JPS6314482A - Thin-film semiconductor device - Google Patents

Thin-film semiconductor device

Info

Publication number
JPS6314482A
JPS6314482A JP61158275A JP15827586A JPS6314482A JP S6314482 A JPS6314482 A JP S6314482A JP 61158275 A JP61158275 A JP 61158275A JP 15827586 A JP15827586 A JP 15827586A JP S6314482 A JPS6314482 A JP S6314482A
Authority
JP
Japan
Prior art keywords
type semiconductor
layer
light
absorbed
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61158275A
Other languages
Japanese (ja)
Inventor
Hiroshi Morimoto
弘 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61158275A priority Critical patent/JPS6314482A/en
Publication of JPS6314482A publication Critical patent/JPS6314482A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a color sensor capable of discriminating colors correctly, by piling up three or more PIN or PN junction layers on a substrate and forming electrodes on the top and the bottom of each layer such that both the electrodes have light transmission properties or such that one of them has light transmission properties while the other has non-transmitting properties. CONSTITUTION:Incident light 1 first passes through a first layer consisting of a P-type semiconductor 4a, an I-type semiconductor 5a and an N-type semiconductor 6a, where short-wavelength components of the incident light 1 are absorbed by the PIN junction of the first layer. The residual light which has not been absorbed by the first layer passes through a second layer consisting of a P-type semiconductor 4b, an I-type semiconductor 5b and an N-type semiconductor 6b, where intermediatewavelength components of the incident light 1 are absorbed by the PIN junction of the second layer. Further, the residual light which has not been absorbed either by the second layer passes through a third layer consisting of a P-type semiconductor 4c, an I-type semiconductor 5c and an N-type semiconductor 6c, where long-wavelength components of the incident light 1 are absorbed by the PIN junction of the third layer. The light components absorbed by the respective layers are converted photoelectrically by the PIN junctions and taken out as photocurrent. Since the upper layer serves as a color filter of the lower layers, there is no need of providing an external color filter.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、光の色を判別するための色センサとして用い
る1膜半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a single-film semiconductor device used as a color sensor for determining the color of light.

〈従来の技術〉 近年、カラー・コードによる品物の仕分けや、糸、毛糸
、顔料、染料の色識別、図柄の色読み取り、カラーカメ
ラの調整等に用いられる色センサが求められ、2〜3の
色センサが開発されている。
<Prior art> In recent years, there has been a demand for color sensors that are used for sorting items by color code, identifying the colors of threads, wool, pigments, and dyes, reading the colors of designs, adjusting color cameras, etc. Color sensors have been developed.

従来の色センナの構造を第3図に示す、この色センサは
、名古屋重工業研究所と名古屋大学工学部とが共同で開
発したち(Kato、H,、Morinaga。
The structure of a conventional color sensor is shown in Figure 3. This color sensor was jointly developed by the Nagoya Heavy Industries Research Institute and the Faculty of Engineering, Nagoya University (Kato, H., Morinaga, 1993).

S、 、Yoshida、M、 and  Ar1zu
n+i、T、 、  ”ANew  I nLegra
ted  Transducer  for  Co1
ourDistinction、’  Journal
  of  Physics  E  :5cient
ific  In5tru+aenLs、vol、  
9.pp、 1070(072、D ec、 1976
、加藤、松田「半導体色識別素子」、r昭和56年度電
子通信学会聡き全国大会講演論文!1,53−5,11
p、 2−336−2−337.1981年4月、加藤
S., Yoshida, M., and Ar1zu.
n+i, T, , ”ANew I nLegra
ted Transducer for Co1
Our Distinction,' Journal
of Physics E:5cient
ific In5tru+aenLs, vol.
9. pp, 1070 (072, Dec, 1976
, Kato, Matsuda "Semiconductor Color Discrimination Element", 1981 IEICE Satoshi National Conference Lecture Paper! 1,53-5,11
p, 2-336-2-337. April 1981, Kato.

