JPS6314512B2 - - Google Patents

Info

Publication number
JPS6314512B2
JPS6314512B2 JP7055681A JP7055681A JPS6314512B2 JP S6314512 B2 JPS6314512 B2 JP S6314512B2 JP 7055681 A JP7055681 A JP 7055681A JP 7055681 A JP7055681 A JP 7055681A JP S6314512 B2 JPS6314512 B2 JP S6314512B2
Authority
JP
Japan
Prior art keywords
laser
period
discharge
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7055681A
Other languages
Japanese (ja)
Other versions
JPS57186379A (en
Inventor
Shigenori Yagi
Shuji Ogawa
Masaki Kuzumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7055681A priority Critical patent/JPS57186379A/en
Publication of JPS57186379A publication Critical patent/JPS57186379A/en
Publication of JPS6314512B2 publication Critical patent/JPS6314512B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser

Description

【発明の詳細な説明】 この発明は、無声放電式パルスレーザに関し、
長時間作動させたときに生じるレーザ出力の低下
の解消を図つたものである。
[Detailed Description of the Invention] The present invention relates to a silent discharge pulse laser,
This is intended to eliminate the decrease in laser output that occurs when operating for a long time.

従来、この種のレーザの代表例として、第1図
に示すものがあつた。図において1は金属電極、
2は誘電体電極で、金属部21とそれを被覆する
誘電体22により成る。4は放電空間、5は変圧
器、6は高周波電源、7は全反射ミラー、8は部
分反射ミラー、9はレーザガスの流れを示す矢
印、10はレーザ出力を示す矢印である。電極
1,2間に印加される電圧波形は高周波電源6に
おける回路構成により第2図aに示すものとなつ
ている。レーザガスはCO2−N2−He混合気体で
モル分率5−60−35、圧力200トール程度である。
Conventionally, a typical example of this type of laser has been the one shown in FIG. In the figure, 1 is a metal electrode,
A dielectric electrode 2 is made up of a metal part 21 and a dielectric 22 covering it. 4 is a discharge space, 5 is a transformer, 6 is a high frequency power source, 7 is a total reflection mirror, 8 is a partial reflection mirror, 9 is an arrow indicating the flow of laser gas, and 10 is an arrow indicating the laser output. The voltage waveform applied between the electrodes 1 and 2 is as shown in FIG. 2a due to the circuit configuration of the high frequency power source 6. The laser gas is a CO2 - N2 -He mixed gas with a molar fraction of 5-60-35 and a pressure of about 200 Torr.

次に動作について説明する。金属電極1と誘電
体電極2との間に、高周波電源6と変圧器5によ
つて第2図aに示すように断続的な高周波高電圧
が加えられ、放電空間4には無声放電と呼ばれる
放電が生じている。印加電圧は周期T0(10μs)の
正弦波電圧が、期間T1(0.5ms)の間波高値V1
(8kV)で加えられ、期間T2(0.5ms)の間は印
加されない。
Next, the operation will be explained. An intermittent high frequency high voltage is applied between the metal electrode 1 and the dielectric electrode 2 by a high frequency power source 6 and a transformer 5 as shown in FIG. Electric discharge is occurring. The applied voltage is a sine wave voltage with a period T 0 (10 μs), and the peak value V 1 during a period T 1 (0.5 ms).
(8 kV) and is not applied during period T 2 (0.5 ms).

レーザの励起分子寿命は100μs程度であるので、
レーザ出力は第2図bに示すようなパルス状のも
のとなる。すなわち期間(T1+T2)を周期とす
るパルスで、パルス幅TpはT1より小さく0.3ms
程度である。パルスの立上りが期間T1の印加電
圧立上りに比べておくれ、かつ緩やかになるのは
期間T1で無声放電が発生し、それによりレーザ
ガスが励起されても発振に至る程度に励起分子密
度が上昇するのに時間がかかるためである。
Since the excitation molecule lifetime of the laser is about 100 μs,
The laser output is in the form of a pulse as shown in FIG. 2b. In other words, it is a pulse whose period is (T 1 + T 2 ), and the pulse width T p is smaller than T 1 and is 0.3 ms.
That's about it. The reason why the rise of the pulse is more gradual than the rise of the applied voltage during period T 1 is because a silent discharge occurs during period T 1 , which increases the density of excited molecules to the extent that even if the laser gas is excited, it will oscillate. This is because it takes time to do so.

