JPS61123729A - Fuel injection quantity controller for internal-combustion engine - Google Patents

Fuel injection quantity controller for internal-combustion engine

Info

Publication number
JPS61123729A
JPS61123729A JP59245461A JP24546184A JPS61123729A JP S61123729 A JPS61123729 A JP S61123729A JP 59245461 A JP59245461 A JP 59245461A JP 24546184 A JP24546184 A JP 24546184A JP S61123729 A JPS61123729 A JP S61123729A
Authority
JP
Japan
Prior art keywords
fuel injection
engine
injection amount
output
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59245461A
Other languages
Japanese (ja)
Inventor
Masakazu Ninomiya
正和 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP59245461A priority Critical patent/JPS61123729A/en
Publication of JPS61123729A publication Critical patent/JPS61123729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent an air-fuel ratio from becoming too much overrich as well as to keep off a misfire and a drip in engine output, by constituting a compensation value for compensating a fundamental fuel injection quantity for increment in time of high load running of an engine, so as to be set according to a warming state of the engine. CONSTITUTION:An output signal of a sunning state detecting device M2 detecting those of suction pipe pressure, engine speed, air-fuel ratio, etc., is inputted and a fundamental fuel injection quantity Tp is calculated by a fundamental fuel injection quantity calculating device M3 according to the detected running state. This fundamental fuel injection quantity Tp is made so as to perform output increment compensation when high load running is detected by a high load running detecting device M4 and also to perform warming-up increment compensation when warming up is detected by a warming-up state detecting device M5 at an actual fuel injection quantity calculating device M6 each. In this case, an output increment compensation value to be used in time of high load running of an internal-combustion engine M1 is constituted so as to be set according to a warming-up state of the said engine M1 by an output increment compensation value setting device M7.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関の燃料噴射量制御装置に関し、詳しく
は内燃機関の暖機運転時及び高負荷運転時には、夫々燃
料噴射量を増量補正する内燃機関の燃料噴射ffi $
11 all装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel injection amount control device for an internal combustion engine, and more specifically, the present invention relates to a fuel injection amount control device for an internal combustion engine. Internal combustion engine fuel injection ffi $
11 all device.

[従来の技術] 従来より、内燃機関の運転状態を検出し、その運転状態
に応じて内燃機関の燃料噴射量を決定するといった、電
子制御式の燃料噴If ffi 11 till装置が
ある。そして、この種の燃料噴射量制御装置においては
、機関の吸気管内圧力、又は機関回転数及び吸入空気量
等を基に基本燃料噴射量を鋒出し、加速時等内燃機関の
高負荷運転時には、その基本撚れ噴!)1mを出力増量
補正して、線間出力を上昇させるとか、あるいは機関冷
寒時等、いわゆる内燃機関の暖機運転時には、基本燃料
噴射量を暖機増量補正して、暖機運転時の運転性を向上
させるといった、種々の運転状態に応じて基本燃料噴射
量を増量又は減量補正することが行なわれている。
[Prior Art] Conventionally, there has been an electronically controlled fuel injection If ffi 11 till device that detects the operating state of an internal combustion engine and determines the fuel injection amount of the internal combustion engine according to the operating state. In this type of fuel injection amount control device, the basic fuel injection amount is determined based on the engine's intake pipe pressure, engine speed, intake air amount, etc., and during high load operation of the internal combustion engine such as during acceleration, Its basic twist jet! )1m output increase correction to increase the line-to-line output, or when the engine is cold or cold, so-called warm-up operation of the internal combustion engine, the basic fuel injection amount is corrected to increase the warm-up amount to increase the line-to-line output during warm-up operation. In order to improve drivability, the basic fuel injection amount is increased or decreased depending on various driving conditions.

[発明が解決しようとする問題点] ところが、上記の如く、基本燃料噴射量を補正し、実際
に内燃機関に供給する実燃料噴射量を算出する場合、燃
料を増量又は減量補正するための補正係数が各々の運転
状態に対応して決定され、基本燃料噴射量J量に各補正
係数を乗算することによって行なわれるため、暖機時に
高負荷運転を行なうと、例えば機関の冷却水温を基に設
定される暖機増量補正係数と、スロットル弁の開度を基
に設定される出力増量補正係数とが各々基本燃料噴射量
に乗算され、吸入空気量に対する実燃料噴射量が多くな
り過ぎ、つまり空燃比がリッチになり過ぎて点火プラグ
が燻り失火したり、あるいはそれに至らないまでも出力
が低下して運転性が低下するといった問題がある。即ち
、出力増量補正係数及び暖機増量補正係数が、各運転条
件に対応して独立して決定されるために上記問題が生ず
るのである。そして従来では例えば特開昭57−135
234号公報に開示されている如く、機IIl暖機暖機
撚料噴射量を制限するものはあるものの、上記の問題を
解決するための対策は何らなされておらず、その対策が
望まれていた。
[Problems to be Solved by the Invention] However, as described above, when correcting the basic fuel injection amount and calculating the actual fuel injection amount actually supplied to the internal combustion engine, the correction for increasing or decreasing the amount of fuel is necessary. The coefficients are determined in accordance with each operating state, and are determined by multiplying the basic fuel injection amount J by each correction coefficient, so if high-load operation is performed during warm-up, the The basic fuel injection amount is multiplied by the warm-up increase correction coefficient that is set and the output increase correction coefficient that is set based on the opening degree of the throttle valve, and the actual fuel injection amount becomes too large relative to the intake air amount. There are problems in that the air-fuel ratio becomes too rich, causing the spark plug to smolder and cause a misfire, or even if this does not occur, the output decreases and drivability deteriorates. That is, the above problem occurs because the output increase correction coefficient and the warm-up increase correction coefficient are independently determined in accordance with each operating condition. In the past, for example, Japanese Patent Application Laid-Open No. 57-135
As disclosed in Publication No. 234, although there is a method to limit the amount of warm-up twisting material injection, no measures have been taken to solve the above problem, and such measures are desired. Ta.

そこで本発明は上記問題に鑑みなされたもので、出力増
量補正係数を内燃機関の暖機状態に応じて設定すること
によって、暖機時に高負荷運転を行なう場合にも、空燃
比が過濃になることなく、良好な運転性が得られるよう
にした内燃機関の燃料噴射fi ill III装置を
提供することを目的としている。
The present invention was developed in view of the above problem, and by setting the output increase correction coefficient according to the warm-up state of the internal combustion engine, the air-fuel ratio is prevented from becoming excessively rich even when performing high-load operation during warm-up. It is an object of the present invention to provide a fuel injection fill III device for an internal combustion engine that allows good drivability to be obtained without causing problems.

[問題点を解決するための手段] かかる目的を達するだめの本発明の構成は、第1図に示
す如く、 内燃機関M1の運転状態を検出する運転状態検出手段M
2と、 該検出された運転状態に応じて基本燃料噴射量を算出す
る基本燃料噴射最算出手段M3と、上記運転状H検出手
段M2の検出結果から、当該機関M1の高負荷運転を検
知する高負荷運転検知手段M4と、 上記運転状態検出手段M2の検出結果から、当該機関M
1の暖機状態を検知する暖機状態検知手段M5と、 少なくとも、当該i関M1の高負荷運転時には機関出力
を上昇すべく上記基本燃料噴射口を出力増量補正すると
共に、当該機[!IMIの暖機運転時には上記基本燃料
噴射量を暖機増量補正し、当該機関に供給される実燃料
噴射量を算出する実燃料噴射量算出手段M6と、 を備えた内燃ill関の燃料噴射ffi 1bIJ I
I!装置において、 当該機関M1の高負荷運転時に上記実燃料噴射量算出手
段M6にて用いられる出力増量補正値を、当該機関M1
の暖機状態に応じて設定する出力増量補正値設定手段M
7を設けたことを特徴とする内燃機関の燃料噴射ffi
 f、II罪装置を要旨としている。
[Means for Solving the Problems] As shown in FIG. 1, the configuration of the present invention for achieving the above object includes an operating state detection means M for detecting the operating state of the internal combustion engine M1.
2, basic fuel injection maximum calculation means M3 that calculates the basic fuel injection amount according to the detected operating state, and detecting high load operation of the engine M1 from the detection result of the operating state H detection means M2. From the detection results of the high-load operation detection means M4 and the operation state detection means M2, the engine M
Warm-up state detection means M5 detects the warm-up state of the engine [! an internal combustion ill-related fuel injection ffi comprising: an actual fuel injection amount calculation means M6 that corrects the basic fuel injection amount to increase the warming up amount during warm-up operation of the IMI and calculates an actual fuel injection amount supplied to the engine; 1bIJ I
I! In the device, the output increase correction value used by the actual fuel injection amount calculation means M6 during high-load operation of the engine M1 is set to the engine M1.
output increase correction value setting means M that is set according to the warm-up state of the
Fuel injection ffi of an internal combustion engine characterized by providing 7
f, II crime device is the gist.

[作用] ここで上記運転状態検出手段M2とは、従来より電子制
御式の内燃機関に搭載されている種々のセンサのことで
あり、例えば機関回転数を検出する回転数センサ、冷却
水温を検出する水温センサ、ス白ットルバルプの開度を
検出するスロッi−ルセンサ、吸気管圧力を検出する吸
気管圧力センサ、排気中の酸素濃度がら空燃比を検出す
る空燃比センサ等、種々のセンサが挙げられる。
[Function] Here, the operating state detection means M2 refers to various sensors conventionally installed in electronically controlled internal combustion engines, such as a rotation speed sensor that detects the engine rotation speed, and a rotation speed sensor that detects the cooling water temperature. There are various sensors such as a water temperature sensor that detects the throttle valve opening, a throttle sensor that detects the opening of the throttle valve, an intake pipe pressure sensor that detects the intake pipe pressure, and an air-fuel ratio sensor that detects the air-fuel ratio based on the oxygen concentration in the exhaust gas. It will be done.

また基本燃料噴射最算出手段M3とは、内燃機関の運転
状態、例えば吸気管圧力あるいは吸入空気量等を基に機
関定常゛運転時の燃料噴射量を算出するものであり、例
えばマイクロコンピュータ等からなる電子falJi1
1回路の処理動作の1つとして実行されるものである。
The basic fuel injection calculation means M3 calculates the fuel injection amount during steady engine operation based on the operating state of the internal combustion engine, such as intake pipe pressure or intake air amount, and is calculated from a microcomputer or the like. Naru electronic falJi1
This is executed as one of the processing operations of one circuit.

次に高負荷運転検知手段M4及び暖機状態検知手段M5
とは、上記運転状態検出手段M2による検出結果から内
燃機関の高負荷運転時、あるいはrM機状態を検知する
ものであり、高負荷運転検知手段M4においては、例え
ば運転者のアクセル操作により駆動されるスロットルバ
ルブ開度が所定値以上となった時、あるいはアクセルペ
ダルの踏み込み量が所定値以上となった時に機関が高負
荷運転に入ったと判断し、一方、vM檄状態検知手段M
5においては例えば冷却水温等から得られる機関温度が
所定fIi以下の時、機関が暖機中であると判断するよ
うすればよい。
Next, high load operation detection means M4 and warm-up state detection means M5
This is to detect the high load operation of the internal combustion engine or the rM engine state from the detection result by the driving state detection means M2. It is determined that the engine is in high-load operation when the opening of the throttle valve exceeds a predetermined value or when the amount of depression of the accelerator pedal exceeds a predetermined value.
5, it may be determined that the engine is being warmed up when the engine temperature obtained from, for example, the cooling water temperature is below a predetermined value fIi.

実燃料噴射同算出手段M6においては、上記基本燃料噴
1111に山手段M3にて求められた基本燃料噴射量を
、機関の所定の運転条件に応じて増m又は減量補正し、
内燃機関に実際に供給する実燃料噴射量を求めるもので
あって、少なくとも内燃機関の高負荷運転時には機関出
力を上昇すべく基本燃料噴射量を出力増量補正すると共
に、暖機運転時には機関冷寒時の運転性を向上させるべ
く基本燃料噴射量を暖機増量補正するものであり、前記
基本燃料噴fJ4m算出手段M3と同様に、電子制御回
路における制御処理の1つとして実行されるものである
In the actual fuel injection calculation means M6, the basic fuel injection amount determined by the peak means M3 for the basic fuel injection 1111 is corrected by increasing or decreasing according to the predetermined operating conditions of the engine,
This method calculates the actual amount of fuel injection actually supplied to the internal combustion engine, and at least when the internal combustion engine is operating under high load, the basic fuel injection amount is corrected to increase the engine output in order to increase the engine output, and when the engine is warmed up, the engine is cold or cold. This function corrects the basic fuel injection amount by increasing the warm-up amount in order to improve the drivability at the time of operation, and similarly to the basic fuel injection fJ4m calculation means M3, it is executed as one of the control processes in the electronic control circuit. .

最後に出力増員補正値設定手段M7とは、本発明の主要
部分であり、上記実燃料噴射量算出手段M6にて出力増
量補正を行なう場合の増量補正量を、機関の暖機状態に
応じて、つまり冷却水温等のi関温度に応じて設定し、
暖機時に高負荷運転を行なう場合の□増量補正によって
空燃比がリッチになり過ぎ、運転性の低下を招くといっ
たことを防止するためのものである。
Finally, the output increase correction value setting means M7 is a main part of the present invention, and determines the increase correction amount when the actual fuel injection amount calculation means M6 performs the output increase correction according to the warm-up state of the engine. , that is, set according to the temperature of the cooling water etc.
This is to prevent the air-fuel ratio from becoming too rich due to the □ increase correction when performing high-load operation during warm-up, resulting in a decrease in drivability.

[実施例] 以下に本発明の一実施例を、図面と共に説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第2図は本実施例の内ma間の燃料噴射all−装置が
搭載された内燃機関及びその周辺装置を表わす概略構成
図である。図において、1は内燃機関(以下、単にエン
ジンという。)、2は吸気マニホールド3の内部圧力を
検出する吸気管圧力センサ、4はエンジン1の吸気マニ
ホールド3の各シリンダ吸気ボート近傍に設けられた電
磁作動式の燃料噴射弁であって、燃料噴射弁4には圧力
を一定に調整された燃料が圧送される。5はエンジン点
火装置の一部をなす点火コイル、6は点火コイル5から
の点火、エネルギーを各シリンダに設けられた点火プラ
グ5aに分配するディストリビュータである。ディスト
リビュータ6は周知のようにエンジン1のクランク軸の
2回転につき1回転するものであって、その内部にエン
ジン回転角を検出する回転角センサ7を備えている。8
はマイクロコンピュータからなる電子制御回路であり、
これについては後述する。
FIG. 2 is a schematic configuration diagram showing an internal combustion engine and its peripheral equipment in which the internal combustion engine fuel injection all-system of this embodiment is mounted. In the figure, 1 is an internal combustion engine (hereinafter simply referred to as the engine), 2 is an intake pipe pressure sensor that detects the internal pressure of the intake manifold 3, and 4 is a sensor installed near each cylinder intake boat of the intake manifold 3 of the engine 1. The fuel injection valve 4 is an electromagnetically actuated fuel injection valve, and fuel whose pressure is adjusted to be constant is fed under pressure to the fuel injection valve 4. 5 is an ignition coil forming a part of the engine ignition system, and 6 is a distributor that distributes ignition and energy from the ignition coil 5 to spark plugs 5a provided in each cylinder. As is well known, the distributor 6 rotates once for every two revolutions of the crankshaft of the engine 1, and is provided with a rotation angle sensor 7 therein for detecting the engine rotation angle. 8
is an electronic control circuit consisting of a microcomputer,
This will be discussed later.

9はエンジン1のスロットル弁、10はスロットル弁9
の全開もしくはほぼ全閉時に「ON」される図示しない
全開接点10aと、スロットル弁9が50’以上の開度
なフた時「ON」される図示しない全開接点10bとを
有するスロットルセンサ、11はエンジン1の暖機状態
を検知するためエンジン1の冷却水温を検出する水温セ
ンサ、12は吸入空気温度を検出する吸気温度センサ、
13は排気マニホールド14に設けられ排気中の酸素濃
度がら空燃比を検出する空燃比センサである。
9 is the throttle valve of the engine 1, 10 is the throttle valve 9
A throttle sensor 11 having a full open contact 10a (not shown) that is turned ON when the throttle valve 9 is fully open or almost fully closed, and a full open contact 10b (not shown) that is turned ON when the throttle valve 9 is closed to an opening of 50' or more. 12 is a water temperature sensor that detects the cooling water temperature of the engine 1 to detect the warm-up state of the engine 1; 12 is an intake air temperature sensor that detects the intake air temperature;
An air-fuel ratio sensor 13 is provided in the exhaust manifold 14 and detects the air-fuel ratio from the oxygen concentration in the exhaust gas.

次に第3図に上記電子制御回路8のブロック図を示し、
その構成を説明する。
Next, FIG. 3 shows a block diagram of the electronic control circuit 8,
Its configuration will be explained.

図に示す如く電子制御回路8は、上記各センサより出力
されるデータを制御プログラムに従って入力及び演算す
ると共に燃料噴射弁4、点火コイル5等の各種装置を作
動制御するための処理を行なうセントラルプロセッシン
グユニット(CPU)20と、上記制御プログラムや演
算処理実行の際に用いられるマツプ等のデータが格納さ
れたり−ドオンメモリ(ROM)、及び演算処理実行の
際に必要なデータが一時的に読み■きされるランダムア
クセスメモリ(RAM)等からなる記憶ユニット21と
、上記吸気管圧力センサ2、冷却水温度センサ11、吸
気温度センサ12、空燃比センサ13等からのアナログ
信号をデジタル信号に変換するA/D変換器やそれら各
信号をCPU20に選択的に出力するマルチプレクサ等
を備えたアナログ入力ボート22と、アナログ入力ボー
ト22と同様に、回転角センサ7やスロットルセンサ1
0の全閉接点10a及び全開接点10b等から出力され
るデジタル信号を受け、各信号をCPU20に選択的に
出力するデジタル入力ポート23と、CPU20にて演
算された制御信号に従って燃料噴射弁4、点火コイル5
等に駆動信号を出力する出力ボート24と、上記CPU
20、記憶ユニット21、アナログ入力ポート22、デ
ジタル入力ポート23、出力ボート24を結び各データ
が送られるパスライン25とから構成されている。
As shown in the figure, the electronic control circuit 8 is a central processing unit that inputs and calculates the data output from each of the above-mentioned sensors according to a control program, and performs processing to control the operation of various devices such as the fuel injection valve 4 and the ignition coil 5. The unit (CPU) 20 stores data such as the control program and maps used when executing arithmetic processing, and the on-chip memory (ROM), where data necessary for executing arithmetic processing is temporarily read. A that converts analog signals from the intake pipe pressure sensor 2, cooling water temperature sensor 11, intake air temperature sensor 12, air-fuel ratio sensor 13, etc. into digital signals; An analog input boat 22 equipped with a /D converter and a multiplexer that selectively outputs each of these signals to the CPU 20, and similar to the analog input boat 22, a rotation angle sensor 7 and a throttle sensor 1.
a digital input port 23 that receives digital signals output from the fully closed contact 10a and fully open contact 10b, etc., and selectively outputs each signal to the CPU 20; a fuel injection valve 4 according to a control signal calculated by the CPU 20; Ignition coil 5
an output boat 24 that outputs drive signals to the CPU, etc.;
20, a storage unit 21, an analog input port 22, a digital input port 23, and a path line 25 connecting the output port 24 and through which each data is sent.

そして、この電子制御回路8においては、上記各センサ
からの検出信号に基づきエンジン1の運転状態に応じた
燃料噴射量、点火時期等を算出し、燃料噴射弁4や点火
コイル5を駆動制御することとなるのであるが、次に本
発明に係る主要な処理である燃料噴射量算出処理につい
て第4図に示すフローチャートに沿って説明する。尚、
この処理においては燃料噴射量を燃料噴射弁4の開弁時
間として算出するものとする。
Then, this electronic control circuit 8 calculates the fuel injection amount, ignition timing, etc. according to the operating state of the engine 1 based on the detection signals from each of the above-mentioned sensors, and drives and controls the fuel injection valve 4 and the ignition coil 5. Next, the fuel injection amount calculation process, which is the main process according to the present invention, will be explained with reference to the flowchart shown in FIG. 4. still,
In this process, the fuel injection amount is calculated as the valve opening time of the fuel injection valve 4.

第4図は従来より実行されている燃料噴射量や点火時期
を制御するための一連の制御処理である、いわゆるメイ
ンルーチンの1つとして実行される制御プログラムを表
わしている。
FIG. 4 shows a control program executed as one of the so-called main routines, which is a series of conventional control processes for controlling the fuel injection amount and ignition timing.

処理が開始されると、まずステップ101を実行し、上
記各センサからの検出信号を読み込み、続くステップ1
02に移行する。ステップ102においては、上記ステ
ップ101にて読み込まれたセンサからの検出信号のう
ち、吸気管圧力センサ2にて検出された吸気管圧力をパ
ラメータとして図示しないマツプあるいは演算式を用い
て、基本燃料噴射mを燃料噴射弁4の基本開弁時間TP
として算出する。
When the process starts, step 101 is first executed, detection signals from each of the above sensors are read, and then step 1 is executed.
Move to 02. In step 102, among the detection signals from the sensors read in step 101, the basic fuel injection is performed using a map or calculation formula (not shown) with the intake pipe pressure detected by the intake pipe pressure sensor 2 as a parameter. m is the basic valve opening time TP of the fuel injection valve 4
Calculated as

次にステップ103においては、水温センサ11にて検
出されたエンジン1の冷却水温に応じて、上記ステップ
102にて求められた基本開弁時間TPに対する@機増
量補正係数THWを、第5図に示す如きマツプあるいは
演算式を用いて求め、続くステップ104に移行する。
Next, in step 103, according to the cooling water temperature of the engine 1 detected by the water temperature sensor 11, the machine increase correction coefficient THW for the basic valve opening time TP obtained in step 102 is determined as shown in FIG. It is determined using a map or an arithmetic expression as shown, and the process moves to the following step 104.

そしてステップ104においては、吸気温度センサ12
にて検出されたエンジン1に吸入される空気の温度に応
じて図示しないマツプあるいは演算式を用いて吸気温補
正係数THAを求める。尚、この吸気温補正係数THA
は、吸気温が低い時には空気密度が大きく、一方、吸気
温が高い時には空気密度が小さいことから、その温度に
応じて燃料噴射量を増量又は減量補正し、空燃比を一定
に制御するための補正係数であって、暖機増量補正係数
THWと同様に、基本燃料噴射量、即ち基本開弁時間T
Pを補正するのに用いられるものである。
Then, in step 104, the intake air temperature sensor 12
An intake air temperature correction coefficient THA is determined using a map or an arithmetic expression (not shown) according to the temperature of the air taken into the engine 1 detected in the step. Furthermore, this intake temperature correction coefficient THA
When the intake temperature is low, the air density is high, and when the intake temperature is high, the air density is low. Therefore, the fuel injection amount is increased or decreased depending on the temperature, and the air-fuel ratio is controlled at a constant level. It is a correction coefficient, similar to the warm-up increase correction coefficient THW, which is based on the basic fuel injection amount, that is, the basic valve opening time T.
This is used to correct P.

次にステップ105においてはスロットルセンサ10の
全閉接点10aがOFF状態にあるか否か、即ちエンジ
ン1がアイドル運転中であるか否かを判断し、全開接点
10aがOFF状態であり、アイドル運転中でない場合
には次ステツプ106に移行する。
Next, in step 105, it is determined whether the fully closed contact 10a of the throttle sensor 10 is in the OFF state, that is, whether the engine 1 is in idle operation, and the fully open contact 10a is in the OFF state, and the engine 1 is in the idling state. If it is not inside, the process moves to the next step 106.

ステップ106においては、今度はスロットルセンサ1
0の全問接点10bがON状態であるか否か、つまりス
ロットル弁9が大きく開かれたエンジン1の高負荷運転
時であるか否かを判断し、全開接点10bがON状態で
ありエンジン1が高負荷運転中である場合には続くステ
ップ107に移行する。
In step 106, the throttle sensor 1
It is determined whether or not all contact points 10b of 0 are in the ON state, that is, whether or not the engine 1 is operating under high load with the throttle valve 9 wide open. If it is in high load operation, the process moves to the following step 107.

そしてステップ107においては、水温センナ11にて
検出されたエンジン1の冷却水温に応じて第6図に示し
た如きマツプあるいは演算式を用いて基本開弁時間TP
に対する出力増量補正係数TVLを算出し、次ステツプ
108に移行する。
Then, in step 107, the basic valve opening time TP is determined using a map or arithmetic expression as shown in FIG.
The output increase correction coefficient TVL is calculated for the output increase correction coefficient TVL, and the process moves to the next step 108.

一方、上記ステップ106にて全開接点10bがOFF
状態であり、エンジン1が高負荷運転中でないと判断さ
れた場合には、ステップ109に移行して、出力増量補
正係数TVLを「1」にセットし、次ステツプ108に
移行する。
On the other hand, the fully open contact 10b is turned OFF in step 106 above.
If it is determined that the engine 1 is not operating under high load, the process proceeds to step 109, where the output increase correction coefficient TVL is set to "1", and the process proceeds to the next step 108.

ステップ108においては、空燃比センサ13にて検出
されるエンジン1に供給された混合気の空燃比に応じて
フィードバック補正係数TAFを算出する。ここでフィ
ードバック補正系aTA Fとは、検出された空燃比が
目標空燃比に対してリッチ側にある場合には燃料噴射量
を減量補正し、一方リーン側にある場合には燃料噴射量
を増量補正して、空燃比を目標空燃比に制御するための
補正係数である。
In step 108, a feedback correction coefficient TAF is calculated according to the air-fuel ratio of the air-fuel mixture supplied to the engine 1, which is detected by the air-fuel ratio sensor 13. Here, the feedback correction system aTA F is a system that reduces the fuel injection amount when the detected air-fuel ratio is on the rich side with respect to the target air-fuel ratio, and increases the fuel injection amount when it is on the lean side. This is a correction coefficient for correcting and controlling the air-fuel ratio to the target air-fuel ratio.

このようにして上記ステップ103、ステップ104、
ステップ107(又はステップ109)及びステップ1
08にて暖機増量補正係@THW。
In this way, steps 103, 104,
Step 107 (or Step 109) and Step 1
Warm-up increase correction staff @THW in 08.

吸気温補正係数THA、出力増量補正係数TVL及びフ
ィードバック補正係数TAFが求められ、処理がステッ
プ110に移行してくると、このステップ110におい
ては上記求められた各補正係数及び上記ステップ102
にて求められた燃料噴射弁4の基本開弁時間TPをパラ
メータとする次式 %式% を用いて基本開弁時間TP、即ち基本燃料噴射量を補正
演算し、実燃料噴射量に相当する燃料噴射弁4の実開弁
時1iWTAUを痺出し、本ルーチンの処理を終了する
The intake temperature correction coefficient THA, the output increase correction coefficient TVL, and the feedback correction coefficient TAF are determined, and when the process moves to step 110, each of the determined correction coefficients and the step 102 are calculated.
The basic valve opening time TP, that is, the basic fuel injection amount, is corrected using the following formula % formula, which uses the basic valve opening time TP of the fuel injection valve 4 obtained as a parameter, and is equivalent to the actual fuel injection amount. When the fuel injection valve 4 is actually opened, 1iWTAU is numbed, and the processing of this routine is ended.

一方、上記ステップ105にてスロットルセンサーoの
全開接点10aがON状態であると判断された場合、即
ちエンジン1がアイドル運転中である場合には、ステッ
プ111に移行して、回転角センサ7からの出力信号に
基づき求められるエンジン回転数NEが例えば1300
[r、+)J、]以上であるか否かを判断する。そして
NE≧1300である場合には続くステップ112に移
行して、実開弁時間TALIをrOJにセットし、本ル
ーチンの処理を終え、一方NE<1300である場合に
はステップ106に移行して、前述のステップ106な
いしステップ110の一連の処理を実行する。尚、この
ステップ105、ステップ111及びステップ112の
処理はスロットル弁4の全問時に、エンジン回転数NE
が所定回転数以上である場合には燃料供給を一旦中止し
て、触媒の過熱防止及び燃費の向上を図ろうとする、い
わゆる7ユ一エルカツトIIIIgを実行しているので
ある。
On the other hand, if it is determined in step 105 that the fully open contact 10a of the throttle sensor For example, if the engine speed NE determined based on the output signal is 1300
It is determined whether it is greater than or equal to [r,+)J,]. If NE≧1300, the process moves to the following step 112, sets the actual valve opening time TALI to rOJ, and finishes the processing of this routine.On the other hand, if NE<1300, the process moves to step 106. , executes a series of processes from step 106 to step 110 described above. Note that the processing in steps 105, 111, and 112 is performed when the engine rotational speed NE
When the number of rotations is higher than a predetermined number of revolutions, the fuel supply is temporarily stopped to prevent overheating of the catalyst and improve fuel efficiency.

以上説明したように、本実施例においてはエンジン1の
高負荷運転時に用いられる燃料噴射量(開弁時間)の出
力増量補正係数TVLをエンジン1の冷却水温に応じて
設定するようにしている。
As described above, in this embodiment, the output increase correction coefficient TVL for the fuel injection amount (valve opening time) used during high-load operation of the engine 1 is set in accordance with the cooling water temperature of the engine 1.

従ってエンジン1の冷寒時等、暖機運転時に高負荷運転
を行なう場合には、第6図のマツプから明らかな如く、
出力増量補正係数TVLが冷却水温が低い程小さい値に
設定されるため、従来のように、その増量補正によって
空燃比がリッチになり過ぎ、運転性が低下されるといっ
たことはない。
Therefore, when performing high-load operation during warm-up operation, such as when the engine 1 is cold, as is clear from the map in Fig. 6,
Since the output increase correction coefficient TVL is set to a smaller value as the cooling water temperature is lower, the increase correction does not make the air-fuel ratio too rich and reduce drivability, as in the conventional case.

尚、上記実施例において、エンジン1の高負荷運転を検
知するために、スロットル弁4の開度を検出し、その開
度が所定値(50’ )以上となった時を高負荷運転時
であると判断するようにしているが、この他にも例えば
アクセル開度を検出し、そのアクセル開度が所定値以上
となった時に高負荷運転時であると判断してもよ(、あ
るいは吸気管圧力により求めることもできる。尚、吸気
管圧力により求める場合にはアクセル開度やスロットル
弁4の変化に対し、その応答性が悪いので検知能力は劣
る。
In the above embodiment, in order to detect high-load operation of the engine 1, the opening degree of the throttle valve 4 is detected, and the time when the opening degree reaches a predetermined value (50') or more is defined as high-load operation. However, in addition to this, it is also possible to detect the accelerator opening and determine that high-load operation is occurring when the accelerator opening exceeds a predetermined value (or the intake air It can also be determined by the pipe pressure.However, if it is determined by the intake pipe pressure, the detection ability is poor because the responsiveness to changes in the accelerator opening and the throttle valve 4 is poor.

また上記実施例ではエンジン1の暖機状態を冷却水温に
よって検知し、暖機増量補正係数THWや、出力!ja
n補正係数TVLを冷却水温に応じて設定するようにし
ているが、エンジン1の@機状態を検知するにはエンジ
ン1の温度がわかれば良いことから、例えば潤滑油の温
度、あるいは始動時の冷却水温と始動後の運転経過時間
とからエンジン1のWJ111I状態を検知し、上記補
正係数を設定することもできる。従って例えば出力増量
補正係数を始動時の水温と始動後の運転経過時間とから
設定する場合には、例えば第7図に示す如きマツプを用
いて実行すればよい。またこの場合始動時の冷却水温の
代わりとして始動時の吸気温を用いることもできる。
Further, in the above embodiment, the warm-up state of the engine 1 is detected based on the cooling water temperature, and the warm-up increase correction coefficient THW and the output! ja
The n correction coefficient TVL is set according to the cooling water temperature, but since it is sufficient to know the temperature of engine 1 to detect the engine status of engine 1, for example, the temperature of lubricating oil or the temperature at startup is It is also possible to detect the WJ111I state of the engine 1 from the cooling water temperature and the elapsed operating time after starting, and set the above correction coefficient. Therefore, for example, when setting the output increase correction coefficient based on the water temperature at startup and the elapsed operating time after startup, it is sufficient to use a map as shown in FIG. 7, for example. Further, in this case, the intake air temperature at the time of startup can be used instead of the cooling water temperature at the time of startup.

更に上記実施例ではエンジン1の高負荷運転時に出力増
量補正する場合、従来のように出力増量補正係数THW
を用いて基本燃料噴射I(基本開弁時間)に乗算するよ
うにしているが、この他にもその増量補正係数THWに
相当する燃料噴射m(開弁時間)の増量補正11(補正
時間)を降出し、基本燃料噴射m(基本開弁時間〉に加
算するようにしてもよい。
Furthermore, in the above embodiment, when the output increase is corrected during high load operation of the engine 1, the output increase correction coefficient THW is used as in the conventional case.
is used to multiply the basic fuel injection I (basic valve opening time), but in addition to this, the increase correction 11 (correction time) of the fuel injection m (valve opening time) corresponding to the increase correction coefficient THW is used. may be added to the basic fuel injection m (basic valve opening time).

[発明の効果] 以上詳述した如く、本発明の燃料噴射り制陣装置におい
ては、内燃機関の高負荷運転時に基本燃料噴射量を増量
補正するための出力増量補正値を、内燃機関の暖機状態
に応じて設定するよう構成ざれていることから、内燃機
関の暖機運転時に急加速等の高負荷運転を行なった場合
であっても、内燃機関に供給される混合気の空燃比はリ
ッチになり過ぎることはなく、従来のように失火を生じ
たり1llffi出力の低下を招くといったことを防止
でき、良好な運転性を得ることができるようになる。ま
た混合気が良好に燃焼されるので、排気エミッションを
向上することもできる。
[Effects of the Invention] As detailed above, in the fuel injection control device of the present invention, the output increase correction value for increasing the basic fuel injection amount during high-load operation of the internal combustion engine is Since the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is configured to be set according to the engine condition, even if high-load operation such as sudden acceleration is performed during warm-up of the internal combustion engine, the air-fuel ratio of the mixture supplied to the internal combustion engine remains unchanged. It does not become too rich, and it is possible to prevent misfires and decreases in 1llffi output as in the conventional case, and it is possible to obtain good drivability. Furthermore, since the air-fuel mixture is well combusted, exhaust emissions can also be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図ないし
第6図は本発明の一実施例を示し、第2図は本実施例の
内燃機関及びその周辺装置を表わす概略構成図、第3図
は電子制御回路8の構成を表わすブロック図、第4図は
電子制御回路20にて実行される燃料噴射I[II出処
理を表わすフローチャート、第5図は暖機増屋補正係@
THWを求める際に用いられるマツプを表わす線図、第
6図は出力増量補正係数TVLを求める際に用いられる
マツプを表わす縮図、第7図は出力増量補正係数TVL
を求める他の実施例のマツプを表わす線図である。 Ml・・・内燃機関 M2・・・運転状態検出手段 M3・・・基本燃料噴射mis出手段 M4・・・高負荷運転検知手段 M5・・・暖機状態検知手段 M6・・・実燃料噴射量算出手段 M7・・・出力増量補正量設定手段 8・・・電子III m1回路 10・・・スロットルセンサ 10b・・・全問接点 11・・・水温センサ
FIG. 1 is a block diagram showing the configuration of the present invention, FIGS. 2 to 6 show an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram showing the internal combustion engine and its peripheral equipment of the present embodiment. FIG. 3 is a block diagram showing the configuration of the electronic control circuit 8, FIG. 4 is a flowchart showing the fuel injection I [II output process executed by the electronic control circuit 20, and FIG. 5 is a warm-up addition correction section @
A diagram representing the map used when determining THW, Figure 6 is a miniature diagram representing the map used when determining the output increase correction coefficient TVL, and Figure 7 is a diagram representing the map used when determining the output increase correction coefficient TVL.
FIG. 12 is a diagram showing a map of another example for determining . Ml... Internal combustion engine M2... Operating state detection means M3... Basic fuel injection mis output means M4... High load operation detection means M5... Warm up state detection means M6... Actual fuel injection amount Calculation means M7...Output increase correction amount setting means 8...Electronic III m1 circuit 10...Throttle sensor 10b...All questions contact 11...Water temperature sensor

Claims (1)

【特許請求の範囲】 内燃機関の運転状態を検出する運転状態検出手段と、 該検出された運転状態に応じて基本燃料噴射量を算出す
る基本燃料噴射最算出手段と、 上記運転状態検出手段の検出結果から、当該機関の高負
荷運転を検知する高負荷運転検知手段と、上記運転状態
検出手段の検出結果から、当該機関の暖機状態を検知す
る暖機状態検知手段と、少なくとも、当該機関の高負荷
運転時には機関出力を上昇すべく上記基本燃料噴射量を
出力増量補正すると共に、当該機関の暖機運転時には上
記基本燃料噴射量を暖機増量補正し、当該機関に供給さ
れる実燃料噴射量を算出する実燃料噴射量算出手段と、 を備えた内燃機関の燃料噴射量制御装置において、 当該機関の高負荷運転時に上記実燃料噴射量算出手段に
て用いられる出力増量補正値を、当該機関の暖機状態に
応じて設定する出力増量補正値設定手段を設けたことを
特徴とする内燃機関の燃料噴射量制御装置。
[Scope of Claims] Operating state detection means for detecting the operating state of the internal combustion engine; basic fuel injection calculation means for calculating the basic fuel injection amount according to the detected operating state; A high-load operation detection means for detecting high-load operation of the engine based on the detection result; a warm-up state detection means for detecting the warm-up state of the engine from the detection result of the operating state detection means; During high-load operation, the basic fuel injection amount is corrected to increase the output in order to increase the engine output, and when the engine is warmed up, the basic fuel injection amount is corrected to increase the warm-up amount to increase the actual fuel supplied to the engine. In a fuel injection amount control device for an internal combustion engine, comprising an actual fuel injection amount calculation means for calculating an injection amount, an output increase correction value used by the actual fuel injection amount calculation means during high load operation of the engine, A fuel injection amount control device for an internal combustion engine, comprising an output increase correction value setting means that is set according to a warm-up state of the engine.
JP59245461A 1984-11-19 1984-11-19 Fuel injection quantity controller for internal-combustion engine Pending JPS61123729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59245461A JPS61123729A (en) 1984-11-19 1984-11-19 Fuel injection quantity controller for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59245461A JPS61123729A (en) 1984-11-19 1984-11-19 Fuel injection quantity controller for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61123729A true JPS61123729A (en) 1986-06-11

Family

ID=17134003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59245461A Pending JPS61123729A (en) 1984-11-19 1984-11-19 Fuel injection quantity controller for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61123729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4002813A1 (en) * 1989-01-31 1990-08-02 Suzuki Motor Co Fuel injection control apparatus for IC engine - uses sensed engine temp. and speed, and compensates for differences in air pressures by=pass and inlet passages

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4002813A1 (en) * 1989-01-31 1990-08-02 Suzuki Motor Co Fuel injection control apparatus for IC engine - uses sensed engine temp. and speed, and compensates for differences in air pressures by=pass and inlet passages
US5022373A (en) * 1989-01-31 1991-06-11 Suzuki Jidosha Kogyo Kabushiki Kaisha Fuel injection control apparatus for internal combustion engine
DE4002813C2 (en) * 1989-01-31 1994-07-21 Suzuki Motor Co Fuel injection control device for an internal combustion engine

Similar Documents

Publication Publication Date Title
US4442812A (en) Method and apparatus for controlling internal combustion engines
US4508075A (en) Method and apparatus for controlling internal combustion engines
US5224452A (en) Air-fuel ratio control system of internal combustion engine
US6470854B1 (en) Air-fuel ratio control with improved fuel supply operation immediately after complete combustion of mixture
JPH03271544A (en) Control device of internal combustion engine
US7448360B2 (en) Controller of internal combustion engine
US4644921A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
US5645035A (en) Method and apparatus for electronically controlling a fuel supply to an internal combustion engine
JPS61185642A (en) Fuel injection timing controller for internal-combustion engine
JPS61123729A (en) Fuel injection quantity controller for internal-combustion engine
JPS6181532A (en) Fuel feed controlling method of multicylinder internal-combustion engine
JPS60132042A (en) Injection time controlling method of electronically controlled fuel injection engine
JPS6231180B2 (en)
JPS6146436A (en) Air fuel ratio controller for internal-combustion engine
JP2803160B2 (en) Output fluctuation detection device for multi-cylinder engine
JP2750777B2 (en) Electronic control fuel supply device for internal combustion engine
JPH0429855B2 (en)
JPH0754744A (en) Correcting method for idle stabilizing ignition timing
JP2581046B2 (en) Fuel injection method for internal combustion engine
JP3559164B2 (en) Atmospheric pressure correction advance angle control method for internal combustion engine
JPH04272461A (en) Egr device
JPS6062641A (en) Air-fuel ratio control method for internal-combustion engine
JPS6165043A (en) Air-fuel ratio control system for internal-combustion engine
JPS61129443A (en) Air-fuel ratio learning control for internal-combustion engine
JPH0828317A (en) Air-fuel ratio control device for internal combustion engine