松田、上田「産業用ロボットのための色識別素子」。Matsuda, Ueda "Color identification element for industrial robots".

r自動化技術j、第12巻、第6号、pp、 11−1
4.1980年6月等参照)のであり、4〜8[Ω・c
11I]の導電率を有するn型シリコン(S i)基板
18上に、大気中で300[’C]に加熱し5nC1,
・xH2O−HCI−HzO混合液をスプレィして付け
てS n 0216と形成し、酸1ヒシリコン(SiO
2)17て′3つに分離してSu+02−3i接会を持
った3つのフォトダイオードを椙成し、赤、青、緑の各
フィルタ12,13.14を重ね、更に、その上を、赤
外線カット・フィルタで被覆するとともに、それぞれの
フォトダイオードから金315を引き出し、又、S i
 n 仮18からオーミック・コンタクト電極19を引
き出してなり、赤、青、緑のフィルタを通した光をそれ
ぞれ独立のフォトダイオードで受け、各出力の組み合わ
せで色を決めるようになっている。
r Automation Technology J, Volume 12, No. 6, pp, 11-1
4.Refer to June 1980, etc.), and 4 to 8 [Ω・c
On an n-type silicon (Si) substrate 18 having a conductivity of 11I], 5nC1,
・Spray xH2O-HCI-HzO mixture to form Sn 0216, and add acid 1 arsenic (SiO
2) Separate into three photodiodes with Su+02-3i junction, stack red, blue, and green filters 12, 13, and 14 on top of each other, and then In addition to coating with an infrared cut filter, gold 315 is extracted from each photodiode, and Si
An ohmic contact electrode 19 is drawn out from the temporary 18, and the light that has passed through red, blue, and green filters is received by independent photodiodes, and the color is determined by the combination of each output.

又、三洋電機株式会社は、アモルファス光センサと赤、
青、緑等の色フィルタとを用いたアモルファス色センサ
を商品化している。
In addition, Sanyo Electric Co., Ltd. has amorphous optical sensors and red,
We are commercializing an amorphous color sensor that uses color filters such as blue and green.

ところが、この種の色センサは、正確に色を判別しよう
とすると、3つのフォ1〜ダイオードに均一に光が当た
るようにしなければならず、センサの位置や受光面の角
度が変わると色判別に誤りが生じるという欠点を有して
いる。更に、3色のフィルタを必要とするため、色セン
サの性能が色フィルタの性能により、大きく左右される
という問題点も有している。
However, in order to accurately discriminate colors with this type of color sensor, it is necessary to make sure that the three photodiodes are uniformly illuminated, and if the sensor position or the angle of the light-receiving surface changes, color discrimination becomes difficult. It has the disadvantage that errors occur. Furthermore, since three color filters are required, there is also the problem that the performance of the color sensor is largely influenced by the performance of the color filters.

そこで、出願人は、先に、第4図(a)(b)に示すよ
うな色フィルタを必要としないpnpf23fiを有し
た色センサを発表した(谷、吉川1重政「半導体カラー
・センサ」、rテレビジョン学会技術報告」。
Therefore, the applicant previously announced a color sensor with pnpf23fi that does not require a color filter, as shown in FIGS. ``Television Society Technical Report''.

E D418.1978年12月、銘木「半導体カラー
センサとその応用」、?新しく開発された固体素子セン
サとその応用技術、講習会テキストJ、 pp、 57
−6J1980年12月、賀好、山根、銘木「半導体カ
ラーセンサの応用、、li′第1回「センサの基礎と応
用」シンポジウム講演予稿集J、B5−1.91)、 
47−48.1981年6月等参照)、この色センサは
、第4図(a)に示すように、Si半導体でp領域22
.24とn領域23とからなる簡単なpnptW造を形
成し、それぞれの領域からTLi25,26.27を引
き出したものであり、これは、第4図(b)に示すよう
に、2つのフォトダイオードPD、とPD、を逆方向に
直列接続した等価回路で表わされ、フォトダイオードP
D、とフォトダイオードPD2の分光5度特性が異なる
ことを利用し、浅いpn’bF合のフォ1〜ダイオード
PD、は短波長の光に感じ、深いpn接合のフォトダイ
オードPD2は長波長の光に感じるようになっており、
Siそのものがフィルタとなっている。このため、色フ
ィルタは必要としない、又、符号21は、赤外圭泉カッ
ト・フィルりである。
E D418. December 1978, precious wood "Semiconductor color sensor and its applications", ? Newly developed solid-state sensor and its application technology, Seminar Text J, pp, 57
-6J December 1980, Kayoshi, Yamane, Meiki "Applications of semiconductor color sensors, li' 1st "Basics and Applications of Sensors" Symposium Proceedings J, B5-1.91),
47-48, June 1981, etc.), this color sensor is a Si semiconductor with a p region 22, as shown in FIG. 4(a).
.. A simple pnptW structure consisting of 24 and n region 23 is formed, and TLi 25, 26, 27 are drawn out from each region, and as shown in FIG. 4(b), two photodiodes It is represented by an equivalent circuit in which PD and PD are connected in series in opposite directions, and the photodiode P
Utilizing the difference in the spectral 5 degree characteristics of photodiode PD2 and photodiode D, photodiode PD2 with a shallow pn'bF junction perceives short wavelength light, and photodiode PD2 with a deep pn junction perceives long wavelength light. I am beginning to feel that
Si itself serves as a filter. Therefore, no color filter is required, and reference numeral 21 is an infrared Keisen cut/fill.

〈発明が解決しようとする問題点〉 しかし、上記第4図(a) (b)に示す色センサは、
2色分解であるため、波長は読み取れるが、色の判別は
人の視覚と異なることもあり、例えば、赤と青をまぜて
紫となったとしても、この色センサでは、黄と緑との間
の色と判別することがあり、色を正確に判別することは
困難であった。
<Problems to be solved by the invention> However, the color sensor shown in FIGS. 4(a) and 4(b) above has the following problems:
Because it uses two-color separation, wavelengths can be read, but color discrimination may differ from human vision. For example, even if red and blue are mixed to make purple, this color sensor cannot distinguish between yellow and green. It has been difficult to accurately distinguish between colors.

そこで、本発明は、正確な色の判別を行なうことができ
る色センサを提供することを目的としてなされたもので
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a color sensor that can accurately discriminate colors.

く問題点を解決するための手段〉 上記の目的を達成するため、本発明の1膜半導体装置は
、基板上にpin接合又はp1接合を三層以上積層し、
該各層の上下に光透過性或は、一方を不透過性とする電
極を形成してなる。
Means for Solving the Problems In order to achieve the above object, the one-film semiconductor device of the present invention has three or more layers of pin junctions or p1 junctions stacked on a substrate,
Above and below each layer, electrodes are formed that are transparent to light or one of which is opaque.

く作用〉 各接合層に導かれた光の強度の波長依存性が、各接合層
の両端の電極から検出される光電流を測定することによ
り求められる。
Effect> The wavelength dependence of the intensity of light guided to each bonding layer is determined by measuring the photocurrent detected from the electrodes at both ends of each bonding layer.

〈実施例〉 以下、図示の一実施例に基づき、本発明の詳細な説明す
る。
<Example> Hereinafter, the present invention will be described in detail based on an illustrated example.

第1図及び第2図は、本発明の薄膜半導体装置の一実施
例を示したものであり、第1図は、構造を示す簡略断面
模式図、第2図は、各層の分光感度の波長依存性を示す
特性図である。
1 and 2 show an embodiment of the thin film semiconductor device of the present invention. FIG. 1 is a simplified cross-sectional diagram showing the structure, and FIG. 2 shows the wavelength of the spectral sensitivity of each layer. It is a characteristic diagram showing dependence.

この薄膜半導体装置は、第1図に示すように、ガラス基
板2上に、透明導電酸化膜(工ransparenLC
onductive 0xide;TC○)3a、第1
層のp型半導体(p領域)4a、第1層のi型半導体(
i領域)5a、第1層のn型半導体(n領域)6a−T
CO3b、第2層のp型半導体4b、第2FJのn型半
導体5b、第2層のn型半導体6b、 TCO3c、第
3層のp型半導体4c、第3層のi型半導体5c、第3
Nのn型半導体6c並びにオーミック・コンタクト電極
7を、順次、形成してなる。
As shown in FIG.
inductive Oxide; TC○) 3a, 1st
layer p-type semiconductor (p region) 4a, first layer i-type semiconductor (
i region) 5a, first layer n-type semiconductor (n region) 6a-T
CO3b, second layer p-type semiconductor 4b, second FJ n-type semiconductor 5b, second layer n-type semiconductor 6b, TCO3c, third layer p-type semiconductor 4c, third layer i-type semiconductor 5c, third layer
An n-type semiconductor 6c of N and an ohmic contact electrode 7 are successively formed.

上記の構成により、入射光1は、まず、ガラス基板2及
びTCO3aを透過して、番)型半導体4a、n型半導
体5a及びn型半導体6aからなる第1層のpin接合
に一部が吸収される。ここで吸収される光は、入射光1
の短波長成分である0次に、該第1層のpin接合で吸
収されなかった光は、TC○3bを透過して、n型半導
体4b、i型半導体5b及びn型半導体6bからなる第
2層のpin接合に一部が形成される。ここで吸収され
る光は、入射光1の中波長成分である。更に、該第2.
IIのpin接合でも吸収されなかった光は、TCO3
cを透過して、p型半導体4e、n型半導体5C及びn
型半導体6Cからなる第3層のpin接合で吸収される
。ここで吸収される光は、入射光1の長波長成分である
。そして、各層で吸収された光は、pin接合によって
光電変換されて光電流となり、TCO3a、3b、3c
及びオーミック・コンタクト電極7から電流ia、ib
、icとして取り出される。尚、図中符号8a、8b、
Scは、それぞれ、各層の出力電流ia、ib、ieを
測定するための電流計である。ここで、上記構成におい
て、上部層が下部層の色フィルタとなっているため、外
部色フィルタはエアである。
With the above configuration, the incident light 1 first passes through the glass substrate 2 and the TCO 3a, and is partially absorbed by the pin junction of the first layer consisting of the type semiconductor 4a, the n-type semiconductor 5a, and the n-type semiconductor 6a. be done. The light absorbed here is the incident light 1
The 0-order short wavelength component of the light, which is not absorbed by the pin junction of the first layer, passes through the TC○3b and passes through the TC○3b, which is the short wavelength component of the Part of the pin junction between the two layers is formed. The light absorbed here is the middle wavelength component of the incident light 1. Furthermore, the second.
The light that is not absorbed even at the pin junction of II is TCO3
The p-type semiconductor 4e, the n-type semiconductor 5C and n
It is absorbed by the pin junction of the third layer made of type semiconductor 6C. The light absorbed here is the long wavelength component of the incident light 1. Then, the light absorbed in each layer is photoelectrically converted by the pin junction and becomes a photocurrent, and the TCO3a, 3b, 3c
and currents ia and ib from the ohmic contact electrode 7
, ic. In addition, the symbols 8a, 8b,
Sc is an ammeter for measuring the output currents ia, ib, and ie of each layer, respectively. Here, in the above configuration, since the upper layer serves as a color filter for the lower layer, the external color filter is air.

第2I2Iは、第1図に示す薄膜半導体装置の各層にお
ける光を流ia、ib、ieの波長依存性を示したもの
であり、該実施例において、光電流iaは青色の光、光
電流ibは緑色の光、光電流icは赤色の光にそれぞれ
対応している。従って、これらの光電流ia、ib、i
cの大きさを比較・検討することにより、入射光1の色
を判別することができる。
2I2I shows the wavelength dependence of the light current ia, ib, and ie in each layer of the thin film semiconductor device shown in FIG. corresponds to green light, and photocurrent IC corresponds to red light. Therefore, these photocurrents ia, ib, i
By comparing and examining the magnitude of c, the color of the incident light 1 can be determined.

尚、本実施例に於いては、半導体として、非晶質(a+
aorpbous ;アモルファス)シリコン(Si)
半導体を用いたが、入射光や、必要とする色分解範囲等
により、光学的エネルギー・ギャップ(optical
energy gap)の異なる半導体、例えば、アモ
ルファスシリコン窒素(α−3iN)、アモルファスシ
リコン炭素(α−3iC)、アモルファスシリコンゲル
マニウム(α−5iGe)、n−IV族化6物半導体、
多結晶シリコン等を使用しても良く、又、TCOも光透
過性を有するものであれば良く、所謂透明電極である金
(Au)、プラチナ(Pt)、1!(Ag)、アルミニ
ウム(AI)その他の金属3膜(厚さ50[入]未溝)
や、NESA膜やITO膜等の半導体薄膜等を使用して
ら良い、更に、各部の膜厚は、本実施例では、p型半導
体及びn型半導体において50〜200[人]、i型半
導体において500〜10,0OOr入コ、TCOにお
いて600〜700[人]としているが、これらの数値
に限定されず、又、接合構造も、上記実施例に示すpi
n接合に限定されず、nip接合、np接合、pn接合
等適宜選択すれば良い、なお、接合の順序は薄膜半導体
装置内において同一である必要はない、そして、この1
liGl半導体装置を、光透過性を有する基板上に作成
した場合には、基板側から入射光を導入するようにし、
光不透過性の基板上に作成した場合には、基板とは反対
側から入射光を導入するようにすれば良いが、このとき
、基板とは反対側のオーミック・コンタクト電極7は、
光透過性を有する透明電極とする必要がある。
In this example, the semiconductor is amorphous (a+
aorpbous; amorphous) silicon (Si)
Although a semiconductor was used, the optical energy gap (optical
semiconductors with different energy gaps, such as amorphous silicon nitrogen (α-3iN), amorphous silicon carbon (α-3iC), amorphous silicon germanium (α-5iGe), n-IV group hexagonal semiconductors,
Polycrystalline silicon or the like may be used, and the TCO may be of any material as long as it has light transmittance, and so-called transparent electrodes such as gold (Au), platinum (Pt), 1! (Ag), aluminum (AI) and other metal 3 films (thickness 50 [included] ungrooved)
Furthermore, in this example, the film thickness of each part is 50 to 200 [people] for the p-type semiconductor and the n-type semiconductor, and 50 to 200 [people] for the i-type semiconductor. The input value is 500 to 10,0 OOr, and the TCO is 600 to 700 people.
It is not limited to an n-junction, and any suitable one such as a nip junction, an np junction, or a pn junction may be selected. Note that the order of the junctions does not need to be the same within the thin film semiconductor device;
When the liGl semiconductor device is fabricated on a substrate having optical transparency, incident light is introduced from the substrate side,
If it is formed on a light-opaque substrate, the incident light may be introduced from the side opposite to the substrate, but in this case, the ohmic contact electrode 7 on the side opposite to the substrate,
It is necessary to use a transparent electrode with light transmittance.

〈発明の効果〉 以上のように、本発明のような構造とすることにより、
色フィルタを必要としないので、色フィルタによって色
の判別性能が影響されることなく、しかも一つの連続し
た接合構造によって広範囲に互って色の判別が行ない得
る高性能の色センナを実現することができ、受光面を一
つにすることにより入射光の角度やセンサの位置関係に
よるバラツキや誤差を低減することが可能となり、製造
工程の簡略化、低コスト化並びに製品のコンパクト化を
図ることができ、色の判別精度の著しい向上が期待でき
る。
<Effects of the invention> As described above, with the structure of the present invention,
To realize a high-performance color sensor that does not require color filters, so that color discrimination performance is not affected by color filters, and that can discriminate colors from each other over a wide range using one continuous joint structure. By unifying the light-receiving surface, it is possible to reduce variations and errors caused by the angle of incident light and the positional relationship of the sensor, simplifying the manufacturing process, reducing costs, and making the product more compact. can be expected to significantly improve color discrimination accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の薄膜半導体装置の一実施例の構造を
示す簡略断面模式図、 第2図は、同上、各層によって検出される光電流の波長
依存性を示す分光恐度特性図、第3図及び第4図(a)
 (b)は、従来の色センサの一例を示し、第3図は3
色の色フィルタを用いた3色分解型1チップ色センサの
構造を示す簡略断面模式図、第4図(a)(b)は単純
なpnp構造の2色分解型色センサであり、第4図(a
)は構造を示す簡略断面模式図、第4図(b>はその等
価回路図である。
FIG. 1 is a simplified cross-sectional schematic diagram showing the structure of an embodiment of the thin film semiconductor device of the present invention; FIG. 2 is a spectral fear characteristic diagram showing the wavelength dependence of photocurrent detected by each layer; Figures 3 and 4 (a)
(b) shows an example of a conventional color sensor, and FIG.
Figures 4(a) and 4(b), which are simplified cross-sectional schematic diagrams showing the structure of a three-color separation type one-chip color sensor using color filters, are two-color separation type color sensors with a simple PNP structure; Figure (a
) is a simplified cross-sectional schematic diagram showing the structure, and FIG. 4 (b>) is its equivalent circuit diagram.

Claims (1)

【特許請求の範囲】[Claims] (1)基板上にpin接合又はpn接合を三層以上積層
し、該各層の上下に光透過性或は、一方を不透過性とす
る電極を形成してなることを特徴とする薄膜半導体装置
(1) A thin film semiconductor device characterized by laminating three or more layers of pin junctions or pn junctions on a substrate, and forming electrodes on the top and bottom of each layer, one of which is transparent or one of which is opaque. .
JP61158275A 1986-07-04 1986-07-04 Thin-film semiconductor device Pending JPS6314482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158275A JPS6314482A (en) 1986-07-04 1986-07-04 Thin-film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158275A JPS6314482A (en) 1986-07-04 1986-07-04 Thin-film semiconductor device

Publications (1)

Publication Number Publication Date
JPS6314482A true JPS6314482A (en) 1988-01-21

Family

ID=15668042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158275A Pending JPS6314482A (en) 1986-07-04 1986-07-04 Thin-film semiconductor device

Country Status (1)

Country Link
JP (1) JPS6314482A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118634U (en) * 1990-03-22 1991-12-06
JPH08250758A (en) * 1995-03-15 1996-09-27 Nec Corp Semiconductor light-receiving element
EP1309049A1 (en) * 2001-11-05 2003-05-07 Agilent Technologies, Inc. (a Delaware corporation) Wavelength sensitive device for wavelength stabilisation
JP2006128592A (en) * 2004-10-28 2006-05-18 Samsung Electro Mech Co Ltd Multi-wavelength light receiving element and method of fabricating the same
US7932574B2 (en) 2003-05-06 2011-04-26 Sony Corporation Solid-state imaging device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118634U (en) * 1990-03-22 1991-12-06
JPH08250758A (en) * 1995-03-15 1996-09-27 Nec Corp Semiconductor light-receiving element
EP1309049A1 (en) * 2001-11-05 2003-05-07 Agilent Technologies, Inc. (a Delaware corporation) Wavelength sensitive device for wavelength stabilisation
US6678293B2 (en) 2001-11-05 2004-01-13 Agilent Technologies, Inc. Wavelength sensitive device for wavelength stabilization
US7932574B2 (en) 2003-05-06 2011-04-26 Sony Corporation Solid-state imaging device
JP2006128592A (en) * 2004-10-28 2006-05-18 Samsung Electro Mech Co Ltd Multi-wavelength light receiving element and method of fabricating the same

Similar Documents

Publication Publication Date Title
US6310382B1 (en) Multicolor sensor
CA1132693A (en) Demultiplexing photodetector
JPS6394125A (en) Color sensor
US7723763B2 (en) Color photodetector apparatus with multi-primary pixels
CN104247018A (en) Light receiving device
JPS6314482A (en) Thin-film semiconductor device
JPS6132481A (en) Amorphous semiconductor element
JP2661341B2 (en) Semiconductor light receiving element
JPS58121668A (en) Multiple color image sensor
JPH04291968A (en) Photodiode
Chouikha et al. Color-sensitive photodetectors in standard CMOS and BiCMOS technologies
JPS6116580A (en) Optical detection semiconductor device
JPH03202732A (en) Color sensor
Wolffenbuttel Color filters integrated with the detector in silicon
JPS6097681A (en) Monolithic integrated circuit
CN107356342A (en) A kind of pyroelectricity non-brake method of dual-layer stereo structure is from frequency-selecting infrared detector
JPS6269568A (en) Semiconductor color sensor
JPS6177375A (en) Color sensor
TW202119606A (en) Image sensor
Rolls Two-color sandwich detector using InSb/Pb0. 79Sn0. 21Te
JPH02162776A (en) Photosensor
JPH02292873A (en) Color sensor
JPH0472664A (en) Solid-state image sensing device
JPH02240527A (en) Semiconductor photodetecting device
Kato et al. Integrated transducer for color distinction