時間が長くなる。ところが、エンジンが高
回転のときは、エンジンの吸気行程時間が短かくなるの
で、高負荷高回転の場合、燃料噴射弁の開弁時間が吸気
行程時間より長くなることがある。この場合、吸気管集
合部より上流に燃料噴射弁を設は吸気行程に同期して噴
射供給したときは、吸気行程時間外に噴射された燃料は
他の気筒に吸引されてしまう。従って、燃料噴射弁の開
弁時間は吸気行程時間を超えることができない。このよ
うな事情のため、例えば燃料噴射弁を大流量(大口径)
にして短い開弁時間内で多量の燃料を噴射するようにす
ると、逆に、低負荷時に小量の燃料が噴射される際の燃
料の霧化及び制御精度が悪くなる。一方、低負荷時の燃
料の霧化の良好な状態を得るべく小口径の燃料噴射弁を
使用すれば、正確な燃料調量制御が可能な最大燃料流量
が制限されることになるという問題がある。
Therefore, when the engine is under high load, the amount of fuel supplied increases and the valve opening time increases. However, when the engine is running at high speeds, the intake stroke time of the engine is shortened, so when the engine is under high load and high speeds, the opening time of the fuel injection valve may be longer than the intake stroke time. In this case, if a fuel injection valve is installed upstream of the intake pipe gathering portion and the fuel is injected and supplied in synchronization with the intake stroke, the fuel injected outside the intake stroke time will be sucked into other cylinders. Therefore, the opening time of the fuel injection valve cannot exceed the intake stroke time. Due to this situation, for example, the fuel injection valve should be used with a large flow rate (large diameter).
If a large amount of fuel is injected within a short valve opening time, conversely, fuel atomization and control accuracy will deteriorate when a small amount of fuel is injected under low load. On the other hand, if a small-diameter fuel injection valve is used to obtain good fuel atomization at low loads, the problem arises that the maximum fuel flow rate that allows accurate fuel metering control is limited. be.

(発明の目的) 本発明は上記事情に鑑みてなされたもので、吸気管集合
部より上流に設けられた燃料噴射弁から燃料を供給する
場合に、エンジンの低負荷時の燃料の良好な霧化状態を
確保すると共に、高負荷高回転時の正確な燃料調量制御
を可能にした内燃エンジンの燃料供給制御方法を提供す
ることを目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned circumstances, and is aimed at improving fuel mist during low engine load when fuel is supplied from a fuel injection valve provided upstream of the intake pipe assembly. It is an object of the present invention to provide a fuel supply control method for an internal combustion engine, which enables accurate fuel metering control during high-load, high-speed rotation while ensuring a high engine speed.

(発明の構成) 上記目的を達成するために、本発明においては、複数の
気筒を備えた内燃エンジンの吸気分岐管の集合部より上
流に少なくとも2つ以上の燃料噴射弁を設け、前記内燃
エンジンのクランク角度信号に同期して前記内燃エンジ
ンの運転状態に応じた前記燃料噴射弁の燃料噴射時間を
決定し、少なくとも前記内燃エンジンの所定の低負荷運
転状態時には前記少なくとも2つ以上の燃料噴射弁のう
ちの所定の燃料噴射弁により、エンジンの前記所定の低
負荷運転状態以外の運転状態時には該所定の燃料噴射弁
以外の他の燃料噴射弁により夫々前記燃料噴射時間に応
じた燃料の調量制御を行う内燃エンジンの燃料供給制御
方法において、前記内燃エンジンの前記所定の低負荷運
転状態以外の運転状態時に前記クランク角度信号の発生
間隔を計測し、該発生間隔に応じた時間と前記燃料噴射
時間とを比較し、該燃料噴射時間が該発生間隔に応じた
時間を上回るときは、上回った分に係る燃料を前記所定
の燃料噴射弁により供給することを特徴とする内燃エン
ジンの燃料供給制御方法が提供される。
(Structure of the Invention) In order to achieve the above object, in the present invention, at least two or more fuel injection valves are provided upstream of a collection point of intake branch pipes of an internal combustion engine equipped with a plurality of cylinders, and the internal combustion engine determines the fuel injection time of the fuel injection valve according to the operating state of the internal combustion engine in synchronization with a crank angle signal of the at least two or more fuel injection valves when the internal combustion engine is at least in a predetermined low-load operating state. When the engine is in an operating state other than the predetermined low-load operating state, a predetermined fuel injection valve among the predetermined fuel injection valves is used to adjust the amount of fuel according to the fuel injection time, respectively, by using a fuel injection valve other than the predetermined fuel injection valve. In a fuel supply control method for an internal combustion engine, the interval between occurrences of the crank angle signal is measured during an operating state of the internal combustion engine other than the predetermined low-load operating state, and the fuel injection is performed at a time corresponding to the occurrence interval. Fuel supply control for an internal combustion engine, characterized in that when the fuel injection time exceeds the time corresponding to the occurrence interval, the predetermined fuel injection valve supplies fuel corresponding to the exceeded time. A method is provided.

(発明の実施例) 以下本発明の実施例を図面を参照して説明する。(Example of the invention) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を適用した燃料供給制御装置の全
体構成図であり、符号1は例えば4気筒4サイクルの内
燃エンジンを示し、エンジン1には吸気管集合部(イン
テークマニホールド)を介して吸気管2が接続されてい
る。吸気管2の集合部上流にはスロットルボディ3が設
けられ、内部にスロットル弁3′が設けられている。ス
ロットル弁3′にはスロットル弁開度(OTH)センサ
4が連設されてスロットル弁3′の弁開度を電気的信号
に変換し電子コントロールユニット(以下r I!: 
CU Jという)5に送るようにされている。
FIG. 1 is an overall configuration diagram of a fuel supply control device to which the method of the present invention is applied. Reference numeral 1 indicates, for example, a 4-cylinder, 4-stroke internal combustion engine. The intake pipe 2 is connected to the intake pipe 2. A throttle body 3 is provided upstream of the gathering portion of the intake pipe 2, and a throttle valve 3' is provided inside. A throttle valve opening (OTH) sensor 4 is connected to the throttle valve 3' and converts the valve opening of the throttle valve 3' into an electrical signal and controls an electronic control unit (hereinafter referred to as rI!).
CU J) 5.

吸気管2のスロットルボディ3の少し上流には燃料噴射
弁6が設けられ、内燃エンジン1の高負荷運転時等に該
エンジン1の金気筒に燃料を供給するようにしている。
A fuel injection valve 6 is provided in the intake pipe 2 slightly upstream of the throttle body 3, and is configured to supply fuel to the cylinder of the internal combustion engine 1 when the engine 1 is operated under high load.

一方、吸気管2のスロットルボディ3の少し下流で且つ
吸気管集合部上流には補助燃料噴射弁6aが設けられ、
内燃エンジン1が十分に暖められた状態における低負荷
運転時に該エンジン1の金気筒に燃料を供給するように
している。燃料噴射弁6及び補助燃料噴射弁6aは図示
しない燃料ポンプに接続されていると共にECU3に電
気的に接続されており、ECU3からの信号によって該
両燃料噴射弁6及び補助燃料噴射弁6aの各々の開弁時
間が制御される。該補助燃料噴射弁としてはエンジン低
負荷時の少量燃料の各気筒への分配性を確保すべく霧化
特性の優れたものを使用している。
On the other hand, an auxiliary fuel injection valve 6a is provided slightly downstream of the throttle body 3 of the intake pipe 2 and upstream of the intake pipe gathering part.
Fuel is supplied to the cylinders of the internal combustion engine 1 during low load operation in a sufficiently warmed state. The fuel injection valve 6 and the auxiliary fuel injection valve 6a are connected to a fuel pump (not shown) and electrically connected to the ECU 3, and each of the fuel injection valve 6 and the auxiliary fuel injection valve 6a is activated by a signal from the ECU 3. The opening time of the valve is controlled. As the auxiliary fuel injection valve, one with excellent atomization characteristics is used to ensure distribution of a small amount of fuel to each cylinder when the engine is under low load.

また、前記スロットルボディ3のスロットル弁3′の下
流には管7を介して絶対圧(Pe^)センサ8が設けら
れており、この絶対圧センサ8によって電気的信号に変
換された絶対圧信号は前記ECU3に送られる。
Further, an absolute pressure (Pe^) sensor 8 is provided downstream of the throttle valve 3' of the throttle body 3 via a pipe 7, and an absolute pressure signal converted into an electrical signal by the absolute pressure sensor 8 is provided. is sent to the ECU 3.

エンジン1本体にはエンジン冷却水温センサ(以下rT
wセンサ」という)9が設けられ、Twセセン9はサー
ミスタ等からなり、冷却水が充満したエンジン気筒周壁
内に挿着されて、その検出水温信号をECU3に供給す
る。エンジン回転数センサ(以下r N eセンサ」と
いう)10がエンジンの図示しないカム軸周囲又はクラ
ンク軸周囲に取り付けられており、Neセンサ10はエ
ンジンのクランク軸1800回転毎に所定のクランク角
度位置で、即ち、各気筒の吸気行程開始時の上死点(T
DC)に関し所定クランク角度前のクランク角度位置で
クランク角度位置信号(以下これをrTDC信号」とい
う)を出力するものであり、このTDC信号はE CU
 5に送られる。
The engine cooling water temperature sensor (rT) is installed on the engine 1 body.
A Tw sensor (referred to as "w sensor") 9 is provided, and the Tw sensor 9 is made of a thermistor or the like, and is inserted into the circumferential wall of the engine cylinder filled with cooling water, and supplies its detected water temperature signal to the ECU 3. An engine rotation speed sensor (hereinafter referred to as "rN e sensor") 10 is attached around the camshaft or crankshaft (not shown) of the engine, and the Ne sensor 10 rotates at a predetermined crank angle position every 1800 revolutions of the engine crankshaft. , that is, the top dead center (T
DC), a crank angle position signal (hereinafter referred to as rTDC signal) is output at a crank angle position before a predetermined crank angle, and this TDC signal is
Sent to 5.

エンジン1の排気管11には三元触媒12が配置され排
気ガス中のHC,CO,N Ox成分の浄化作用を行う
。この三元触媒12の上流側には02センサ13が排気
管11に挿着され、このセンサ13は排気中の酸素濃度
を検出し、02′a度信号をE CtJ 5に供給する
A three-way catalyst 12 is disposed in the exhaust pipe 11 of the engine 1 to purify HC, CO, and NOx components in the exhaust gas. An 02 sensor 13 is inserted into the exhaust pipe 11 upstream of the three-way catalyst 12, and this sensor 13 detects the oxygen concentration in the exhaust gas and supplies an 02'a degree signal to the E CtJ 5.

更に、ECU3には例えば大気圧センサ等の他のパラメ
ータセンサ14が接続されており、他のパラメータセン
サ14はその検出値信号をECU3に供給する。
Furthermore, other parameter sensors 14 such as an atmospheric pressure sensor are connected to the ECU 3, and the other parameter sensors 14 supply their detected value signals to the ECU 3.

ECU3は各種センサからの入力信号波形を整形し、電
圧レベルを所定レベルに修正し、アナログ信号値をデジ
タル信号値に変換する等の機能を有する入力回路5a、
中央演算処理回路(以下rcpu」という)5b、C)
)U5bで実行される各種演算プログラム及び演算結果
等を記憶する記憶手段5c、及び前記燃料噴射弁6と補
助燃料噴射弁6aとにそれぞれ駆動信号を供給する出力
回路5d等から構成される。
The ECU 3 includes an input circuit 5a having functions such as shaping input signal waveforms from various sensors, correcting voltage levels to predetermined levels, and converting analog signal values into digital signal values.
Central processing circuit (hereinafter referred to as "rcpu") 5b, C)
) It is composed of a storage means 5c for storing various calculation programs and calculation results executed by U5b, and an output circuit 5d for supplying drive signals to the fuel injection valve 6 and the auxiliary fuel injection valve 6a, respectively.

CPU5bは第2図に示す燃料供給制御プログラムを前
記TDC信号が人力される毎に実行する。
The CPU 5b executes the fuel supply control program shown in FIG. 2 every time the TDC signal is input manually.

該プログラムは入力回路5aを介して供給された前述の
各種センサからのエンジンパラメータ信号に基づいて、
スロットル弁上流の燃料噴射弁(上流弁)6及びスロッ
トル弁下流の補助燃料噴射弁(下流弁)6aのそれぞれ
の燃料噴射時間を算出し、これらの噴射時間に基づいた
開弁駆動信号を両噴射弁6及び6aに出力する。
The program is based on engine parameter signals from the aforementioned various sensors supplied via the input circuit 5a.
The fuel injection time of each of the fuel injection valve (upstream valve) 6 upstream of the throttle valve and the auxiliary fuel injection valve (downstream valve) 6a downstream of the throttle valve is calculated, and a valve opening drive signal based on these injection times is used to control both injections. Output to valves 6 and 6a.

前記上流弁6及び下流弁6aは、アイドル運転領域(低
負荷域)、アイドル運転領域外(中・高負荷域)、及び
高負荷高回転時の各運転状態に応じて下記の表に示す手
法により燃料噴射を行うように制御される。
The upstream valve 6 and the downstream valve 6a are operated according to the methods shown in the table below according to each operating state in the idling operating range (low load range), outside the idling operating range (middle/high load range), and at high load and high rotation. It is controlled to perform fuel injection.

表中の各式は第2図のプログラムの実行で夫々使用され
るものであり、その詳細については後述する。
Each formula in the table is used in executing the program shown in FIG. 2, and details thereof will be described later.

以下、第2図の燃料供給制御プログラムの処理手順を詳
細に説明する。本プログラムは前述のTDC信号発生毎
に処理が開始されるものである。
Hereinafter, the processing procedure of the fuel supply control program shown in FIG. 2 will be explained in detail. Processing of this program is started every time the above-mentioned TDC signal is generated.

まず、ステップ1ではエンジン水i1JTwが所定温度
”1’WM^(例えば20℃)より高いか否かを判別し
、この答が否定(No)のとき、即ちエンジン温度が所
定温度より低いときは、下流弁6aの開弁時間′rOυ
7 M aを暫定的にOに設定する(ステップ10)。
First, in step 1, it is determined whether the engine water i1JTw is higher than a predetermined temperature "1'WM^ (for example, 20°C). If the answer is negative (No), that is, if the engine temperature is lower than the predetermined temperature, , the opening time ′rOυ of the downstream valve 6a
7 M a is provisionally set to O (step 10).

そして、後述するステップ17以下に進み、上流弁用P
a−Neマツプより基本開弁時間Tixを検索し、該T
iM値に基づいて上流弁6の開弁時間TOUTMを算出
しくステップ19)、ステップ8で上流弁6に該1”o
uTM値に応じた開弁駆動信号を出力する。この結果、
エンジン冷間時は図示しないスロットルバイパス通路か
らファーストアイドル用の補助空気が供給されているた
め、これに伴って、多くの燃料流量が必要となるので、
上流弁から燃料が供給される。このように燃料流量が比
較的多いときは燃料噴射弁から吸気管集合部までの距離
を長くしたほうが複数の気筒に対する燃料の分配性が確
保される。
Then, the process proceeds to step 17 to be described later, and the upstream valve P
Search the basic valve opening time Tix from the a-Ne map and find the corresponding T
Calculate the valve opening time TOUTM of the upstream valve 6 based on the iM value (Step 19), and in Step 8, the upstream valve 6 is
Outputs a valve opening drive signal according to the uTM value. As a result,
When the engine is cold, auxiliary air for fast idle is supplied from the throttle bypass passage (not shown), which requires a large amount of fuel flow.
Fuel is supplied from the upstream valve. In this way, when the fuel flow rate is relatively large, increasing the distance from the fuel injector to the intake pipe collection part ensures better distribution of fuel to the plurality of cylinders.

ステップ1の判別結果が肯定(Yes)のときは、次の
ステップ2.3及び4でエンジンがアイドル運転領域に
あるか否かを判別する。即ち、ステップ2でスロットル
弁開度θT)4が所定のアイドル開度2θIDL (例
えば0.39°)より小さいか否かを判別し、ステップ
3で吸気管内絶対圧Paが所定のアイドル圧Zptzb
しく例えば350mmHg)より低いか否かを判別し、
ステップ4でエンジン回転数Neが所定のアイドル回転
数ZNIDL (例えば1100rpm)より低いか否
かを判別する。これらの答がすべて肯定(Yes)のと
きは、下流弁用Pa−Neマツプより基本開弁時間Ti
Maを検索し、該Tiua値に基づいて次式(1)によ
り下流弁の開弁時間Tot+tvaを算出する(ステッ
プ5)。
When the determination result in step 1 is affirmative (Yes), it is determined in the next steps 2.3 and 4 whether or not the engine is in the idle operating range. That is, in step 2, it is determined whether the throttle valve opening θT)4 is smaller than a predetermined idle opening 2θIDL (for example, 0.39°), and in step 3, the intake pipe absolute pressure Pa is determined to be a predetermined idle pressure Zptzb.
(for example, 350 mmHg),
In step 4, it is determined whether the engine speed Ne is lower than a predetermined idle speed ZNIDL (for example, 1100 rpm). If all of these answers are affirmative (Yes), the basic valve opening time Ti is determined from the downstream valve Pa-Ne map.
Ma is searched, and the downstream valve opening time Tot+tva is calculated based on the Tiua value using the following equation (1) (Step 5).

T 0LIT Ma=T i MaXK、+に、−(1
)ここに、に1及びに2は前述の各種センサからのエン
ジンパラメータ信号に応じて演算される補正係数又は補
正変数であってエンジン運転状態に応じ、始動特性、排
気ガス特性、燃費特性、エンジン加速特性等の藷特性が
最適なものとなるように所定の演算式に基づいて演算さ
れる。
T 0LIT Ma=T i MaXK, +, -(1
) Here, 1 and 2 are correction coefficients or correction variables that are calculated according to engine parameter signals from the various sensors mentioned above, and depending on the engine operating condition, start characteristics, exhaust gas characteristics, fuel consumption characteristics, engine It is calculated based on a predetermined calculation formula so that the acceleration characteristics and other characteristics are optimized.

次に、後述するステップ11で使用する72TllCA
M値を初期値nTDcAM(例えば3)にプリセットし
くステップ6)、上流弁の開弁時間TOLJTM値を0
に設定する(ステップ7)、このため、次のステップ8
の実行の際には上流弁に対して開弁駆動信号は出力され
ない。更に1次のステップ9では前記ステップ5で算出
されたTouTMa値に応じた開弁駆動信号を出力し、
本プログラムを終了する。この結果、気筒に対し、燃料
供給がスロットル弁3′下流側の噴射弁から直接に行わ
れ、噴射弁と各気筒間の距離が短かくなるので、気筒に
対する燃料供給の応答性が向上するようになる。
Next, 72TllCA used in step 11 described later.
Preset the M value to the initial value nTDcAM (for example, 3) (Step 6), and set the upstream valve opening time TOLJTM value to 0.
(step 7), so the next step 8
When this is executed, no valve opening drive signal is output to the upstream valve. Furthermore, in the first step 9, a valve opening drive signal is outputted according to the TouTMa value calculated in the step 5,
Exit this program. As a result, fuel is supplied to the cylinders directly from the injection valve downstream of the throttle valve 3', and the distance between the injection valve and each cylinder is shortened, improving the responsiveness of fuel supply to the cylinders. become.

ステップ2,3.又は4のいずれかの判別結果が否定(
No)のとき、即ちエンジンの運転状態がアイドル域外
であるときは、前記nTDCAM値が0か否かを判別し
くステップ11)、この答が否定(No)であれば、前
記ステップ5と同様に下流弁用Pe−Neマツプより基
本開弁時間TiMaを検索し、該TiMa値に基づいて
前記式(1)により下流弁の開弁時間Tourhsaを
算出する(ステップ12)。次に、QrocAM値から
1を減算しくステップ13)、ステップ17以下へ進む
Steps 2, 3. Or, any of the judgment results in 4 is negative (
No), that is, when the engine operating state is outside the idle range, it is determined whether the nTDCAM value is 0 or not (step 11). If the answer is negative (No), the same process as in step 5 is performed. The basic valve opening time TiMa is retrieved from the Pe-Ne map for downstream valves, and the valve opening time Tourhsa of the downstream valve is calculated based on the TiMa value using the above equation (1) (step 12). Next, 1 is subtracted from the QrocAM value (step 13), and the process proceeds to step 17 and subsequent steps.

ステップ11の判別結果が肯定(Yes)のときは1次
のステップ14.15又はステップ14゜16でエンジ
ン回転数Neに応じた減少度で前記ステップ12で算出
したTot+rMa値を減少させる。即ち、ステップ1
4でエンジン回転数Neが所定値ZNeAM(例えば9
0 Orpm)より高いか否かを判別し、この答が否定
(NO)のときは前回TouTMa値から第1の所定値
ΔTOuTMa1(例えば0.4m5ec)を減算しく
ステップ15)、ステップ14の答が前足(Yes)の
ときは前回TouTma値から第2の所定値ΔTour
Ma、(例えば0.2m5ec)を減算しくステップ1
6)、その後ステップ17以下へ進む。
When the determination result in step 11 is affirmative (Yes), the Tot+rMa value calculated in step 12 is decreased in the primary step 14.15 or step 14.16 by the degree of decrease according to the engine rotation speed Ne. That is, step 1
4, the engine speed Ne is set to a predetermined value ZNeAM (for example, 9
If the answer is negative (NO), the first predetermined value ΔTOuTMa1 (for example, 0.4m5ec) is subtracted from the previous TouTMa value (step 15), and the answer of step 14 is When it is the front foot (Yes), the second predetermined value ΔTour is calculated from the previous TouTma value.
Step 1: Subtract Ma, (for example 0.2m5ec)
6), then proceed to step 17 and subsequent steps.

ステップ17では前記ステップ12.15又は16で算
出したToutMa値がステップ5又は12で算出され
るTouTMaの最小値より小さい下限値TOUT M
aLMT (例えば3 、0 m 5ec)より小さい
か否かを判別し、この答が肯定(Yes)のときはステ
ップ18でTiMa値を下限値TixaLM丁としTo
urMaイ直をTOIJTya=TiMaXK1+に、
In step 17, the ToutMa value calculated in step 12.15 or 16 is determined to be a lower limit value TOUTM smaller than the minimum value of ToutMa calculated in step 5 or 12.
It is determined whether or not it is smaller than aLMT (for example, 3,0 m 5ec), and if the answer is affirmative (Yes), the TiMa value is set as the lower limit value TixaLM in step 18.
urMa i direct to TOIJTya=TiMaXK1+,
.

の式(前記式(1))により算出し、即ちToutMa
”TiMaしxTXK、十に2としてからステップ19
に進み、この答が否定(NO)のときはそのままステッ
プ19に進む。これにより、エンジンの運転状態がアイ
ドル域からアイドル域外へ移行した後も、略一定量′r
oυTMaLMT以上の燃料が下流弁6aから供給され
る。ここで、TiHaし閘Tの値は下流弁から供給され
る燃料が正確に計量できる最小流量値となっている(例
えば1 、8 m5ec)。
(formula (1) above), that is, ToutMa
”TiMa and xTXK, step 19 from 2 to 10
If the answer is negative (NO), the process directly advances to step 19. As a result, even after the engine operating state shifts from the idle range to outside the idle range, a substantially constant amount of
Fuel equal to or greater than oυTMaLMT is supplied from the downstream valve 6a. Here, the value of the TiHa control T is the minimum flow rate value at which the fuel supplied from the downstream valve can be accurately measured (for example, 1.8 m5ec).

従って、該アイドル域外への移行による上流弁6の燃料
噴射開始直後に燃料が上流弁6から噴射されてスロット
ルボディ3の内壁面やスロットル弁3′に付着している
間にも、下流弁6aから燃料が供給されるので、下流弁
6aから上流弁6への切換時の所要の燃料供給量が確保
され、空燃比の変動が抑えられるので、運転性の悪化が
防止される。更に、本実施例では下流弁6aから上流弁
6への切換時に前記ステップ11,12.13及びステ
ップ14.15又はステップ14.16を実行すること
により、下流弁6aの燃料供給量が徐々に減少するよう
にしているので、燃料供給の切換時の空燃比変化が極力
抑えられる。ステップ19では上流弁用Pa−Neマツ
プより基本開弁時間TiMを検索し、該TiM値に基づ
いて次式(2)により上流弁の開弁時間TOUT間を算
出する。
Therefore, even while fuel is injected from the upstream valve 6 and adheres to the inner wall surface of the throttle body 3 and the throttle valve 3' immediately after the start of fuel injection by the upstream valve 6 due to the transition to the outside of the idle area, the downstream valve 6a Since fuel is supplied from the downstream valve 6a to the upstream valve 6, the required fuel supply amount is ensured when switching from the downstream valve 6a to the upstream valve 6, and fluctuations in the air-fuel ratio are suppressed, thereby preventing deterioration of drivability. Furthermore, in this embodiment, by executing steps 11, 12.13 and step 14.15 or step 14.16 when switching from the downstream valve 6a to the upstream valve 6, the amount of fuel supplied to the downstream valve 6a is gradually reduced. Since the air-fuel ratio is decreased, changes in the air-fuel ratio at the time of switching the fuel supply can be suppressed as much as possible. In step 19, the basic valve opening time TiM is retrieved from the upstream valve Pa-Ne map, and based on the TiM value, the valve opening time TOUT of the upstream valve is calculated using the following equation (2).

TouTM=Ti MXK1+に2− (2)ここに、
K1及びに2は前記式(1)におけるものと同じもので
ある。
TouTM=Ti MXK1+2− (2) Here,
K1 and K2 are the same as in the above formula (1).

次のステップ20では前記ステップ19で算出したTO
IJTM値が所定値Me −Tou T L M Tよ
り大きいか否かを判別する。ここに、Meは1’ D 
C信号の発生間隔であり、これは4気筒4サイクルエン
ジンの場合は吸気行程の時間に対応するものである。ま
た、TouTLMTは」−流昇6が開弁状態から完全に
閉弁状態となるまでに必要な時間である。ステップ20
の判別結果が肯定(Yes)のときは、次式(3)によ
って下流弁の開弁時間を算出する(ステップ21)。
In the next step 20, the TO calculated in step 19 is
It is determined whether the IJTM value is larger than a predetermined value Me-TouTLMT. Here, Me is 1' D
This is the generation interval of the C signal, which corresponds to the time of the intake stroke in the case of a 4-cylinder, 4-cycle engine. Further, TouTLMT is the time required for the flow riser 6 to change from the valve open state to the completely closed state. Step 20
When the determination result is affirmative (Yes), the valve opening time of the downstream valve is calculated using the following equation (3) (step 21).

TouTya値(TouTM −(Me−TOIJTL
%14 T))XKAux+Tva・・・(3) ここに、KAuxは上流弁に対する下流弁の流量比であ
り、Tvaはバッテリ電圧の変動に応じた補正値である
。下流弁の開弁時間TouTMaを両式(3)により算
出することにより、エンジンの高負荷高回転時に開弁時
間が長くなったときに上流弁がステップ19で算出され
た開弁時間TOUTM内で供給しきれない燃料が下流弁
6aから供給される。この結果、高負荷高回転時におい
ても必要な燃料紙が確保される。また、上流弁6はそれ
ほど大流量(大口径)のものを使用しなくて済み。
TouTya value (TouTM - (Me-TOIJTL
%14 T)) By calculating the valve opening time TouTMa of the downstream valve using both equations (3), when the valve opening time becomes longer during high engine load and high rotation, the upstream valve is controlled within the valve opening time TOUTM calculated in step 19. The fuel that cannot be completely supplied is supplied from the downstream valve 6a. As a result, the necessary fuel paper is secured even under high load and high rotation. Furthermore, the upstream valve 6 does not have to have such a large flow rate (large diameter).

低負荷時にも小駄の燃料の霧化を良好とすることができ
る。
Good atomization of fuel can be achieved even under low load.

次に、次式(4)によって上流弁の開弁時間を算出する
(ステップ22)。
Next, the opening time of the upstream valve is calculated using the following equation (4) (step 22).

TOLIT hs =M e−T ouTLMT −(
4)ここに、Me及びTouTLMTは両式(3)のも
のと同様である。従って、上流弁6の開弁時間の上限値
はM e −T ouTLMTとなり、上流弁6は各気
筒に対する燃料供給のたびに完全に閉弁し。
TOLIT hs = M e-T outTLMT - (
4) Here, Me and TouTLMT are the same as those in both equations (3). Therefore, the upper limit of the opening time of the upstream valve 6 is M e -T outTLMT, and the upstream valve 6 is completely closed every time fuel is supplied to each cylinder.

連続的に開弁することがない。この結果、燃料噴射弁の
大流量域から連続噴射となる間は第4図に示すように開
弁時間T 0IJTに対して燃料1fQfが比例しない
特性領域があるので、その領域を使用することが防止さ
れる。
The valve does not open continuously. As a result, as shown in Fig. 4, there is a characteristic region where the fuel 1fQf is not proportional to the valve opening time T0IJT during continuous injection from the large flow range of the fuel injector, so it is not possible to use that region. Prevented.

ステップ22の実行後、ステップ8に進む。また、ステ
ップ20の判別結果が否定(No)のときは、上流弁6
のみにより必要な燃料をすべて供給することができるの
でステップ21及び22をスキップして直接ステップ8
に進む。
After executing step 22, proceed to step 8. Further, when the determination result in step 20 is negative (No), the upstream valve 6
Skip steps 21 and 22 and go directly to step 8, since all the necessary fuel can be supplied by
Proceed to.

この後に、ステップ8でTouTM値に応じた開弁駆動
信号を上流弁に出力し、ステップ9でTouTya値に
応じた開弁駆動信号を下流弁に出力し1本プログラムを
終了する。
After that, in step 8, a valve opening drive signal corresponding to the TouTM value is output to the upstream valve, and in step 9, a valve opening drive signal corresponding to the TouTya value is output to the downstream valve, and one program is completed.

最後に、上記した第2図のプログラムを使用した場合の
燃料供給特性について、第3図を参照して説明する。第
3図はエンジン温度TwがTIIIM^より高い場合に
エンジンをアイドル状態から加速していったときの上流
弁及び下流弁の燃料供給量の時間変化を示す。ます、エ
ンジン運転状態がアイドル域のときは、下流弁からマツ
プ値に応じたTouTMa値に相当する燃料を供給する
。次に、エンジン運転状態がアイドル域からアイドル域
外に移行すると、下流弁からの燃料供給量は所定の減少
度ΔTouTxa+又はΔToUTMa2で徐々に減少
してTouTyaLMT(= l″1sat、MTXK
、+に2)値となる。この間の上流弁からの燃料噴射量
はマツプ値に応じた”1’OUTMに相当する犀である
が、燃料がスロットルボディの内壁面やスロットル弁に
付着するので、実際に上流弁から気筒まで到達する燃料
はOから次第にT’OUTM値まで増加する。そして、
エンジン運転状態が高負荷高回転域に移行すると、上流
弁からの燃料供給I^は吸気行程の間に供給できる最大
量Me−ToυTLM Tどなることがあり、そのとき
、下流弁からの燃料供給量は不足分を補充する量(To
uT−(Me−TOUTLMT))XKAuxとなる。
Finally, the fuel supply characteristics when using the program shown in FIG. 2 described above will be explained with reference to FIG. 3. FIG. 3 shows changes over time in the amount of fuel supplied to the upstream and downstream valves when the engine is accelerated from an idling state when the engine temperature Tw is higher than TIIIM^. First, when the engine operating state is in the idle range, fuel corresponding to the TouTMa value according to the map value is supplied from the downstream valve. Next, when the engine operating state shifts from the idle region to outside the idle region, the amount of fuel supplied from the downstream valve gradually decreases by a predetermined reduction degree ΔTouTxa+ or ΔToUTMa2, and becomes TouTyaLMT(=l″1sat, MTXK
, + has a value of 2). During this period, the amount of fuel injected from the upstream valve corresponds to "1'OUTM" according to the map value, but since the fuel adheres to the inner wall surface of the throttle body and the throttle valve, it actually reaches the cylinder from the upstream valve. The fuel to be used gradually increases from O to the T'OUTM value.
When the engine operating state shifts to a high-load, high-speed range, the fuel supply I^ from the upstream valve may become the maximum amount that can be supplied during the intake stroke, and at that time, the fuel supply from the downstream valve is the amount to replenish the shortage (To
uT-(Me-TOUTLMT))XKAux.

(発明の効果) 以上詳述したように、本発明の内燃エンジンの燃料供給
制御方法によれば、複数の気筒を備えた内燃エンジンの
吸気分岐管の集1合部より上流に少なくとも2つ以上の
燃料噴射弁を設け、前記内燃エンジンのクランク角度信
号に同期して前記内燃エンジンの運転状態に応じた前記
燃料噴射弁の燃料噴射時間を決定し、少なくとも前記内
燃エンジンの所定の低負荷運転状態時には前記少なくと
も2つ以上の燃料噴射弁のうちの所定の燃料噴射弁によ
り、エンジンの前記所定の低負荷運転状態以外の運転状
態時には該所定の燃料噴射弁以外の他の燃料噴射弁によ
り夫々前記燃料噴射時間に応じた燃料の調量制御を行う
内燃エンジンの燃料供給制御方法において、前記内燃エ
ンジンの前記所定の低負荷運転状態以外の運転状態時に
前記クランク角度信号の発生間隔を計測し、該発生間隔
に応じた時間と前記燃料噴射時間とを比較し、該燃料噴
射時間が該発生間隔に応じた時間を上回るときは、上回
った分に係る燃料を前記所定の燃料噴射弁により供給す
るようにしたので、例えば単一の燃料噴射弁から複数の
気筒へ燃料を供給する方法でありながら、エンジンの低
負荷時の燃料の霧化を良好にできると共に、高負荷高回
転時に燃料調量制御を正確に行うことができる。
(Effects of the Invention) As detailed above, according to the fuel supply control method for an internal combustion engine of the present invention, at least two or more intake branch pipes of an internal combustion engine including a plurality of cylinders a fuel injection valve, the fuel injection time of the fuel injection valve is determined in accordance with the operating state of the internal combustion engine in synchronization with a crank angle signal of the internal combustion engine, and at least a predetermined low-load operating state of the internal combustion engine is determined. Sometimes, a predetermined fuel injector of the at least two or more fuel injectors is used, and when the engine is in an operating state other than the predetermined low-load operating state, another fuel injector other than the predetermined fuel injector is used. A fuel supply control method for an internal combustion engine that performs fuel metering control in accordance with a fuel injection time, the method comprising: measuring the occurrence interval of the crank angle signal during an operating state other than the predetermined low load operating state of the internal combustion engine; The fuel injection time is compared with the time corresponding to the occurrence interval, and when the fuel injection time exceeds the time corresponding to the occurrence interval, the predetermined fuel injection valve supplies fuel corresponding to the exceeded time. For example, even though it is a method of supplying fuel to multiple cylinders from a single fuel injector, it is possible to achieve good fuel atomization when the engine is under low load, and it is also possible to control fuel metering when the engine is under high load and at high speeds. can be done accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する内燃エンジンの燃料供給
制御装置の全体構成図、第2図は第1図のECUで実行
される燃料供給制御プログラムのフローチャート、第3
図は本発明方法による燃料供給量の時間変化を示すグラ
フ、第4図は燃料噴射弁の燃料噴射特性図である。 1・・・内燃エンジン、3′・・・スロットル弁、4・
・・スロットル弁開度センサ、5・・・電子コントロー
ルユニット(ECU)、5b−CPU、5 c −記憶
手段、6・・・燃料噴射弁、6a・・・補助燃料噴射弁
。 8・・・吸気管内絶対圧センサ、10・・・エンジン回
転数センサ。
FIG. 1 is an overall configuration diagram of a fuel supply control device for an internal combustion engine that implements the method of the present invention, FIG. 2 is a flowchart of a fuel supply control program executed by the ECU in FIG. 1, and FIG.
The figure is a graph showing the temporal change in the amount of fuel supplied according to the method of the present invention, and FIG. 4 is a graph showing the fuel injection characteristics of the fuel injection valve. 1... Internal combustion engine, 3'... Throttle valve, 4.
...Throttle valve opening sensor, 5...Electronic control unit (ECU), 5b-CPU, 5c-storage means, 6...Fuel injection valve, 6a...Auxiliary fuel injection valve. 8... Intake pipe absolute pressure sensor, 10... Engine rotation speed sensor.

Claims (1)

【特許請求の範囲】[Claims] 1、複数の気筒を備えた内燃エンジンの吸気分岐管の集
合部より上流に少なくとも2つ以上の燃料噴射弁を設け
、前記内燃エンジンのクランク角度信号に同期して前記
内燃エンジンの運転状態に応じた前記燃料噴射弁の燃料
噴射時間を決定し、少なくとも前記内燃エンジンの所定
の低負荷運転状態時には前記少なくとも2つ以上の燃料
噴射弁のうちの所定の燃料噴射弁により、エンジンの前
記所定の低負荷運転状態以外の運転状態時には該所定の
燃料噴射弁以外の他の燃料噴射弁により夫々前記燃料噴
射時間に応じた燃料の調量制御を行う内燃エンジンの燃
料供給制御方法において、前記内燃エンジンの前記所定
の低負荷運転状態以外の運転状態時に前記クランク角度
信号の発生間隔を計測し、該発生間隔に応じた時間と前
記燃料噴射時間とを比較し、該燃料噴射時間が該発生間
隔に応じた時間を上回るときは、上回った分に係る燃料
を前記所定の燃料噴射弁により供給することを特徴とす
る内燃エンジンの燃料供給制御方法。
1. At least two or more fuel injection valves are provided upstream of a collection point of intake branch pipes of an internal combustion engine having a plurality of cylinders, and the fuel injection valves are responsive to the operating state of the internal combustion engine in synchronization with a crank angle signal of the internal combustion engine. the fuel injection time of the fuel injection valve is determined, and at least when the internal combustion engine is in a predetermined low load operating state, a predetermined fuel injection time of the at least two or more fuel injectors is used to inject the fuel into the predetermined low load state of the engine. In the fuel supply control method for an internal combustion engine, the fuel supply control method for an internal combustion engine performs fuel metering control according to the fuel injection time using each fuel injection valve other than the predetermined fuel injection valve in an operating state other than the load operating state. The occurrence interval of the crank angle signal is measured during an operating state other than the predetermined low-load operating state, the time corresponding to the occurrence interval is compared with the fuel injection time, and the fuel injection time is determined according to the occurrence interval. 1. A fuel supply control method for an internal combustion engine, characterized in that when the time exceeds the specified time, fuel corresponding to the exceeded amount is supplied by the predetermined fuel injection valve.
JP29428586A 1986-12-10 1986-12-10 Method of controlling supply of fuel for internal combustion engine Granted JPS63147954A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29428586A JPS63147954A (en) 1986-12-10 1986-12-10 Method of controlling supply of fuel for internal combustion engine
US07/131,225 US4819604A (en) 1986-12-10 1987-12-10 Fuel supply control method for internal combustion engines
DE19873741915 DE3741915A1 (en) 1986-12-10 1987-12-10 FUEL SUPPLY CONTROL METHOD FOR AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29428586A JPS63147954A (en) 1986-12-10 1986-12-10 Method of controlling supply of fuel for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS63147954A true JPS63147954A (en) 1988-06-20
JPH0573911B2 JPH0573911B2 (en) 1993-10-15

Family

ID=17805722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29428586A Granted JPS63147954A (en) 1986-12-10 1986-12-10 Method of controlling supply of fuel for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63147954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915078A (en) * 1987-07-21 1990-04-10 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512072U (en) * 1978-07-12 1980-01-25
JPS57198365A (en) * 1981-06-01 1982-12-04 Hitachi Ltd Fuel injection type fuel feed unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512072B2 (en) * 1972-10-07 1980-03-29

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512072U (en) * 1978-07-12 1980-01-25
JPS57198365A (en) * 1981-06-01 1982-12-04 Hitachi Ltd Fuel injection type fuel feed unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915078A (en) * 1987-07-21 1990-04-10 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an internal combustion engine

Also Published As

Publication number Publication date
JPH0573911B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
JPH0323342A (en) Fuel feed system for plurality of cylinders internal combustion engine and control device thereof
JPH0286936A (en) Air-fuel ratio feedback control method for internal combustion engine
US6609059B2 (en) Control system for internal combustion engine
JPH0531646B2 (en)
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS61118538A (en) Air-fuel ratio control of internal-combustion engine
US4819604A (en) Fuel supply control method for internal combustion engines
JPS63147953A (en) Method of controlling supply of fuel for internal combustion engine
JPH0733802B2 (en) Idle rotation speed control method for internal combustion engine
JPS63147954A (en) Method of controlling supply of fuel for internal combustion engine
JPH0217704B2 (en)
JPH1018883A (en) Engine air-fuel ratio controller
JPS58214632A (en) Electronically controlled fuel injection method for internal-combustion engine
JPH057546B2 (en)
JPS58144637A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH0429855B2 (en)
JPH0814263B2 (en) Fuel supply control device for internal combustion engine
JPS614842A (en) Fuel supply feedback control under cooling of internal-combustion engine
JPH11107814A (en) Control unit of multicylinder engine
JPS63147955A (en) Method of controlling supply of fuel for internal combustion engine
JPH02104961A (en) Exhaust reflux controlling method for internal combustion engine
JPS63183244A (en) Fuel feed control method for internal combustion engine during transient operation
JPH0551060B2 (en)
JPS58217735A (en) Electronic controlled fuel injection method for internal-combustion engine
JPS61123729A (en) Fuel injection quantity controller for internal-combustion engine