JPH02240527A - Semiconductor photodetecting device - Google Patents

Semiconductor photodetecting device

Info

Publication number
JPH02240527A
JPH02240527A JP1061670A JP6167089A JPH02240527A JP H02240527 A JPH02240527 A JP H02240527A JP 1061670 A JP1061670 A JP 1061670A JP 6167089 A JP6167089 A JP 6167089A JP H02240527 A JPH02240527 A JP H02240527A
Authority
JP
Japan
Prior art keywords
light receiving
light
type
impurity region
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1061670A
Other languages
Japanese (ja)
Other versions
JPH0621815B2 (en
Inventor
Akinaga Yamamoto
晃永 山本
Kazuhisa Miyaguchi
和久 宮口
Tetsuhiko Muraki
村木 哲彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP1061670A priority Critical patent/JPH0621815B2/en
Publication of JPH02240527A publication Critical patent/JPH02240527A/en
Publication of JPH0621815B2 publication Critical patent/JPH0621815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To realize an inexpensive, small-sized photodetecting device with high reliability by connecting the impurity area of a 2nd conduction type of a 1st photodetection part to the impurity area of a 1st conduction type of a 2nd photodetection part and connecting the impurity area of the 2nd conduction type of the 2nd photodetection part to the impurity area of the 1st conduction type of the 1st photodetection part. CONSTITUTION:The semiconductor photodetecting device consists of the 1st photodetection part PD1, the 2nd photodetection part PD2, and a separation area 1. An area 1 is formed as an area of the 2nd conduction type (p type) and the impurity areas 2 and 4 of the photodetection parts PD1 and PD2 which contact the area 1 are formed as areas of the 1st conduction type (n type). Further, n<+> type impurity areas 6 - 8 are formed in the areas 2 and 4 and p type impurity areas 3 and 5 are formed in the impurity areas 2 and 6 in the same shapes to the same density. The p type area 3 of the photodetection part PD1 and the area 7 of the photodetection part PD2 are connected and led out to a terminal (x) and the p type impurity area 5 of the photodetection part PD2 and the impurity area 8 of the photodetection part PD1 are connected and led out to a terminal (y). The difference current between photocurrents IA and IB generated at the photodetection parts PD1 and PD2 appears between the terminals (x) and (y).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体素子によって特定の波長帯域の光を検出
する半導体光検出装置に関し、特に装置の構造に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor photodetection device that detects light in a specific wavelength band using a semiconductor element, and particularly relates to the structure of the device.

〔従来の技術〕[Conventional technology]

従来、特定の波長帯域の光を検出するのには、−船釣に
光センサの前面に光フィルタを配置し、この光フィルタ
のHする特性を検出する光の波長帯に応じたものとする
ことにより、被検出光の中から特定の波長帯域の光成分
、例えば赤〜赤外光や紫外光〜青等の特定の波長帯域を
有する光成分を検出していた。または、光センサの前面
にプリズム等の分光器を配置することにより特定の波長
帯域の光を検出していた。
Conventionally, to detect light in a specific wavelength band, an optical filter is placed in front of an optical sensor on a fishing boat, and the H characteristic of this optical filter is determined according to the wavelength band of the light to be detected. As a result, light components in a specific wavelength band, such as red to infrared light and ultraviolet to blue, are detected from the detected light. Alternatively, light in a specific wavelength band has been detected by placing a spectrometer such as a prism in front of the optical sensor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の構成による特定波長帯域の光
の検出は、光フィルタおよび分光器が高価なものである
ためにコストがかかるという課題がある。また、こ゛れ
ら光フィルタおよび分光器は吸湿することによって透過
率が低下し、経年的に劣化して信頼性に劣るという課題
があった。さらには、装置が大形化し、種々の機器にこ
の光検出装置を組み込む際にはスペースを要し、これら
機器の小型化が図れないという課題を有していた。
However, detection of light in a specific wavelength band using the conventional configuration described above has a problem in that it is costly because the optical filter and spectrometer are expensive. In addition, these optical filters and spectrometers have a problem in that their transmittance decreases due to moisture absorption, and they deteriorate over time, resulting in poor reliability. Furthermore, the device becomes large in size, and space is required to incorporate this photodetecting device into various devices, making it impossible to miniaturize these devices.

