JPS63144929A - Double driving mechanism permitting fine and rough movement in precision machine tool - Google Patents
Double driving mechanism permitting fine and rough movement in precision machine toolInfo
- Publication number
- JPS63144929A JPS63144929A JP29154086A JP29154086A JPS63144929A JP S63144929 A JPS63144929 A JP S63144929A JP 29154086 A JP29154086 A JP 29154086A JP 29154086 A JP29154086 A JP 29154086A JP S63144929 A JPS63144929 A JP S63144929A
- Authority
- JP
- Japan
- Prior art keywords
- drive
- hollow structure
- ball screw
- resolving power
- movable part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 39
- 239000012530 fluid Substances 0.000 claims abstract description 11
- 230000004043 responsiveness Effects 0.000 abstract description 4
- 230000004304 visual acuity Effects 0.000 abstract 4
- 230000004044 response Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Machine Tool Units (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はサブミクロンオーダの超精密加工を目的とした
平面研削盤等精密加工機械の駆動機構に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a drive mechanism for a precision processing machine such as a surface grinder for the purpose of ultra-precision processing on the order of submicrons.
(従来技術)
従来の平面研削盤の駆動系の代表的な構成を第5図に示
す。1はサーボモータで縦のボールねじ3に連結されて
いる。2もサーボモータで、横のボールねじ4に連結さ
れている。5は主軸モータで、主軸軸受部6に支持され
た砥石7を駆動する。(Prior Art) FIG. 5 shows a typical configuration of a drive system of a conventional surface grinder. 1 is a servo motor connected to a vertical ball screw 3. 2 is also a servo motor and is connected to a horizontal ball screw 4. A main shaft motor 5 drives a grindstone 7 supported by a main shaft bearing 6.
8はワークである。砥石7はサーボモータ1と2とボー
ルねじ3と4から成る駆動系によって上下方向(Z軸)
、左右方向(Y軸)に駆動される。8 is the work. The grinding wheel 7 is driven in the vertical direction (Z-axis) by a drive system consisting of servo motors 1 and 2 and ball screws 3 and 4.
, driven in the left-right direction (Y-axis).
一般にこのような駆動系では、機械が大型になる程、1
)ボールねじ加工精度に限界があり精度が低下すること
、2)砥石全体をサーボモータにより駆動するため応答
性が低いこと、3)砥石移動時の真直度は全て案内面の
精度によって左右されるため、高精度な加工を必要とし
、また機械全体の大型化にもつながることからコスト的
にも非常に不利であること、などの問題点があった。Generally, in such a drive system, the larger the machine, the more
2) The entire grinding wheel is driven by a servo motor, resulting in low responsiveness; 3) The straightness of the grinding wheel during movement is entirely influenced by the accuracy of the guide surface. Therefore, there are problems in that it requires high-precision machining and also leads to an increase in the size of the entire machine, which is extremely disadvantageous in terms of cost.
(発明の解決しようとする問題点)
上記従来技術の問題点を解決し、高い位置決め分解能と
高速応答性をもつ精密加工機械の駆動機構を提供しよう
とする゛ものである。(Problems to be Solved by the Invention) The present invention attempts to solve the above-mentioned problems of the prior art and to provide a drive mechanism for a precision processing machine that has high positioning resolution and high-speed response.
(発明による解決手段)
上下に平行フランジを備えた加工機械の構造体間に挟持
される中空構造体と該中空構造体内に密封される圧力流
体とからなり流体圧を変化させることにより中空構造体
の軸方向と軸と直交する方向への変形に起因する軸方向
伸び量を利用する微動機構と、モータとボールねじより
なる粗動機構とを組合せたことを特徴とする。(Solution by the Invention) The hollow structure is made up of a hollow structure sandwiched between the structures of a processing machine equipped with upper and lower parallel flanges, and a pressure fluid sealed inside the hollow structure. It is characterized by a combination of a fine movement mechanism that utilizes the amount of axial elongation caused by deformation in the axial direction and in a direction perpendicular to the axis, and a coarse movement mechanism that includes a motor and a ball screw.
(実施例) 第1図は本発明に係る駆動機構を備えた研削盤である。(Example) FIG. 1 shows a grinding machine equipped with a drive mechanism according to the present invention.
本発明の駆動機構は従来方式のボールねじによる駆動機
構と、流体圧による機械膨張を利用した微動駆動機構を
併用したものである。The drive mechanism of the present invention combines a conventional ball screw drive mechanism and a fine movement drive mechanism that utilizes mechanical expansion caused by fluid pressure.
第1図と第5図と比べて翼ってい乞のは上下動駆動本体
9と主軸軸受部6との間に微動機構Aが用いられている
ことである6第1図の例ではこの微動機構Aを3ケ用い
ている。上下左右の粗動は従来型のサーボモータとボー
ルねじによってY軸とZ軸方向の駆動を行うようになっ
ている。What makes the blade unique compared to Figures 1 and 5 is that a fine movement mechanism A is used between the vertical movement drive body 9 and the main shaft bearing 6.6 In the example of Figure 1, this fine movement Three mechanisms A are used. Coarse movement in the vertical and horizontal directions is performed by driving in the Y-axis and Z-axis directions using a conventional servo motor and ball screw.
3ケの微動機構Aは平面視で夫々が三角形の頂点に位置
するように配置されているので、これによりχ軸回りの
回転微動、Z軸方向の直線微動を実現させることができ
る。Since the three fine movement mechanisms A are arranged so that each one is located at the vertex of a triangle in plan view, it is possible to realize rotational fine movement around the χ axis and linear fine movement in the Z axis direction.
第2図を参照して、微動機構Aについて概略説明する(
なおこの微動機構については同一出願人によって昭和6
1年11月13日付で特許出願した)。第2図で15及
び15′は工作機械構造体で、これら構造体内に微動機
構Aが挟持されている。With reference to FIG. 2, the fine movement mechanism A will be briefly explained (
This fine movement mechanism was developed by the same applicant in 1932.
A patent application was filed on November 13, 2013). In FIG. 2, 15 and 15' are machine tool structures, and the fine movement mechanism A is sandwiched within these structures.
微動機構Aは有底筒状体よりなる中空構造体10と、該
中空構造体10の密閉蓋体11と、中空構造体10内へ
サーボ弁12を介し圧力流体13を送り込む圧力流体源
14とからなっている。The fine movement mechanism A includes a hollow structure 10 made of a cylindrical body with a bottom, a sealing lid 11 of the hollow structure 10, and a pressure fluid source 14 that sends pressure fluid 13 into the hollow structure 10 via a servo valve 12. It consists of
中空構造体10は上下に平行なフランジ10a、 10
bを有し、これらフランジが工作機械構造体15゜15
′と接して挟持されている。The hollow structure 10 has vertically parallel flanges 10a, 10.
b, and these flanges form the machine tool structure 15°15
' is held in contact with.
サーボ弁12により、中空構造体10と密閉蓋体11で
液密にされた空間に圧力流体13の圧力を制御して供給
することにより、中空構造体1゜は第3図a)、b)に
示すように、底面方向への伸びδ□と側面の伸びによる
底面方向の縮みδ2を発生する。δ1及びδ2はその伸
び又は縮み量が微小である領域では、はぼ圧力Pに比例
する。したがって全体の伸び量δはδ=δ1−δ、=K
P(K;比例定数)で表わされる。By controlling and supplying the pressure of the pressure fluid 13 to the space made liquid-tight by the hollow structure 10 and the sealing lid 11 by the servo valve 12, the hollow structure 1° is heated as shown in FIGS. 3a) and b). As shown in FIG. 2, an elongation δ□ in the direction of the bottom surface and a contraction δ2 in the direction of the bottom surface due to the elongation of the side surfaces occur. δ1 and δ2 are proportional to the warp pressure P in a region where the amount of expansion or contraction is minute. Therefore, the total elongation δ is δ=δ1-δ, =K
It is expressed as P (K; constant of proportionality).
微か駆動機構Aはその配置の仕方によって第4図或いは
第5図の如き自由度をもたせることもできる。即ち第4
図では微小駆動機構Aを単体で用いた場合、第5図では
縦の面16に3個を夫々三角形の頂点となるように配置
し4面16と直交する水平の面17に1個配置し、χ軸
とχ軸まわりの回転微動と、Y軸とZ軸方向の直線微動
が可能となっている。Depending on how it is arranged, the fine drive mechanism A can have a degree of freedom as shown in FIG. 4 or 5. That is, the fourth
In the figure, when the minute drive mechanism A is used alone, in FIG. , rotational fine movements around the χ and χ axes, and linear fine movements in the Y- and Z-axis directions are possible.
以上の説明で研削盤の二重駆動機構について説明したが
、超精密研削盤・旋盤等の工作機械やステッパー等の半
導体製造装置等の高分解能な位置決めを必要とする産業
機械一般に応用できるものである。The above explanation describes the dual drive mechanism of a grinding machine, but it can be applied to general industrial machinery that requires high-resolution positioning, such as machine tools such as ultra-precision grinders and lathes, and semiconductor manufacturing equipment such as steppers. be.
(作用)
さて第1図の二重駆動機構についてその作動について説
明する。二重駆動機構は大ストローク移動できるサーボ
モータ1とボールねじ3或いはサーボモータ2とボール
ねじ3とからなる粗動部と、ストロークは小さいが高速
高分解能的駆動が可能な微動機構Aよりなる微動部とを
併用して全体として大ストローク高分解能を有し、高応
答性を備えた駆動ができる。(Function) Now, the operation of the dual drive mechanism shown in FIG. 1 will be explained. The dual drive mechanism consists of a coarse movement section consisting of a servo motor 1 and a ball screw 3 or a servo motor 2 and a ball screw 3 that can move over a large stroke, and a fine movement section that consists of a fine movement mechanism A that has a small stroke but is capable of high-speed, high-resolution driving. When used in combination with the above section, the overall drive has a large stroke and high resolution, and can be driven with high responsiveness.
一般にボールねじ駆動機構は摩擦トルクあるいはバック
ラッシ等の存在により位置決めできる分解能には限度が
あり、いわゆる制御不可能域が存在する。第6図はこの
ような系の応答の例を示したもので、制御′不可能域に
おいては、その時の摩擦トルク、バックラッシュ等の特
性によって停止位置が決まるが、一般にこれらを正確に
予測することは困鎧である。そこで、微動部の移動スパ
ンを第6図に示すように設定し、対象の位置がこの範囲
内に入った時点でその制御を中止すると共に、微動部に
より目標値までの微小な補正駆動を行なう。このような
方式を用いることにより、全体として大ストローク且つ
高分解能的駆動が可能になり、また微動部は先端部のみ
を駆動するためその負荷は小さく高速駆動が可能となる
。In general, a ball screw drive mechanism has a limited positioning resolution due to the presence of friction torque or backlash, and there is a so-called uncontrollable range. Figure 6 shows an example of the response of such a system. In the uncontrollable region, the stopping position is determined by the characteristics of friction torque, backlash, etc. at that time, but these can generally be predicted accurately. That is a problem. Therefore, the movement span of the fine movement section is set as shown in Figure 6, and when the target position falls within this range, the control is stopped and the fine movement section performs a minute correction drive up to the target value. . By using such a method, it is possible to drive the entire device with a large stroke and high resolution, and since the fine movement section drives only the tip, the load is small and high-speed drive is possible.
なお、微動機構の自由度は各アクチュエータの配置法に
より最大6自由度まで持たせることが可能である。Note that the fine movement mechanism can have up to six degrees of freedom depending on the arrangement of each actuator.
(効果)
サーボモータとボールねじによる粗動機端の外に中空構
造体内に流体圧を供給し、中空構造体の変形に起因する
伸び量を利用した微動機構を組合せたので、従来のサー
ボモータとボールねじによる高精度位置決め機構等で不
可避であったガタあるいはバックラッシ等がなく、極め
て精度の高い微動機構を得ることが可能となった。(Effects) Fluid pressure is supplied into the hollow structure outside the coarse mover end using a servo motor and a ball screw, and a fine movement mechanism that utilizes the amount of elongation caused by the deformation of the hollow structure is combined, so it is different from the conventional servo motor. There is no backlash or backlash that is unavoidable in high-precision positioning mechanisms using ball screws, and it is now possible to obtain an extremely precise fine movement mechanism.
第1図は本発明に係る二構駆動機構を施した平面研削盤
。
第2図は微動機構の概念図。
第3図は微動機構の原理説明図。
第4図は微動機構を単体で用いた平面研削盤。
第5図は同じく複数の微動機構を用いて複数方向に自由
度をもたせた平面研削盤を示す。
第6図は粗動部応答と微小補正時の応答例を示す図。
第7図は従来型平面研削盤。
図において;
A 微動機構 1,2 サーボモータ3.4
ボールねじ 5 主軸モータ6 主軸軸受部
7 砥石
8 ワーク 9 上下軸本体10 中空構
造体 10a、10b フランジ11 密閉蓋
体 12 サーボ弁13 圧力流体
14 圧力流体源15 工作機械構造体 16
縦の面17 水平の面
以上
出願人 住友重機械工業株式会社
復代理人 弁理士 大 橋 実
弟1図
$ 2 図
第3図
(。)(b)
第40
(、
第5図
第6図FIG. 1 shows a surface grinder equipped with a two-structure drive mechanism according to the present invention. Figure 2 is a conceptual diagram of the fine movement mechanism. FIG. 3 is a diagram explaining the principle of the fine movement mechanism. Figure 4 shows a surface grinder using a single fine movement mechanism. FIG. 5 similarly shows a surface grinding machine that uses a plurality of fine movement mechanisms to have degrees of freedom in a plurality of directions. FIG. 6 is a diagram showing an example of a coarse movement part response and a response at the time of minute correction. Figure 7 shows a conventional surface grinder. In the figure; A Fine movement mechanism 1, 2 Servo motor 3.4
Ball screw 5 Main shaft motor 6 Main shaft bearing part
7 Grindstone 8 Work 9 Vertical shaft main body 10 Hollow structure 10a, 10b Flange 11 Sealing lid body 12 Servo valve 13 Pressure fluid
14 Pressure fluid source 15 Machine tool structure 16