このパルスレーザを連続的に運転した場合、第
2図cに示すように、レーザ出力の平均値は数時
間で著しい低下がみられる。
When this pulsed laser is operated continuously, as shown in FIG. 2c, the average value of the laser output significantly decreases after several hours.

しかるに無声放電の連続発振の場合には、上述
のような長時間運転におけるレーザ出力の低下が
少ない。
However, in the case of continuous oscillation of silent discharge, the decrease in laser output during long-time operation as described above is small.

この差異の生じる原因について研究した結果、
パルス発振と連続発振の放電の態様に相違があ
り、これに起因してレーザガスのモル分率に変化
を生じ、このためレーザ出力の低下が生じている
ことが判つた。
As a result of research into the causes of this difference,
It was found that there is a difference in the discharge mode between pulsed oscillation and continuous oscillation, and this causes a change in the mole fraction of the laser gas, which causes a decrease in laser output.

第3図は放電空間4を光軸方向から観測した模
式図で、均一なグロー状の放電41の中に、輝線
状の放電42が散在する。これに対し、連続発振
の場合にはこの輝線状(絹糸状)の放電はほとん
ど出現しない。
FIG. 3 is a schematic diagram of the discharge space 4 observed from the optical axis direction, in which bright line-like discharges 42 are scattered within a uniform glow-like discharge 41. On the other hand, in the case of continuous oscillation, this bright line-like (silk-like) discharge hardly appears.

パルス放電を長時間継続している間のレーザガ
スの組成の変化を、ガスクロマトグラフイーによ
り分析した結果CO2が時間とともに急激に減少し
COとO2が増加していることが明らかとなつた。
すなわち輝線状放電によつて放電空間4でCO2
CO+1/2O2の化学変化が加速的に進行し、これ が出力減少をもたらしたものと推定される。
Analysis of changes in the composition of the laser gas during long-term pulse discharge using gas chromatography revealed that CO 2 decreased rapidly over time.
It became clear that CO and O 2 were increasing.
In other words, CO 2
It is presumed that the chemical change of CO+1/2O 2 progressed at an accelerated pace, which caused the output reduction.

この発明は、上記のような知見に基づいてなさ
れたもので、従来、電圧を印加していない期間
T2内を、主放電期間T1内に印加する電圧の周波
0(1/T0)より低い周波数2の電圧を印加し
て無声放電を接続させることにより上記CO2の分
解反応を抑制し得、ひいてはレーザ出力の低下を
少なくしたものである。
This invention was made based on the above knowledge, and conventionally, the period when no voltage is applied is
The decomposition reaction of CO 2 is suppressed by applying a voltage with a frequency 2 lower than the frequency 0 (1/T 0 ) of the voltage applied during the main discharge period T 2 during T 2 to connect a silent discharge. Therefore, the reduction in laser output is reduced.

第4図はこの発明の一実施例を説明するための
図で、同図aは印加電圧波形図で、期間T2にも
周波数2(5kHz)の電圧を印加している。同図b
は発振出力波形図で、実線はこの実施例の出力特
性を、破線は従来装置の特性を示す。また同図c
はこの実施例の平均発振出力の経時変化を示す特
性図で、実線はこの実施例の特性を、破線は従来
装置の特性を示す。
FIG. 4 is a diagram for explaining one embodiment of the present invention, and FIG. 4a is a diagram of applied voltage waveforms, in which a voltage of frequency 2 (5 kHz) is also applied during period T2 . Same figure b
is an oscillation output waveform diagram, where the solid line shows the output characteristics of this embodiment and the broken line shows the characteristics of the conventional device. Also, the same figure c
is a characteristic diagram showing the change over time in the average oscillation output of this embodiment, where the solid line shows the characteristic of this embodiment and the broken line shows the characteristic of the conventional device.

この実施例では、第4図aに示すように、印加
される高周波電圧の1周期の長さ1/0に対して
十分長い期間T1の間入力される。また1/0
長さに対して十分長い期間T2の間、0より小さ
な周波数2の交流電圧を、上記期間T1にひきつ
づいて印加する。無声放電式レーザでは、印加さ
れる交流電圧の周波数に大体比例した放電電力が
入力されるので、印加電圧の周波数を変えること
で注入する放電電力を調節することができる。
In this embodiment, as shown in FIG. 4a, the voltage is input for a period T1 which is sufficiently long for the length of one cycle of the applied high-frequency voltage, 1/0 . Further, during a period T 2 which is sufficiently long with respect to the length of 1/0 , an alternating current voltage with a frequency of 2 smaller than 0 is applied successively to the period T 1 . In a silent discharge type laser, a discharge power approximately proportional to the frequency of the applied alternating current voltage is input, so the discharge power to be injected can be adjusted by changing the frequency of the applied voltage.

このようにして、期間T1の間は、発振しきい
値放電電力W0の2〜5倍の放電電力W1を入力
し、期間T2の間は、放電電力W1の約1/20の放電
電力W2が入力される。
In this way, during the period T 1 , the discharge power W 1 that is 2 to 5 times the oscillation threshold discharge power W 0 is input, and during the period T 2 , the discharge power W 1 is approximately 1/20 of the discharge power W 1 . The discharge power W2 is input.

このようにすると、期間T1及び期間T2の間と
も放電は均一なグロー状の放電となつていること
が観測により確認されたが、期間T2の放電電力
W2はW0よりはるかに小さいので期間T2で発振は
起らない。
In this way, it was confirmed by observation that the discharge was a uniform glow-like discharge during both period T 1 and period T 2 , but the discharge power during period T 2
Since W 2 is much smaller than W 0 , no oscillation occurs during period T 2 .

このような駆動を行うと第4図cに示すよう
に、レーザ出力の経時変化も極めて小さくなつ
た。これは主放電の期間T1に先立つて期間T2
も放電を断やさずにおくことにより放電空間4に
弱電離プラズマが存在する状況下で主放電(期間
T1)を開始することができ、これが放電の均質
化に貢献したものと考えられる。
When such driving was performed, the change in laser output over time became extremely small, as shown in FIG. 4c. This is because the main discharge ( period
T 1 ), which is thought to have contributed to the homogenization of the discharge.

なお、付加的な効果としてパルス出力波形の改
善と出力の増大が共に達成されている(第4図
b)。これは期間T1に先立つて期間T2でレーザガ
スを予備励起したことになつたためであつて、出
力の立上りが速くなりパルス幅も増大している。
さらに従来例ではV1あるいは0を増大しなけれ
ば得られなかつたピークの高いパルス出力が得ら
れるという効果もある。
Additionally, as an additional effect, both an improvement in the pulse output waveform and an increase in the output were achieved (FIG. 4b). This is because the laser gas is pre-excited in period T2 prior to period T1 , and the rise of the output becomes faster and the pulse width also increases.
Furthermore, there is also the effect that a pulse output with a high peak can be obtained, which could not be obtained without increasing V 1 or 0 in the conventional example.

なお、上記実施例では、期間T2の周波数2を、
0の1/20に選んだが、それ以上の周波数に選び、
期間T2に若干の発振が生じる場合も、実質的に
出力がパルス的になる点に於て本発明と同様の効
果を発揮する。
In addition, in the above embodiment, the frequency 2 of the period T 2 is
I chose 1/20 of 0 , but I chose a higher frequency,
Even when some oscillation occurs during period T2 , the same effect as the present invention is achieved in that the output substantially becomes pulse-like.

以上のように、この発明は少なくとも一方を誘
電体電極とした両極間に高周波電圧をパルス状に
印加して無声放電を生成させてレーザを励起させ
るように構成したものにおいて、上記両電極間に
高周波電圧を印加する期間の間に、上記高周波電
圧の周波数よりは低い交流電圧を印加する手段を
備え、上記レーザ励起期間にひきつづいて無声放
電を維持するようにしたことを特徴とするもの
で、レーザ出力の長時間安定性に優れ、かつ出力
が高く立上り速度の速いパルス波形を有するパル
スレーザが得られる。
As described above, the present invention is configured to excite a laser by generating a silent discharge by applying a high frequency voltage in pulses between two electrodes, at least one of which is a dielectric electrode. It is characterized by comprising means for applying an alternating current voltage lower in frequency than the frequency of the high-frequency voltage during the period of applying the high-frequency voltage, so as to maintain silent discharge following the laser excitation period, A pulsed laser having excellent long-term laser output stability, high output, and a pulse waveform with a fast rise speed can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の無声放電式パルスレーザの構造
を示す原理図、第2図aはその印加電圧波形図、
同図bはその発振出力波形図、同図cはその発振
出力の経時変化特性図、第3図はこの従来装置の
放電空間内の放電の状態を示す模式図、第4図a
はこの発明の一実施例の印加電圧波形図、同図b
はその発振出力波形図、同図cはその発振出力の
経時変化特性図である。 図において、1は金属電極、2は誘電体電極、
4は放電空間、5は高周波電源である。なお、図
中、同一符号はそれぞれ同一、又は相当部分を示
す。
Figure 1 is a principle diagram showing the structure of a conventional silent discharge pulsed laser, Figure 2a is a diagram of its applied voltage waveform,
Figure b is a diagram of its oscillation output waveform, Figure c is a graph of its oscillation output over time, Figure 3 is a schematic diagram showing the state of discharge in the discharge space of this conventional device, and Figure 4 a.
is an applied voltage waveform diagram of an embodiment of the present invention, and FIG.
is a diagram of its oscillation output waveform, and c of the same figure is a diagram of its oscillation output over time. In the figure, 1 is a metal electrode, 2 is a dielectric electrode,
4 is a discharge space, and 5 is a high frequency power source. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも一方を誘電体電極とした両極間に
高周波電圧をパルス状に印加して無声放電を生成
させてレーザを励起させるように構成したものに
おいて、上記両電極間に高周波電圧を印加する期
間の間に、上記高周波電圧の周波数よりは低い交
流電圧を印加する手段を備え、上記レーザ励起期
間にひきつづいて無声放電を維持するようにした
ことを特徴とする無声放電式パルスレーザ。
1. In an apparatus configured to apply a high frequency voltage in pulses between two electrodes, at least one of which is a dielectric electrode, to generate a silent discharge and excite a laser, the period during which the high frequency voltage is applied between the two electrodes is A silent discharge type pulsed laser characterized in that the silent discharge type pulse laser is provided with means for applying an alternating current voltage lower in frequency than the frequency of the high frequency voltage in between, so as to maintain silent discharge following the laser excitation period.
JP7055681A 1981-05-11 1981-05-11 Silent discharge type pulse laser Granted JPS57186379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7055681A JPS57186379A (en) 1981-05-11 1981-05-11 Silent discharge type pulse laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7055681A JPS57186379A (en) 1981-05-11 1981-05-11 Silent discharge type pulse laser

Publications (2)

Publication Number Publication Date
JPS57186379A JPS57186379A (en) 1982-11-16
JPS6314512B2 true JPS6314512B2 (en) 1988-03-31

Family

ID=13434912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7055681A Granted JPS57186379A (en) 1981-05-11 1981-05-11 Silent discharge type pulse laser

Country Status (1)

Country Link
JP (1) JPS57186379A (en)

Also Published As

Publication number Publication date
JPS57186379A (en) 1982-11-16

Similar Documents

Publication Publication Date Title
US5107510A (en) Apparatus and method for burst-mode operation of a pulsed laser
US8391329B2 (en) Gas laser discharge pre-ionization using a simmer-discharge
JPH0261159B2 (en)
US4597086A (en) Coaxial type laser oscillator for excitation by silent discharge
JPS6314512B2 (en)
JPS6358387B2 (en)
EP0075282B1 (en) Gas laser apparatus
EP0526635A4 (en) Pulse laser device
JPS639393B2 (en)
Efthimiopoulos et al. Argon excimer spectra excited in pulsed discharges with supersonic expansion
NL8203305A (en) DEVICE FOR GENERATING A LASER-ACTIVE STATE IN A FAST SUB-SONIC FLOW.
EP0034124B1 (en) High voltage pump circuit for gas laser
JP3445390B2 (en) Marking processing equipment
Sutter Gain-switched pulsed rf CO2 waveguide lasers
JPH01192183A (en) Pulse gas laser device
Smith et al. High repetition-rate and quasi-cw operation of a waveguide CO2 TE laser
RU2189679C2 (en) Process of pumping of active medium into continuous-wave gaseous-discharge laser with electrodes carrying dielectric coats
RU2679453C1 (en) Method of creating pulsed repetitive discharge in gas and device for its implementation
JP3800812B2 (en) Laser oscillator
國嶋友貴 et al. Development of Repetitive Nanosecond Pulses Plasma Source for Nitrogen Vibrational Excitation
JPH0131714B2 (en)
JPS59215783A (en) Dielectric electrode lateral excitation co2 laser device
JP2985874B1 (en) Gas laser device and control method therefor
JPH06310795A (en) Q switch method for co2 laser
Sutter Gain-switched pulsed rf CO2 waveguide lasers