本発明はこれら課題を解消し、種々の機器にスペースを
要さずに内蔵することの可能な小型の光検出装置を提供
することを目的とし、しかもこれを安砒でかつ信頼性を
高くして提供することを目的とする。
The purpose of the present invention is to solve these problems and provide a compact photodetection device that can be built into various devices without requiring space, and which is also safe and reliable. The purpose is to provide

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、第1導電型の不純物領域に第2導電型の不純
物領域が形成された第1の受光部と、この第1の受光部
の光検出特性と異なるように第1導電型の不純物領域に
第2導′RS型の不純物領域が形成された第2の受光部
とが電気的に絶縁されて同一基板に形成され、第1の受
光部の第2導電型の不純物領域は第2の受光部の第1導
電型の不純物領域に電気的に接続され、第2の受光部の
第2導電型の不純物領域は第1の受光部の第1導電型の
不純物領域に電気的に接続されたものである。
The present invention provides a first light-receiving section in which an impurity region of a second conductivity type is formed in an impurity region of a first conductivity type, and an impurity region of a first conductivity type that is different from the light detection characteristics of the first light-receiving section. A second light receiving section in which a second conductivity type impurity region is formed is electrically insulated and formed on the same substrate, and the second conductivity type impurity region of the first light receiving section is The impurity region of the second conductivity type of the second light receiving section is electrically connected to the impurity region of the first conductivity type of the first light receiving section. It is what was done.

〔作用〕[Effect]

第1および第2の各受光部に同一の光が照射されると各
受光部には異なる出力が発生し、第1の受光部の第2導
電型の不純物領域に接続された配線と第2の受光部の第
2導電型の不純物領域に接続された配線との配線間には
各受光部で発生した出力の差が現れ、この出力の差は被
検出光のうちの特定波長帯域の光成分に比例するものに
なる。
When the same light is irradiated to each of the first and second light receiving sections, different outputs are generated in each of the light receiving sections, and the wiring connected to the impurity region of the second conductivity type of the first light receiving section and the second A difference in the output generated in each light receiving part appears between the wiring connected to the impurity region of the second conductivity type of the light receiving part, and this difference in output is caused by the difference in the output of light in a specific wavelength band of the detected light. It will be proportional to the ingredients.

〔実施例〕〔Example〕

第1図は本発明の一実施例を表す断面図であり、赤〜赤
外光の特定波長帯の光成分を選択して検出するものであ
る。
FIG. 1 is a sectional view showing one embodiment of the present invention, in which light components in a specific wavelength band of red to infrared light are selected and detected.

半導体光検出装置は大別して第1の受光部PD1と第2
の受光部PD2と分離領域1とから構成され、これらは
同一の基板に構成されている。
The semiconductor photodetector is roughly divided into a first light receiving part PD1 and a second light receiving part PD1.
It is composed of a light receiving section PD2 and a separation region 1, and these are constructed on the same substrate.

分離領域1はシリコン(Si)を材料としてボロン(B
)が拡散されることによりp型に形成される。第1の受
光部PCIおよび第2の受光部PD2の分11111/
i域1と接する不純物領域2および4は、リン(P)が
選択拡散されることにより、分離領域1と逆の導電型で
あるn型に形成される。
Isolation region 1 is made of silicon (Si) and boron (B).
) is diffused to form a p-type. 11111/ of the first light receiving section PCI and the second light receiving section PD2
Impurity regions 2 and 4 in contact with i-region 1 are formed to be n-type, which is the opposite conductivity type to isolation region 1, by selectively diffusing phosphorus (P).

さらに、各不純物領域2.4にはリンを高濃度に含むn
 型の不純物領域6,7および8が形成される。また、
同一製造工程において、ボロンを不純物領域2,6に選
択拡散することにより、p型の不純物領域3.5が同一
形状でしかも同一濃度で形成される。
Furthermore, each impurity region 2.4 contains n containing a high concentration of phosphorus.
Type impurity regions 6, 7 and 8 are formed. Also,
By selectively diffusing boron into impurity regions 2 and 6 in the same manufacturing process, p-type impurity regions 3.5 are formed in the same shape and at the same concentration.

次に、アルミニウム(1)を用いた配線パターンニング
により、第1の受光部PDIのp型の不純物領域3と第
2の受光部PD2のn 型の不純物領域7とが電気的に
接続されて端子Xに引き出され、また、第2の受光部P
D2のp型の不純物領域5と第1の受光部PCIのn 
型の不純物領域8とが電気的に接続されて端子yに引き
出される。
Next, by wiring patterning using aluminum (1), the p-type impurity region 3 of the first light receiving portion PDI and the n-type impurity region 7 of the second light receiving portion PD2 are electrically connected. It is pulled out to the terminal
p-type impurity region 5 of D2 and n of the first light receiving portion PCI
The mold impurity region 8 is electrically connected and drawn out to the terminal y.