Vertical plane 17 Horizontal plane or more Applicant Sumitomo Heavy Industries, Ltd. Sub-Agent Patent Attorney Ohashi Younger brother 1 Figure $ 2 Figure 3 (.) (b) Figure 40 (, Figure 5 Figure 6
Claims (1)
される中空構造体と該中空構造体内に密封される圧力流
体とからなり流体圧を変化させることにより中空構造体
の軸方向と軸と直交する方向への変形に起因する軸方向
伸び量を利用する微動機構と、モータとボールねじより
なる粗動機構との組合せよりなることを特徴とする精密
加工機械における粗動及び微動可能な二重駆動機構。It consists of a hollow structure sandwiched between the structures of a processing machine equipped with upper and lower parallel flanges, and a pressurized fluid sealed inside the hollow structure. By changing the fluid pressure, the axial direction of the hollow structure A fine movement mechanism that utilizes axial elongation caused by deformation in orthogonal directions, and a coarse movement mechanism that includes a motor and a ball screw. Heavy drive mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29154086A JPS63144929A (en) | 1986-12-09 | 1986-12-09 | Double driving mechanism permitting fine and rough movement in precision machine tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29154086A JPS63144929A (en) | 1986-12-09 | 1986-12-09 | Double driving mechanism permitting fine and rough movement in precision machine tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63144929A true JPS63144929A (en) | 1988-06-17 |
JPH0520223B2 JPH0520223B2 (en) | 1993-03-18 |
Family
ID=17770227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29154086A Granted JPS63144929A (en) | 1986-12-09 | 1986-12-09 | Double driving mechanism permitting fine and rough movement in precision machine tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63144929A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993009911A1 (en) * | 1991-11-15 | 1993-05-27 | Yotaro Hatamura | Feed screw device and precisely positioning micromotion feed system |
-
1986
- 1986-12-09 JP JP29154086A patent/JPS63144929A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993009911A1 (en) * | 1991-11-15 | 1993-05-27 | Yotaro Hatamura | Feed screw device and precisely positioning micromotion feed system |
US5644951A (en) * | 1991-11-15 | 1997-07-08 | Hatamura; Yotaro | Feed screw apparatus and precise positioning and fine feed system |
Also Published As
Publication number | Publication date |
---|---|
JPH0520223B2 (en) | 1993-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230250501A1 (en) | Robot machining system and control method for ultrasonic surface rolling process of aircraft engine blade | |
US4571149A (en) | General purpose orthogonal axes manipulator system | |
US4417843A (en) | Waysless machine tool table | |
CN110000416B (en) | Radial vibration-assisted force position control milling and grinding machine tool and control method thereof | |
KR20030059074A (en) | Lens lathe with vibration cancelling arrangement | |
JPH0531683A (en) | Moving mechanism | |
Leadbeater et al. | A unique machine for grinding large, off-axis optical components: the OAGM 2500 | |
US20080246358A1 (en) | Magnetic bearing spindle device for machine tool | |
JP2018529533A (en) | Chuck for high precision machine tools | |
US6881918B2 (en) | Electric discharge machining apparatus | |
US20220193857A1 (en) | Device for the Robot-Assisted Machining of Surfaces | |
CN106272275A (en) | A kind of combination type ultraprecise linear motion workbench | |
US20220226992A1 (en) | Manipulator for finishing work, and control method therefor | |
JP2005279902A (en) | Polishing device and polishing method | |
JPS63144929A (en) | Double driving mechanism permitting fine and rough movement in precision machine tool | |
CN116890235A (en) | Machine tool ram and gantry machine tool | |
US6260285B1 (en) | Precision workpiece positioning device | |
KR20240005758A (en) | pneumatic linear actuator | |
JPH10166201A (en) | Machine tool | |
JP3508230B2 (en) | Machine Tools | |
JPS63123648A (en) | Fine movement mechanism for precision machine | |
JPS63191538A (en) | Minute driving mechanism for fine working machinery | |
Wu et al. | Design of a Novel Passive Polishing End-Effector With Adjustable Constant Force and Wide Operating Angle | |
JPH03166083A (en) | Wrist device for robot and industrial robot | |
Ketelsen et al. | Machine for complete fabrication of 8-m class mirrors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |