JPS6314584B2 - - Google Patents

Info

Publication number
JPS6314584B2
JPS6314584B2 JP57188843A JP18884382A JPS6314584B2 JP S6314584 B2 JPS6314584 B2 JP S6314584B2 JP 57188843 A JP57188843 A JP 57188843A JP 18884382 A JP18884382 A JP 18884382A JP S6314584 B2 JPS6314584 B2 JP S6314584B2
Authority
JP
Japan
Prior art keywords
magnetic pole
linear pulse
pulse motor
scale
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57188843A
Other languages
Japanese (ja)
Other versions
JPS5980150A (en
Inventor
Zenichiro Miwa
Hiroshi Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP18884382A priority Critical patent/JPS5980150A/en
Priority to US06/543,927 priority patent/US4578622A/en
Priority to DE19833338864 priority patent/DE3338864A1/en
Publication of JPS5980150A publication Critical patent/JPS5980150A/en
Publication of JPS6314584B2 publication Critical patent/JPS6314584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Description

【発明の詳細な説明】 この発明は特に小形で可動側の最大変位量が小
のリニアパルスモータの基本構成に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to the basic configuration of a linear pulse motor that is small and has a small maximum displacement on the movable side.

一般に、リニアパルスモータは一次側コイルに
供給する入力パルスごとに一定の距離ずつステツ
プ状に可動側を変位させる。この動作に伴つて、
リニアパルスモータは正確な位置決め制御を要求
する各種プリンタのヘツド送り、光電式読取装置
のヘツド送りなどに応用されている。そして、こ
のリニアパルスモータの従来常用の具体例は第1
図、第2図に示す通りである。すなわち、第1図
は1部切欠き正面図、第2図は1部切欠き側面図
で、各図において、1はリニアパルスモータ1次
側で、正面中央部は磁気的にしや断状態にある2
つの鉄心2,3、各鉄心2,3を両側部にて固定
する側板4,5、上記各鉄心2,3の背面に図示
の極性にて着磁してある永久磁石6,7、当該永
久磁石6,7の背面部に接合する磁性板8、上記
各鉄心2,3に形成している磁極2a,2b,3
a,3bに取付けられたコイル9a〜9d、各側
板4,5の両側下に支持される軸10,11に回
動自在に支持される車輪12〜15から構成され
る。そして、上記各磁極2a,2b,3a,3b
には1/4ピツチずつのずれを有して2a1,2b
1,3a1,3b1が形成されている。16はリ
ニアパルスモータの2次側をなすスケールで、平
面には上記各磁極歯部2a1,2b1,3a1,
3b1と同一ピツチの歯部16aが形成されてい
る。
Generally, a linear pulse motor displaces the movable side in steps by a fixed distance for each input pulse supplied to the primary coil. Along with this action,
Linear pulse motors are used to feed the heads of various printers that require accurate positioning control, and to feed the heads of photoelectric readers. The conventionally commonly used specific example of this linear pulse motor is the first one.
As shown in FIG. That is, Fig. 1 is a partially cutaway front view, and Fig. 2 is a partially cutaway side view. In each figure, 1 is the primary side of the linear pulse motor, and the front center part is in a magnetically shrunk state. There are 2
two iron cores 2, 3, side plates 4, 5 that fix each iron core 2, 3 on both sides, permanent magnets 6, 7 magnetized with the polarities shown on the back of each of the above-mentioned iron cores 2, 3, the permanent A magnetic plate 8 joined to the back side of the magnets 6, 7, magnetic poles 2a, 2b, 3 formed on each of the above-mentioned iron cores 2, 3.
It is composed of coils 9a to 9d attached to wheels 4a and 3b, and wheels 12 to 15 rotatably supported by shafts 10 and 11 supported under both sides of each side plate 4 and 5. And each of the magnetic poles 2a, 2b, 3a, 3b
2a1, 2b with a difference of 1/4 pitch
1, 3a1, and 3b1 are formed. 16 is a scale forming the secondary side of the linear pulse motor, and the above-mentioned magnetic pole tooth portions 2a1, 2b1, 3a1,
A tooth portion 16a having the same pitch as 3b1 is formed.

上記第1,2図に示すリニアパルスモータにお
いて、例えば一相励磁方式にて駆動する場合、順
次各コイル9a〜9dを励磁していく過程におい
て各磁極2a,2b,3a,3bに形成した歯部
2a1,2b1,3a1,3b1が順次2次側ス
ケールの歯部に対向することにより1/4ピツチず
つ歩進(実際の動作過程においては連続動作のよ
うに見える)していく。この際、1次側本体1及
び2次側スケール16は一方を固定して、他方を
可動することにより実用化される。
In the linear pulse motor shown in FIGS. 1 and 2 above, when driving, for example, by a one-phase excitation method, teeth formed on each magnetic pole 2a, 2b, 3a, 3b are formed in the process of sequentially exciting each coil 9a to 9d. The portions 2a1, 2b1, 3a1, and 3b1 sequentially face the tooth portions of the secondary scale, thereby stepping forward by 1/4 pitch (in the actual operation process, it appears to be a continuous operation). At this time, the primary main body 1 and the secondary scale 16 are put into practical use by fixing one and moving the other.

ところで、近年OA機器の発展とともに各種の
情報端末機器は小形化、薄形化志向が強く、例え
ばフロツピーデイスクドライブにおいても、この
傾向が強い。このような市場の要求により超小
形、超薄形のリニアパルスモータが求められてい
る。
Incidentally, in recent years, with the development of office automation equipment, there has been a strong trend toward miniaturization and thinning of various information terminal devices, and this tendency is also strong in floppy disk drives, for example. These market demands have led to a demand for ultra-small and ultra-thin linear pulse motors.

今、上記市場の要求に対して、前記第1図、第
2図に示す台車形リニアパルスモータは適合でき
ない。すなわち、上記フロツピーデイスクドライ
ブなどでは通常推力は10〜100g程度、ストロー
クは10〜30mm程度で足りるのに対し、上記従来の
台車タイプのリニアパルスモータでは小形化を目
的とするにも厚みWの減少は車輪取付機構の強度
を最小限得るために限度があり、高さHについて
の減少は1次、2次の各歯部対向面が磁極中を通
過する磁束に直交する上記第1,2図に示す従来
の構成では困難である。一方、長さLについては
磁極がリニアパルスモータ可動側の進行方向に並
べる必然性に基づいて短縮には限度がある。
Currently, the trolley-type linear pulse motor shown in FIGS. 1 and 2 cannot meet the above-mentioned market demands. In other words, in the above-mentioned floppy disk drive, etc., normally a thrust of about 10 to 100 g and a stroke of about 10 to 30 mm are sufficient, whereas with the above-mentioned conventional trolley type linear pulse motor, the thickness W is small even for the purpose of miniaturization. There is a limit to the reduction in order to obtain the minimum strength of the wheel attachment mechanism, and the reduction in height H is limited to the first and second teeth where the opposing surfaces of the primary and secondary teeth are orthogonal to the magnetic flux passing through the magnetic poles. This is difficult with the conventional configuration shown in the figure. On the other hand, there is a limit to the shortening of the length L based on the necessity of arranging the magnetic poles in the moving direction of the linear pulse motor movable side.

この発明の目的はリニアパルスモータの1次側
の構成の特徴を基に駆動原理は同一なるも、低推
力、短ストローク特性に適合するように小型化を
実現するリニアパルスモータを提供することにあ
る。
The purpose of this invention is to provide a linear pulse motor that uses the same driving principle based on the characteristics of the configuration of the primary side of the linear pulse motor, but is miniaturized to suit low thrust and short stroke characteristics. be.

以下、図示する実施例について具体的に説明す
る。第3図は平面図、第4図は側面図をそれぞれ
示し、各図において、17はリニアパルスモータ
1次側で、鉄心18,19、この両側部を結ぶ図
示の極性に着磁してある永久磁石P1,P2上記
鉄心18,19の互に対向する面から垂直に延び
る磁極20〜23、及び当該磁極20〜23に装
着される励磁コイル24〜27から構成される。
この際、各磁極20〜23の磁極面20a〜23
aは、鉄心18,19における磁極取付面から当
該磁極20〜23が延びる方向とは90度の方向
(図においては上面に位置している)に定める。
そして、これらの磁極面20a〜23aの表面に
は歯部が形成されるが、各歯部ピツチは後述する
2次側歯部ピツチと等しく形成され、磁極面20
a.22a,21a及び23aに形成される歯部
は、順次1/4ピツチずつ変位して配置されている。
28は2次側スケールで、上記磁極面20a〜2
3aに一定のギヤツプGを維持して1次側17と
でリニアパルスモータを構成し、上記磁極面20
a〜23aの対向面には各磁極面20a〜23a
に形成した歯部と同一ピツチの歯部28aが形成
される。29は軸受用ボールで、リニアパルスモ
ータ本体としての1次側とスケール28との各歯
部対向面の間隔を一定に維持しつつ転動し、スケ
ール28のガイド作用をも担持する。
The illustrated embodiment will be specifically described below. Fig. 3 shows a plan view, and Fig. 4 shows a side view. In each figure, 17 is the primary side of the linear pulse motor, and iron cores 18 and 19 are magnetized with the polarity shown to connect both sides of the motor. Permanent magnets P1 and P2 are composed of magnetic poles 20 to 23 extending perpendicularly from mutually opposing surfaces of the iron cores 18 and 19, and excitation coils 24 to 27 attached to the magnetic poles 20 to 23.
At this time, the magnetic pole faces 20a to 23 of each magnetic pole 20 to 23
a is set in a direction 90 degrees from the direction in which the magnetic poles 20 to 23 extend from the magnetic pole mounting surfaces of the iron cores 18 and 19 (located on the upper surface in the figure).
Teeth are formed on the surfaces of these magnetic pole faces 20a to 23a, and each tooth pitch is formed to be equal to the secondary side tooth pitch, which will be described later.
a. The tooth portions formed on 22a, 21a and 23a are sequentially displaced by 1/4 pitch.
28 is a secondary side scale, and the above-mentioned magnetic pole faces 20a to 2
A linear pulse motor is configured with the primary side 17 by maintaining a constant gap G at the magnetic pole surface 20
Each magnetic pole surface 20a to 23a is provided on the opposing surface of a to 23a.
Teeth 28a are formed with the same pitch as the teeth formed in . Reference numeral 29 denotes a bearing ball, which rolls while maintaining a constant distance between the primary side of the linear pulse motor main body and the facing surface of each tooth portion of the scale 28, and also serves as a guide for the scale 28.

また、このボール29は鉄心18,19の両側
4箇所に配置され、その転動範囲を図示しないガ
イドによつて規制し、ひいては可動側(例えばス
ケール28)の動作範囲は自らボール25の転動
範囲の2倍に定められる。
The balls 29 are arranged at four locations on both sides of the iron cores 18 and 19, and their rolling ranges are regulated by guides (not shown), so that the rolling range of the movable side (for example, the scale 28) is controlled by the rolling range of the balls 25. It is set to twice the range.

上記第3図〜第5図に示す構成において、今、
磁極面23aに成形した歯部とスケール28に形
成した歯部28aの各凸部が励磁コイル27の励
磁に伴つて永久磁石P2の磁束を助長する磁束の
発生に伴つて吸引力を得ている状態(第4図に示
す状態)から、励磁コイル27の励磁を断つと同
時に励磁コイル25を励磁すると、今度は磁極面
21aに形成した歯部とスケール歯部28aの各
凸部との間に永久磁石P2の磁束と励磁コイル2
5の励磁に伴つて生ずる磁束とが加算されて強力
な磁気吸引力が働き、1/4ピツチの変位(一次側
17を固定すればスケール24が左方に変位)を
来す。次いで、順次励磁コイル26,24のみを
励磁していくことにより同様の原理にて1/4ピツ
チずつの変位を生ずる。以上の動作を繰返すこと
によりリニアパルスモータは1/4ピツチずつの可
動側の変位をなし、可動側に取付けられる被制御
体(図示せず)を位置決め制御する。このリニア
パルスモータの動作に際して、一次側磁束発生源
から生ずる全磁束は第3〜5図より明らかのよう
に磁極面20a〜23aに形成した歯部とスケー
ル28に形成した歯部28aとの対向面において
方向変更を伴つて一旦は必ずスケール28中に流
入し、当該スケール中から流出する。
In the configuration shown in FIGS. 3 to 5 above, now,
Each convex part of the tooth part formed on the magnetic pole surface 23a and the tooth part 28a formed on the scale 28 obtains an attractive force as a magnetic flux is generated that promotes the magnetic flux of the permanent magnet P2 with the excitation of the excitation coil 27. When the excitation coil 27 is de-energized and the excitation coil 25 is simultaneously excited from the state (the state shown in FIG. 4), there is a gap between the teeth formed on the magnetic pole face 21a and each convex portion of the scale teeth 28a. Magnetic flux of permanent magnet P2 and exciting coil 2
5 is added to the magnetic flux generated due to the excitation of the scale 24, and a strong magnetic attraction force acts, causing a displacement of 1/4 pitch (if the primary side 17 is fixed, the scale 24 is displaced to the left). Next, by sequentially exciting only the excitation coils 26 and 24, a displacement of 1/4 pitch is generated based on the same principle. By repeating the above operations, the linear pulse motor displaces the movable side by 1/4 pitch, thereby positioning and controlling the controlled object (not shown) attached to the movable side. During operation of this linear pulse motor, the total magnetic flux generated from the primary magnetic flux generation source is transmitted between the teeth formed on the magnetic pole faces 20a to 23a and the teeth 28a formed on the scale 28, as shown in FIGS. 3 to 5. The liquid always flows into the scale 28 with a direction change in the plane, and then flows out from the scale.

なお、上記この発明の実施例を示す第3〜5図
において、各磁極に独立した励磁コイルを備える
構成を示しているが、コイルの電流の流れる方向
を制御することにより励磁コイル数は半減させ
る。ことができ、また、励磁コイルの位置も、両
側部とすることもでき、各種の変形が考えられ
る。
In addition, although FIGS. 3 to 5 showing the embodiments of the present invention described above show a configuration in which each magnetic pole is provided with an independent excitation coil, the number of excitation coils can be halved by controlling the direction in which the current flows in the coil. . In addition, the exciting coils can be located on both sides, and various modifications are possible.

一方、励磁コイルの励磁手段も上記説明のよう
に一相ずつ励磁する方法には限定されず、周知の
2相励磁とすることもでき、永久磁石を有しない
リアクタンスタイプのリニアパルスモータにも適
用できる。
On the other hand, the excitation means of the excitation coil is not limited to the method of exciting one phase at a time as explained above, but can also be the well-known two-phase excitation, and is also applicable to reactance type linear pulse motors that do not have permanent magnets. can.

以上述べたように、この発明に係るリニアパル
スモータは、一次側本体において発生する磁束の
磁極中を通過するときの方向と磁極面とこれに対
向するスケール面に形成した歯部間を通過すると
きの方向とが直角をなすように配置したことを要
旨とするものである。この構成に基づいて、特に
小推力の用途のもとにおいては従来の1次側の高
さHが磁極の長さ(コイル巻長により決定され
る)ギヤツプ及びスケールの厚みの和で定められ
る(推力の大小に関係ない)のに対し、この発明
についてのリニアパルスモータの高さは磁極コア
の厚み、ギヤツプ及び軸受支持枠の厚みの和で定
まることから、小推力になるにつれて磁極のコア
の厚みを減少でき高さを減少することができる。
さらに、磁極面は従来の構成においてはリニアパ
ルスモータの可動側進行方向に沿つて連続的に配
置されるのに比して、この発明に係るリニアパル
スモータでは磁極面が磁極内を通過する磁束と平
行をなすことから、ほぼ集中して配置でき、これ
に伴つてリニアパルスモータの1次側の長さを短
くすることができる。しかも1次、2次のギヤツ
プ維持機構がごく小径のボールにてスケールのガ
イドを伴つて担うことができるから、従来に比し
て特に幅方向の長さを増す傾向をも生じない。こ
れらのことからリニアパルスモータは小推力、小
ストロークの各種OA機器の使用に適合すべく小
型化をはかることのできる特長を有する。
As described above, in the linear pulse motor according to the present invention, the direction in which the magnetic flux generated in the primary main body passes through the magnetic pole, and the direction in which the magnetic flux passes between the magnetic pole surface and the tooth portion formed on the scale surface facing the magnetic pole surface. The gist of the arrangement is that the direction is perpendicular to the current direction. Based on this configuration, especially in small thrust applications, the height H of the conventional primary side is determined by the length of the magnetic pole (determined by the coil winding length), the gap and the thickness of the scale ( In contrast, the height of the linear pulse motor according to the present invention is determined by the sum of the thickness of the magnetic pole core, the gap, and the thickness of the bearing support frame. The thickness can be reduced and the height can be reduced.
Furthermore, in contrast to the conventional configuration in which the magnetic pole faces are arranged continuously along the moving direction of the linear pulse motor, in the linear pulse motor according to the present invention, the magnetic pole faces allow the magnetic flux to pass through the inside of the magnetic poles. Since they are parallel to each other, they can be arranged almost centrally, and accordingly, the length of the primary side of the linear pulse motor can be shortened. Moreover, since the primary and secondary gap maintaining mechanisms can be carried out by very small-diameter balls together with scale guides, there is no tendency to increase the length in the width direction compared to the prior art. For these reasons, linear pulse motors have the advantage of being able to be miniaturized to suit use in various office automation equipment with small thrust and small strokes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ従来の構成を示す一
部を切欠いた正面図及び側面図、第3図、第4図
及び第5図はそれぞれこの発明に係るリニアパル
スモータの1具体的構成を示す平面図、正面図及
び側面図である。 20〜23……磁極、20a〜23a……磁極
面、24……スケール、24a……スケール歯
部。
1 and 2 are partially cutaway front and side views showing a conventional configuration, respectively, and FIGS. 3, 4, and 5 each show one specific configuration of a linear pulse motor according to the present invention. FIG. 2 is a plan view, a front view, and a side view. 20-23...Magnetic pole, 20a-23a...Magnetic pole surface, 24...Scale, 24a...Scale tooth portion.

Claims (1)

【特許請求の範囲】[Claims] 1 二次側スケール歯部面に、当該二次側スケー
ル歯部と同一ピツチで、1/4ピツチずつのずれを
有する歯部を形成した一次側磁極面を2個ずつ2
列に一定のギヤツプ有して対向させ、各列の磁極
面は、互いに反対方向で、磁極面と平行方向に延
びる磁路形成用鉄心にて連結し、各鉄心には励磁
コイルを装着したことを特徴とするリニアパルス
モータ。
1. Two primary magnetic pole surfaces each having teeth formed on the secondary scale tooth surface at the same pitch as the secondary scale tooth but with a 1/4 pitch shift.
The rows are arranged to face each other with a certain gap, and the magnetic pole surfaces of each row are connected by magnetic path forming iron cores that extend parallel to the magnetic pole surfaces in opposite directions, and each iron core is equipped with an excitation coil. A linear pulse motor featuring
JP18884382A 1982-10-26 1982-10-26 Linear pulse motor Granted JPS5980150A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18884382A JPS5980150A (en) 1982-10-26 1982-10-26 Linear pulse motor
US06/543,927 US4578622A (en) 1982-10-26 1983-10-20 Linear pulse motor
DE19833338864 DE3338864A1 (en) 1982-10-26 1983-10-26 LINEAR STEPPER MOTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18884382A JPS5980150A (en) 1982-10-26 1982-10-26 Linear pulse motor

Publications (2)

Publication Number Publication Date
JPS5980150A JPS5980150A (en) 1984-05-09
JPS6314584B2 true JPS6314584B2 (en) 1988-03-31

Family

ID=16230806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18884382A Granted JPS5980150A (en) 1982-10-26 1982-10-26 Linear pulse motor

Country Status (1)

Country Link
JP (1) JPS5980150A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237853A (en) * 1984-05-10 1985-11-26 Shinko Electric Co Ltd Linear pulse motor
JPS60237851A (en) * 1984-05-10 1985-11-26 Shinko Electric Co Ltd Yoke for linear pulse motor
JPS60237850A (en) * 1984-05-10 1985-11-26 Shinko Electric Co Ltd Yoke for linear pulse motor
JPS61285063A (en) * 1985-06-08 1986-12-15 Omron Tateisi Electronics Co Linear pulse motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199113U (en) * 1976-01-08 1976-08-09
JPS5855748B2 (en) * 1979-06-21 1983-12-12 横河電機株式会社 linear pulse motor

Also Published As

Publication number Publication date
JPS5980150A (en) 1984-05-09

Similar Documents

Publication Publication Date Title
US6037680A (en) Stage apparatus and linear motor, and exposure apparatus and device production method using the stage apparatus
US4681506A (en) Table feed apparatus
US4594520A (en) Linear pulse motor
US4578622A (en) Linear pulse motor
US4761574A (en) Linear pulse motor
JPS6314584B2 (en)
EP0353074B1 (en) Step linear actuator
JPS6347070B2 (en)
JPH0140596B2 (en)
JPS63242161A (en) Direct-acting magnetic bearing motor
JPS6249819B2 (en)
JP2879934B2 (en) Stage equipment
JP3803193B2 (en) Linear motor
JPS59156149A (en) Linear motor
JPH0130384B2 (en)
JP2006197773A (en) Linear motor
JPS60241768A (en) Linear pulse motor
JP2006034013A (en) Linear motor for machine tools
JPH0584144B2 (en)
JPH0681483B2 (en) Pulse motor
JPS60241767A (en) Linear pulse motor
JPS5935558A (en) Manufacturing method of motor core
JPS60249862A (en) Linear stepping motor
JPS626863Y2 (en)
JPS6311900Y2 (en)