このため、上記構造をした半導体光検出装置はその等価
回路が第2図のように示される。すなわち、第1の受光
部PDIによって構成されるホトダイオード9と、第2
の受光部PD2によって構成されるホトダイオード10
とは逆並列に接続され、各端子x 7間には各受光部P
DI、PD2において発生した光電流1  、I  の
差電流が現B れる構成になっている。
Therefore, the equivalent circuit of the semiconductor photodetector having the above structure is shown in FIG. That is, the photodiode 9 constituted by the first light receiving section PDI and the second
A photodiode 10 constituted by a light receiving section PD2 of
are connected in antiparallel with each other, and each light receiving section P is connected between each terminal
The structure is such that a difference current between photocurrents 1 and I generated in DI and PD2 appears.

また、p型の不純物領域3とn型の不純物領域2とは第
1の受光部PDIのpn接合を形成し、p型の不純物領
域5とn 型の不純物領域6とは第2の受光部PD2の
pn接合を形成する。これら各pn接合に基づく各受光
部PDI、PD2の光検出特性は第3図のグラフに示さ
れる。なお、同図の横軸は光の波長[nml、縦軸は感
度を表す。第1の受光部PDIは特性曲線11に示され
る特性を有し、紫外光の短波長帯域から赤外光の長波長
帯域を含む光成分を検出する。第2の受光部PD2は特
性曲線12に示される特性を有し、赤〜赤外先の長波長
帯域は含まず、紫外光〜可視光の短波長帯域の光成分を
検出する。また、各特性曲線11.12は短波長帯域に
おいて同一の特性を有するが、これは各受光部PDI、
F’D2の不純物領域3,5゛が同様に形成されている
ためである。
Further, the p-type impurity region 3 and the n-type impurity region 2 form a pn junction of the first light receiving portion PDI, and the p-type impurity region 5 and the n-type impurity region 6 form a pn junction of the first light receiving portion PDI. A pn junction of PD2 is formed. The photodetection characteristics of each of the light receiving sections PDI and PD2 based on each of these pn junctions are shown in the graph of FIG. Note that the horizontal axis in the figure represents the wavelength of light [nml], and the vertical axis represents the sensitivity. The first light receiving section PDI has a characteristic shown by a characteristic curve 11, and detects a light component including a short wavelength band of ultraviolet light to a long wavelength band of infrared light. The second light receiving section PD2 has a characteristic shown by a characteristic curve 12, and detects light components in a short wavelength band from ultraviolet light to visible light, but does not include a long wavelength band from red to infrared. Furthermore, each of the characteristic curves 11 and 12 has the same characteristics in the short wavelength band;
This is because the impurity regions 3 and 5' of F'D2 are formed in the same way.

このような構成において、赤〜赤外光を含む被検出光が
半導体光検出装置に照射されると、n型の各不純物領域
2.4にはキャリアが生成される。
In such a configuration, when the semiconductor photodetecting device is irradiated with detected light including red to infrared light, carriers are generated in each n-type impurity region 2.4.

−船釣に、短波長の光成分は基板の深い位置まで達する
ことがなく、浅い位置でキャリアを生成し、長波長の光
成分は基板の深い位置でキャリアを生成する。また、第
1の受光部PDIにおける空乏層は表面近傍の浅い位置
には現れず、第2の受光部PD2における空乏層はn+
型の不純物領域6により浅い位置に形成される。また、
空乏層にキャリアが捕えられる範囲(キャリアの拡散距
離内)は、第1の受光部PDIは基板の深い位置にまで
あり、第2の受光部PD2は基板の浅い位置にある。こ
のため、第1の受光部PDIは短波長帯域7から長波長
帯域の光成分によって生成されたキャリアを検出し、第
2の受光部PD2は短波長帯域の光成分によって生成さ
れたキャリアを検出する。
- When fishing on a boat, short wavelength light components do not reach deep positions in the substrate and generate carriers at shallow positions, while long wavelength light components generate carriers at deep positions in the substrate. Further, the depletion layer in the first light receiving part PDI does not appear at a shallow position near the surface, and the depletion layer in the second light receiving part PD2 is n+
It is formed at a shallow position by the type impurity region 6. Also,
The range in which carriers are trapped in the depletion layer (within the diffusion distance of carriers) is such that the first light receiving portion PDI is located at a deep position in the substrate, and the second light receiving portion PD2 is located at a shallow position in the substrate. Therefore, the first light receiving section PDI detects carriers generated by light components in the short wavelength band 7 to the long wavelength band, and the second light receiving section PD2 detects carriers generated by light components in the short wavelength band. do.

従って、被検出光は各光成分ごとに電流に変換され、第
1の受光部PDIによって検出された光成分はn型の不
純物領域2からp型の不純物領域3に流れる電流■いに
なり、第2の受光部PD2によって検出された光成分は
n+型の不純物領域6からp型の不純物領域5に流れる
電流IBになる。
Therefore, the light to be detected is converted into a current for each light component, and the light component detected by the first light receiving portion PDI becomes a current flowing from the n-type impurity region 2 to the p-type impurity region 3. The light component detected by the second light receiving portion PD2 becomes a current IB flowing from the n+ type impurity region 6 to the p type impurity region 5.

各受光部PDI、PD2に発生した電流IA。Current IA generated in each light receiving section PDI, PD2.

!、は、第2図の等価回路図から容易に理解されるよう
に、端子x、y間にこれらの差電流となって現れる。こ
の差電流の値は第2の受光部PD2の不純物領域6の形
成の仕方によって所定の値に決定されものであり、赤〜
赤外光の特定の波長帯域を有する光成分に対応したもの
になる。すなわち、電流!^は第3図に示された特性曲
線11の感度に比例したものであり、電流IBは特性曲
線12の感度に比例したものである。このため、端子x
、y間に現れるこれらの差電流は、同図に太い実線で示
される特性曲線13の感度に比例したものとなり、赤〜
赤外光の波長帯域の光成分を有する光のみを検出するこ
とが可能になる。
! , appears as a difference current between terminals x and y, as can be easily understood from the equivalent circuit diagram in FIG. The value of this difference current is determined to a predetermined value depending on how the impurity region 6 of the second light-receiving portion PD2 is formed.
It corresponds to a light component having a specific wavelength band of infrared light. In other words, electric current! ^ is proportional to the sensitivity of the characteristic curve 11 shown in FIG. 3, and the current IB is proportional to the sensitivity of the characteristic curve 12 shown in FIG. For this reason, terminal x
, y are proportional to the sensitivity of the characteristic curve 13 shown by the thick solid line in the same figure, and are
It becomes possible to detect only light having a light component in the infrared wavelength band.

このため、上記実施例によれば従来の高価で信頼性の劣
る光フィルタや分光器を用いることなく特定波長帯域の
赤〜赤外先の光成分を検出することが出来るようになる
。また、本装置は全て半導体素子によって構成されるた
め、従来の光フィルタや分光器等と異なり極めて小型化
することが出来、ワンチップ化することも可能である。
Therefore, according to the embodiment described above, it is possible to detect light components in the red to infrared region of a specific wavelength band without using conventional expensive and unreliable optical filters and spectrometers. In addition, since this device is constructed entirely of semiconductor elements, it can be extremely miniaturized, unlike conventional optical filters, spectrometers, etc., and can also be integrated into a single chip.

このため、種々の機器にスペースを要することなく内蔵
することが出来るようになり、光検出機能を用いる機器
の用途を拡大することが可能になる。しかも、本装置は
同一基板上に簡単な製造工程を経るのみで実現すること
が出来るため、安価でかつ信頼性の高いものを容易に提
供することが可能になる。
Therefore, it becomes possible to incorporate it into various devices without requiring space, and it becomes possible to expand the uses of devices that use a photodetection function. Moreover, since this device can be realized on the same substrate through a simple manufacturing process, it is possible to easily provide an inexpensive and highly reliable device.

なお、上記実施例においては第1導電型としてn型、第
2導電型としてp型の場合について説明したがこれに限
定される必要は無く、第1導電型としてp型、第2導電
型としてn型としても良く、上記実施例と同様な効果を
奏する。
In addition, in the above embodiment, the case where the first conductivity type is n type and the second conductivity type is p type is explained, but there is no need to be limited to this, and the first conductivity type is p type and the second conductivity type is p type. It may be an n-type, and the same effects as in the above embodiments can be achieved.

第4図は本発明の他の一実施例を表す断面図であり、紫
外光〜青の特定波長帯の光成分を選択して検出するもの
である。
FIG. 4 is a sectional view showing another embodiment of the present invention, in which light components in a specific wavelength band from ultraviolet light to blue are selected and detected.

半導体光検出装置は上記実施例の場合と同様に第1の受
光部PDIと第2の受光部PD2と分離領域21とから
構成され、これらは同一の基板に構成されている。
The semiconductor photodetector device is composed of a first light receiving section PDI, a second light receiving section PD2, and a separation region 21, which are formed on the same substrate, as in the above embodiment.

分離領域21はシリコン(Si)を材料としてリン(P
)が拡散されることによりn型に形成される。第1の受
光部PCIおよび第2の受光部PD2の分離領域21と
接する不純物領域22および24は、ボロン(B)が選
択拡散されることにより、分離領域21と逆の導電型で
あるp型に形成される。さらに、各不純物領域22.2
4にはボロンを高濃度に含むp+型の不純物領域28゜
27が形成される。また、不純物領域22には砒素(A
s)を含むn型の不純物領域23が0. 5μm程度の
深さに形成され、不純物領域24にはリンを含むn型の
不純物領域25が1.5μm程度の深さに形成される。
The isolation region 21 is made of silicon (Si) and phosphorus (P).
) is diffused to form an n-type. The impurity regions 22 and 24 in contact with the isolation region 21 of the first light receiving portion PCI and the second light receiving portion PD2 are p-type, which is the opposite conductivity type to the isolation region 21, by selectively diffusing boron (B). is formed. Furthermore, each impurity region 22.2
A p+ type impurity region 28.degree. 27 containing boron at a high concentration is formed in the region 4. Further, in the impurity region 22, arsenic (A
n type impurity region 23 containing 0.s). In the impurity region 24, an n-type impurity region 25 containing phosphorus is formed to a depth of about 1.5 μm.

次に、アルミニウムを用いた配線パターンニングにより
、第1の受光部PDIのn型の不純物領域23と第2の
受゛光部PD2のp+型の不純物領域27とが電気的に
接続されて端子Xに引き出され、また、第2の受光部P
D2のn型の不純物類@25と第1の受光部PCIのp
+型の不純物領域28とが電気的に接続されて端子yに
引き出される。
Next, by wiring patterning using aluminum, the n-type impurity region 23 of the first light receiving portion PDI and the p + type impurity region 27 of the second light receiving portion PD2 are electrically connected and a terminal X, and the second light receiving section P
n-type impurities @25 in D2 and p in the first light receiving part PCI
The + type impurity region 28 is electrically connected and drawn out to the terminal y.

上記構造をした半導体光検出装置はその等価回路が第5
図のように示される。すなわち、第1の受光部PDIに
よって構成されるホトダイオード2つと、第2の受光部
PD2によって構成されるホトダイオード30とは逆並
列に接続され、各端子x、y間には各受光部PDI、P
D2において発生した光電流の差電流が現れる構成にな
っている。なお、前述した実施例の第2図の等価回路と
は6ホトダイオードの接続される極性が異なっている。
The semiconductor photodetector having the above structure has an equivalent circuit of the fifth
Shown as shown. That is, two photodiodes constituted by the first light receiving part PDI and a photodiode 30 constituted by the second light receiving part PD2 are connected in antiparallel, and each light receiving part PDI, P is connected between each terminal x, y.
The configuration is such that a difference current between the photocurrents generated in D2 appears. Note that the polarity to which the six photodiodes are connected differs from the equivalent circuit shown in FIG. 2 of the above-described embodiment.

また、n型の不純物領域23とp型の不純物領域22と
は第1の受光部PDIのpn接合を形成し、n型の不純
物領域25とp型の不純物領域24とは第2の受光部P
D2のpn接合を形成する。これら各pn接合に基づく
各受光部PD 1゜PD2の光検出特性は第6図のグラ
フに示される。
Further, the n-type impurity region 23 and the p-type impurity region 22 form a pn junction of the first light receiving portion PDI, and the n-type impurity region 25 and the p-type impurity region 24 form a pn junction of the first light receiving portion PDI. P
A pn junction of D2 is formed. The photodetection characteristics of each of the light receiving sections PD1°PD2 based on each of these pn junctions are shown in the graph of FIG.

なお、同図の横軸は光の波長[nml、縦軸は感度を表
す。第1の受光部PDIは特性曲線31に示される特性
を有し、紫外光の短波長帯域から赤外光の長波長帯域を
含む光成分を検出する。第2の受光部PD2は特性曲線
32に示される特性を有し、紫外光〜青の短波長帯域は
含まず、可視光〜赤外光の長波長帯域の光成分を検出す
る。
Note that the horizontal axis in the figure represents the wavelength of light [nml], and the vertical axis represents the sensitivity. The first light receiving section PDI has a characteristic shown by a characteristic curve 31, and detects a light component including a short wavelength band of ultraviolet light to a long wavelength band of infrared light. The second light receiving section PD2 has a characteristic shown by a characteristic curve 32, and detects light components in a long wavelength band of visible light to infrared light, but does not include a short wavelength band of ultraviolet light to blue.

このような構成において、紫外光〜青を含む被検出光が
半導体光検出装置に照射されると、p型の各不純物領域
22.24にはキャリアが生成される。また、浅(形成
された第1の受光部PDIにおける空乏層は表面近傍に
形成され、深く形成された第2の受光部PD2における
空乏層は浅い位置には現れない。また、空乏層にキャリ
アが捕えられる範囲は、第1の受光部PDIは浅い位置
から深い位置にまであり、第2の受光部PD2は深い位
置にある。このため、第1の受光部PDIは短波長帯域
から長波長帯域の光成分によって生成されたキャリアを
検出し、第2の受光部PD2は長波長帯域の光成分によ
って生成されたキャリアを検出する。このため、被検出
光は各光成分ごとに電流に変換され、第1の受光部PC
Iによって検出された光成分はn型の不純物領域23か
らp型の不純物領域22に流れる電流lAになり。
In such a configuration, when the semiconductor photodetector is irradiated with light to be detected including ultraviolet light to blue, carriers are generated in each of the p-type impurity regions 22 and 24. In addition, the depletion layer in the shallow (formed) first light receiving part PDI is formed near the surface, and the depletion layer in the deeply formed second light receiving part PD2 does not appear at a shallow position. The first light receiving part PDI has a range from a shallow position to a deep position, and the second light receiving part PD2 has a deep position.For this reason, the first light receiving part PDI has a range from a short wavelength band to a long wavelength band. The second light receiving unit PD2 detects the carriers generated by the optical components in the long wavelength band.Therefore, the detected light is converted into a current for each optical component. and the first light receiving part PC
The light component detected by I becomes a current IA flowing from the n-type impurity region 23 to the p-type impurity region 22.

第2の受光部PD2によって検出された光成分はn型の
不純物領域25からp型の不純物領域24に流れる電流
Inになり、前述した実施例とは逆の向きになる。
The light component detected by the second light receiving portion PD2 becomes a current In flowing from the n-type impurity region 25 to the p-type impurity region 24, and has a direction opposite to that of the above-described embodiment.

各受光部PDI、PD2に発生した電流IA。Current IA generated in each light receiving section PDI, PD2.

IBは、端子x、y間にこれらの差電流となって現れる
。この差電流の値は、各受光部PCIおよびPD2の不
純物領域23および25が形成される深さの相違によっ
て所定の値に決定されものであり、紫外光〜青の特定の
波長帯域を有する光成分に対応したものになる。すなわ
ち、電流■いは第6図の特性曲線31に示された光検出
感度に比例したものであり、電流IBは特性曲線32の
光検出感度に比例したものである。このため、端子x、
y間に現れるこれらの差電流は、太い実線で示された特
性曲線33に示される光検出感度に比例したものとなり
、紫外光〜青の波長帯域の光成分を有する光のみを検出
することが可能になる。
IB appears as a difference current between these terminals x and y. The value of this difference current is determined to a predetermined value depending on the difference in the depth at which the impurity regions 23 and 25 of each light receiving part PCI and PD2 are formed, and it is determined to be a predetermined value based on the difference in the depth at which the impurity regions 23 and 25 of each light receiving part PCI and PD2 are formed. It will correspond to the ingredients. That is, the current IB is proportional to the photodetection sensitivity shown in the characteristic curve 31 in FIG. 6, and the current IB is proportional to the photodetection sensitivity shown in the characteristic curve 32 in FIG. Therefore, the terminal x,
These difference currents appearing between y are proportional to the light detection sensitivity shown in the characteristic curve 33 shown by the thick solid line, and it is possible to detect only light having light components in the wavelength range from ultraviolet light to blue. It becomes possible.

このため、上記実施例によっても前述した実施例と同様
な効果を奏する。
Therefore, the above-mentioned embodiment also provides the same effects as the above-described embodiment.

なお、上記実施例においては第1導電型としてp型、第
2導電型としてn型の場合について説明したがこれに限
定される必要は無く、第1導電型としてn型、第2導電
型としてp型としても良く、上記実施例と同様な効果を
奏する。
In addition, in the above embodiment, the case where the first conductivity type is p type and the second conductivity type is n type is explained, but there is no need to be limited to this, and the first conductivity type is n type and the second conductivity type is n type. It may be p-type, and the same effects as in the above embodiments can be achieved.

なお、上述した2つの各実施例は各受光部PD1、PD
2が同一基板に形成されたものについて説明したが、各
受光部PDI、PD2を別々の基板に形成し、外部回路
を設けて各受光部に発生する各光電流の差電流を演算す
ることも考えれる。
In addition, in each of the two embodiments described above, each light receiving section PD1, PD
Although the description has been made on the case where PDI and PD2 are formed on the same substrate, it is also possible to form each photodetector PDI and PD2 on separate substrates and provide an external circuit to calculate the difference current between the photocurrents generated in each photodetector. I can think about it.

しかし、このような構成をした光検出装置は以下のよう
な問題があり、上述した本装置の方が有効なものと思わ
れる。つまり、各基板に分けて各受光部を形成すると、
第1に、被検出光が照射されて17られる光電流の差電
流を演算する外部回路が必要になって装置が大きなもの
となる。第2に、各受光部ごとに入力信号線、出力信号
線および接地線が必要になるため、各受光部PCI、P
D2および外部回路の3者を接続する配線数が増えてし
まう。この結果、各基板ごとに受光部を設ける光検出装
置は、信頼性が低下し、さらには製造コストが低減され
なくなる。しかし、上述したように、上記各実施例によ
る本装置にあってはこのようなことはない。
However, the photodetecting device having such a configuration has the following problems, and the present device described above is considered to be more effective. In other words, if each light receiving part is formed separately on each substrate,
First, an external circuit for calculating a difference current between photocurrents generated when the light to be detected is irradiated is required, which increases the size of the device. Second, since an input signal line, an output signal line, and a ground line are required for each light receiving section, each light receiving section PCI, P
The number of wires connecting D2 and the external circuit increases. As a result, the reliability of a photodetecting device in which a light receiving section is provided for each substrate decreases, and furthermore, the manufacturing cost cannot be reduced. However, as described above, this does not occur in the present apparatus according to each of the above embodiments.

また、上述した2つの各実施例においては分離領域に不
純物を拡散することによりこれらの間の電気的絶縁を&
111♀するようにしたが、分離領域を誘電体からなる
電気絶縁物によって構成するようにしても良く、上記各
実施例と同様な効果を奏する。
In addition, in each of the two embodiments described above, electrical insulation between these regions is achieved by diffusing impurities into the isolation regions.
111♀, however, the isolation region may be made of an electrical insulator made of a dielectric material, and the same effects as in each of the above embodiments can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、第1の受光部と第2の受
光部とを電気的に絶縁して同一基板に形成し、各受光部
のpn接合を逆並列に接続したことにより、各受光部に
同一の光が照射されると各受光部には異なる出力が発生
し、各接合部の配線間には各受光部で発生した出力の差
が現れ、この出力の差は被検出光のうちの特定波長帯域
の光成分に比例するものになる。
As explained above, in the present invention, the first light receiving section and the second light receiving section are electrically insulated and formed on the same substrate, and the pn junctions of each light receiving section are connected in antiparallel. When the same light is irradiated to the light receiving section, different outputs are generated at each light receiving section, and a difference in the output generated at each light receiving section appears between the wires at each joint, and this difference in output is the difference between the detected light It becomes proportional to the light component in a specific wavelength band.

このため、従来の高価で信頼性の劣る光フィルタや分光
器は必要無くなり、安価でかつ信頼性を有する装置によ
り特定波長の光検出が可能になるという効果を有する。
Therefore, there is no need for conventional expensive and unreliable optical filters and spectrometers, and there is an effect that light of a specific wavelength can be detected using an inexpensive and reliable device.

さらに、装置は全て半導体素子により構成されるため、
装置は極めて小形化され、種々の機器に容易に内蔵する
ことが出来るという効果も有する。
Furthermore, since the device is entirely composed of semiconductor elements,
The device also has the advantage of being extremely compact and can be easily incorporated into various devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による装置の一実施例を表す断面図、′
¥42図は第1図に示された装置の等砿回路図、第3図
は第1図に示された装置の光検出特性を表すグラフ、第
4図は本発明による装置の他の一実施例を表す断面図、
第5図は第4図に示された装置の等価回路図、第6因は
第4図に示された装置の光検出特性を表すグラフである
。 1・・・分離領域(p型)、2.4・・・第1導電中(
n型)の不純物領域、3,5・・・第2導電型(p型)
の不純物領域、6.7,8・・・高濃度の第1導電型の
不純物領域。 特許出願人  浜松ホトニクス株式会社代理人弁理士 
  長谷用  芳  樹間         塩   
IfJ    辰   已−冥茨flJの函賀を 第 1 図 一夷方一列の′l!1己回21 72 図 −叉売グjの光夜工iiミ 萬 での實方日デjの1面 第 図 七の宴方式列O再価回路 第5図 慣の漬功!「」の光挟土冴守牲
FIG. 1 is a sectional view showing an embodiment of the device according to the invention;
¥42 is an isometric circuit diagram of the device shown in FIG. 1, FIG. 3 is a graph showing the photodetection characteristics of the device shown in FIG. 1, and FIG. 4 is another example of the device according to the present invention. A sectional view showing an example,
FIG. 5 is an equivalent circuit diagram of the device shown in FIG. 4, and the sixth factor is a graph showing the photodetection characteristics of the device shown in FIG. 4. 1... Isolation region (p type), 2.4... First conductive region (
n-type) impurity region, 3, 5... second conductivity type (p-type)
impurity regions, 6.7, 8...high concentration impurity regions of the first conductivity type. Patent applicant Hamamatsu Photonics Co., Ltd. Representative Patent Attorney
Yoshikima Shio for Hase
IfJ Tatsumi - Mei Ibara flJ's Haga 1 Figure 1, one line of 'l! 1st time 21 72 Figure - The light night work of the sales group ii Miman, the first page of the day number 1 Figure 7 Banquet method row O Revalue circuit Figure 5 The practice of dipping! ``'' no Mitsuha Tosae Shusuke

Claims (1)

【特許請求の範囲】[Claims]  第1導電型の不純物領域に第2導電型の不純物領域が
形成された第1の受光部と、この第1の受光部の光検出
特性と異なるように第1導電型の不純物領域に第2導電
型の不純物領域が形成された第2の受光部とが電気的に
絶縁されて同一基板に形成され、前記第1の受光部の第
2導電型の不純物領域は前記第2の受光部の第1導電型
の不純物領域に電気的に接続され、前記第2の受光部の
第2導電型の不純物領域は前記第1の受光部の第1導電
型の不純物領域に電気的に接続されたことを特徴とする
半導体光検出装置。
A first light-receiving section in which an impurity region of a second conductivity type is formed in an impurity region of a first conductivity type; A second light receiving section in which a conductive type impurity region is formed is electrically insulated and formed on the same substrate, and the second conductive type impurity region of the first light receiving section is formed in the second light receiving section. The impurity region of the second conductivity type of the second light receiving section is electrically connected to the impurity region of the first conductivity type of the first light receiving section. A semiconductor photodetection device characterized by:
JP1061670A 1989-03-14 1989-03-14 Semiconductor photodetector Expired - Fee Related JPH0621815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1061670A JPH0621815B2 (en) 1989-03-14 1989-03-14 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1061670A JPH0621815B2 (en) 1989-03-14 1989-03-14 Semiconductor photodetector

Publications (2)

Publication Number Publication Date
JPH02240527A true JPH02240527A (en) 1990-09-25
JPH0621815B2 JPH0621815B2 (en) 1994-03-23

Family

ID=13177905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1061670A Expired - Fee Related JPH0621815B2 (en) 1989-03-14 1989-03-14 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPH0621815B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338062A (en) * 2004-04-05 2005-12-08 Pmd Technologies Gmbh Signal processing technique
JP2007067331A (en) * 2005-09-02 2007-03-15 Matsushita Electric Works Ltd Ultraviolet sensor
EP2806456A4 (en) * 2012-03-29 2015-03-18 Asahi Kasei Microdevices Corp Light receiving device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338062A (en) * 2004-04-05 2005-12-08 Pmd Technologies Gmbh Signal processing technique
JP2007067331A (en) * 2005-09-02 2007-03-15 Matsushita Electric Works Ltd Ultraviolet sensor
EP2806456A4 (en) * 2012-03-29 2015-03-18 Asahi Kasei Microdevices Corp Light receiving device

Also Published As

Publication number Publication date
JPH0621815B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JP3124732B2 (en) Three band and four band multispectral structure with two simultaneous signal outputs
US4318115A (en) Dual junction photoelectric semiconductor device
CA1132693A (en) Demultiplexing photodetector
US9219177B2 (en) Photo detector and integrated circuit
JP2004119713A (en) Semiconductor optical sensor device
KR20080064761A (en) Semiconductor device
US5300777A (en) Two color infrared detector and method
CN104247018B (en) Sensitive device
US5391868A (en) Low power serial bias photoconductive detectors
US6504153B1 (en) Semiconductor infrared detecting device
JPH02240527A (en) Semiconductor photodetecting device
JPS6116580A (en) Optical detection semiconductor device
JPH05335618A (en) Optical position detecting semiconductor device
JPH03202732A (en) Color sensor
JPH02240531A (en) Photodetector
JPS6314482A (en) Thin-film semiconductor device
JPH01220862A (en) Solid-state image sensing device
JP3794606B2 (en) Junction capacitance for light receiving element
JPS6177375A (en) Color sensor
JPS6222273B2 (en)
JPH02196463A (en) Photodetector with built-in circuit
JPH02177379A (en) Infrared photodetector
JPH05206500A (en) Photoelectric conversion module
JPS6365325A (en) Light quantity detecting circuit
JPH02291182A (en) Photodetector

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees