JPS63144751A - Motor - Google Patents

Motor

Info

Publication number
JPS63144751A
JPS63144751A JP29302086A JP29302086A JPS63144751A JP S63144751 A JPS63144751 A JP S63144751A JP 29302086 A JP29302086 A JP 29302086A JP 29302086 A JP29302086 A JP 29302086A JP S63144751 A JPS63144751 A JP S63144751A
Authority
JP
Japan
Prior art keywords
pole
armature
phase
motor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29302086A
Other languages
Japanese (ja)
Inventor
Isamu Takehara
勇 竹原
Tsutomu Osawa
勉 大沢
Shigeru Oki
茂 大木
Akihiro Yamamoto
山本 昭洋
Atsushi Osawa
大沢 敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FUEROO FURUIDEIKUSU KK
Original Assignee
NIPPON FUEROO FURUIDEIKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FUEROO FURUIDEIKUSU KK filed Critical NIPPON FUEROO FURUIDEIKUSU KK
Priority to JP29302086A priority Critical patent/JPS63144751A/en
Publication of JPS63144751A publication Critical patent/JPS63144751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To make a motor in a greater efficiency, by preventing the current from flowing in the opposite direction to each armature, and by eliminating the coil that straddles the slots and causing the magnetic force line to circulate smoothly. CONSTITUTION:A three-phase eight-pole motor is formed by installing fixed armatures 6 in widths 50 deg., 40 deg. and 30 deg. by three times repeatedly. As to the fixed armature 3, the coils conducting the current of phase A to the three within a range of 120 deg., the current of phase B to the three less than 120 deg., and the current of phase C to the three less than 120 deg. are wound so that the current flowing through mutually adjacent armatures will be in the opposite direction. In poles 7 constituting a rotor, N-pole covering the width 50 deg. and S-pole covering the width 40 deg. are alternately arranged. Between all the poles 7 and the armatures 3 the force to rotate the poles 7 rightwards will work, where the pole N2 is repulsed by the pole NA of the armature 6 and attracted to the pole SB. The pole S1 and the pole SA of the armature 6 as well as the pole N1 and pole NA of the armature 6 are respectively situated at the neutral zone. However, if the pole 7 rotates to the right side even in a small degree, then the turning force will be produced rightwards.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はモータに関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a motor.

(従来技術) 従来のモータのうちで、電機子と磁極とを用いるもの、
例えばモータの中心部に電機子から成る固定子を配置し
、該固定子の外周に永久磁石などの固定磁極から成る回
転子を配置したモータにあっては、各電機子から成る固
定子の外周に回転磁界を生じさせるために、電機子ポー
ルに相の数に応じたコイルを重ね巻きし、該重ね巻きし
たコイルに各相の電流を流すことによって各電機子の外
周に各相のコイルによって生じる磁界の合成磁界を生じ
させ、該合成磁界が、位相の進行・スイッチング装置等
による転流によって、見掛は上、固定子である各電機子
の外周を回転状に変化するように構成し、これによって
生じた回転状の磁界の変化によって、固定子の外周に配
置した固定磁極から成る回転子を回転させるという構造
が通常であった。
(Prior art) Among conventional motors, those that use an armature and magnetic poles,
For example, in a motor in which a stator consisting of an armature is arranged at the center of the motor, and a rotor consisting of fixed magnetic poles such as permanent magnets is arranged around the outer periphery of the stator, the outer periphery of the stator consisting of each armature is In order to generate a rotating magnetic field, coils corresponding to the number of phases are wrapped around the armature pole, and the current of each phase is passed through the coils, so that the coils of each phase are applied to the outer periphery of each armature. A composite magnetic field is generated from the generated magnetic fields, and the composite magnetic field is configured so that the outer periphery of each armature, which is apparently a stator, changes in a rotational manner by phase advancement and commutation by a switching device, etc. The conventional structure was such that a rotor consisting of fixed magnetic poles arranged around the outer periphery of a stator was rotated by changes in the rotating magnetic field caused by this.

ところが、このような構造のモータにあっては、前記の
ように同一の各電機子ポールに2種以上の相のコイルが
重ね巻きしであるから、成る瞬間について見ると、一つ
のポールに巻回されている各コイルに反対方向に電流が
流れていることがあることになること、およびコイルが
各電機子間のスロットを跨いで巻回されているため、そ
の分だけ各電機子の磁界発生に直接貢献していないコイ
ル部分が生じることになるという問題、および各コイル
によって生じる磁束が鉄心の中を互いに交差して走った
りして磁力線回路が複雑になり、それだけ磁気ヒステリ
シス等のロスが大きくなるばかりでなる等の3つの問題
があった。この3つの問題のため、従来のモータは必ず
しも使用電力が充分効率よく回転力に変換されていると
は言えなかった。
However, in a motor with this type of structure, as mentioned above, the coils of two or more phases are wound around the same armature pole, so if we look at the moment when the coils are formed, the windings are wound around one pole. Because each coil being turned may have current flowing in the opposite direction, and because the coils are wound across the slots between each armature, the magnetic field in each armature is The problem is that there are coil parts that do not directly contribute to generation, and the magnetic flux generated by each coil runs across the iron core, making the magnetic field line circuit complicated, which increases losses such as magnetic hysteresis. There were three problems, including the fact that it only got bigger and bigger. Because of these three problems, it cannot be said that the electric power used in conventional motors is necessarily sufficiently efficiently converted into rotational power.

(問題点を解決するための手段及び作用)本発明は上記
の出願人提案のモータの欠点を緩和して回転むらの少な
いモータを得るために、各電機子は1ポールlコイル巻
きに構成すると共に、磁力線の磁束が互いに複雑に交差
することを防止し、それらの相乗効果として効率の高い
モータを提供することを目的とするものであって、固定
子および回転子のうちの、一方は永久磁石等から成る磁
極で、他の一方は1ポール1コイル巻きの各電機子で構
成すると共に、該各電機子のうちの360°を整数で除
した中心角内に在る全ての電機子には成る1つの相の電
流だけを通電するように結線構成し、他の相の電流の流
れる電機子との間には非磁性体等のように磁束が通り難
いものを介在させて成るモータであるから、各電機子に
反対方向に電流が流れたり、スロットを跨ぐコイルを無
くすると共に、電機子の発生する磁界による磁束の磁力
線が交差したり廿ずにスムーズに循環するため、従来の
モータに比して格段にモータ定数等の高い、効率の良い
モータを提供するものである。
(Means and effects for solving the problems) In order to alleviate the drawbacks of the motor proposed by the applicant and obtain a motor with less uneven rotation, the present invention is configured such that each armature has one pole and one coil winding. At the same time, the purpose is to prevent the magnetic fluxes of the lines of magnetic force from intersecting each other in a complicated manner, and to provide a highly efficient motor as a synergistic effect of these effects, and one of the stator and rotor is permanently attached. A magnetic pole made of a magnet, etc., and the other one is composed of each armature with one pole and one coil winding, and all the armatures within the central angle of 360° divided by an integer. A motor whose wires are connected so that only one phase of current flows through it, and a material such as a non-magnetic material that makes it difficult for magnetic flux to pass through is interposed between the armature and the armature through which the other phase current flows. This eliminates the need for current to flow in opposite directions in each armature or the need for coils to straddle slots, and the lines of magnetic flux caused by the magnetic field generated by the armatures to circulate smoothly without crossing each other, making it possible to use a conventional motor. This provides a highly efficient motor with a much higher motor constant than that of the conventional motor.

(実施例) 以下本発明を図面に示す実施例によって詳細に説明する
(Example) The present invention will be described in detail below using examples shown in the drawings.

第1図は本発明の一実施例である3相8極モータの側面
概念図であるが、回転軸1の周囲にモータ・フレーム(
図示せず)に固定的に取りつけた固定子基部量には、そ
の周囲に電機子歯3.3′・・・・・・を放射状に設け
、該固定電機子歯3,3′・・・・・・の幅は全部同一
に構成しても良いのであるが、この実施例では、中心角
に占める角度が図示のように、図面上から左に50°、
40’ 、30’の幅のものを3回繰り返してその順に
取りつけて構成する。前記固定子基部2と前記各電機子
歯3,3′・・・・・・とをつなぐ胴部も上記各電機子
歯の幅に比例する幅の固定電機子鉄芯4,4′・・・・
・・を構成し、該部分に後記のようにコイル5を1ポー
ル1コイル巻きで巻回する。このようにして各固定電機
子歯3.3′・・・・・・、固定電機子鉄芯4.4′・
・・・・・、コイル5によって各電機子6.6′・・・
・・・が構成される。
FIG. 1 is a conceptual side view of a three-phase eight-pole motor that is an embodiment of the present invention.
Armature teeth 3,3'... are provided radially around the stator base portion fixedly attached to the stator base (not shown), and the fixed armature teeth 3,3'... . . may have the same width, but in this embodiment, the angle occupied by the central angle is 50° to the left from the top of the drawing, as shown in the figure.
It is constructed by repeating 40' and 30' widths three times and attaching them in that order. The body connecting the stator base 2 and each of the armature teeth 3, 3', .・・・
..., and the coil 5 is wound around this part with one pole and one coil winding as described later. In this way, each fixed armature tooth 3.3'..., fixed armature iron core 4.4'...
..., each armature 6.6'... by coil 5
...is constructed.

上記各固定電機子鉄芯4.4′・・・・・・には図示の
ように、図面上から左に360°を整数である3で除し
た120゛の範囲内にある3つに、A相の電流を通電す
るコイルを、各隣接する固定電機子鉄芯4.4′には反
対方向に電流が流れるように、1ポール1コイル巻きで
巻回する。
As shown in the figure, each fixed armature core 4.4'... has three cores within a range of 120°, which is 360° divided by 3, an integer, from the top of the drawing to the left. A coil for carrying an A-phase current is wound with one coil per pole so that the current flows in the opposite direction to each adjacent fixed armature iron core 4.4'.

もちろん1つの固定電機子鉄芯には1つのコイルを多数
回巻回するのであるが、図面簡略のため各2回巻きで示
した。同様に次の120°の範囲内にある3つの固定電
機子鉄芯にはB相の電流を通電するコイルを、次の12
0”の範囲内にある3つの固定電機子鉄芯にはC相の電
流を通電するコイルを巻回し、以上によって3種類の幅
の異なる各電機子6.6’、6’・・・・・・を構成し
、各電機子6゜6’、6’・・・・・・は上記コイルの
構造がら、36o。
Of course, one fixed armature iron core is wound with one coil many times, but to simplify the drawing, each coil is shown with two turns. Similarly, coils that carry B-phase current are connected to the three fixed armature cores within the next 120° range, and
The three fixed armature iron cores within the range of 0" are wound with coils that carry C-phase current, and as a result, each armature with three different widths 6.6', 6'... ..., and each armature 6°6', 6'... is 36o due to the structure of the above coil.

を3で除した120°の範囲内にある3つの各電機子6
.6’6’は、供給電流の位相の進行等によって同時に
転流が行われるように構成される。
Each of the three armatures 6 within a range of 120° divided by 3
.. 6' and 6' are configured so that commutation occurs simultaneously due to progression of the phase of the supplied current.

さらに前記各電機子6.6’、6’をつなぐ固定子基部
↓は図示のように、同一相の電流を流す電機子毎に分割
し、他の相の電流の流れる電機子との間にはアルミ・カ
ーボン・合成樹脂等のような非磁性体部材を介入させ、
または空隙を作っておいて、この部分には磁束が通り難
いように構成する。
Furthermore, the stator base ↓ connecting each of the armatures 6, 6' and 6' is divided into armatures that carry the same phase current, as shown in the figure, and is placed between armatures that carry currents of other phases. By intervening non-magnetic materials such as aluminum, carbon, synthetic resin, etc.
Alternatively, an air gap is created so that it is difficult for magnetic flux to pass through this part.

次に回転子を構成する磁極7,7′は前記回転軸1に回
転自在に取りつけた回転子ヨーク8に、やはり全部同一
幅に構成しても良いのであるが、この実施例では図示の
ように図面上から左に、この実施例では50°の幅を占
めるN極の磁極、40°の輻を占めるS極の磁極、50
 ”の幅を占めるN極の磁極、40°の幅を占めるS極
の磁極という繰り返しにより2種類の幅の異なる磁極7
゜7′を8極取りつけて回転子度を構成しているが、磁
極の幅はこれに限らず同一幅の磁極を使用してもよいも
のである。
Next, the magnetic poles 7 and 7' constituting the rotor may be arranged in a rotor yoke 8 rotatably attached to the rotary shaft 1, and may all have the same width, but in this embodiment, as shown in the figure. From the top left of the drawing, in this example, a north magnetic pole occupies a width of 50°, a south magnetic pole occupies a 40° convergence, and a 50° convergence.
Magnetic poles 7 with two different widths are created by repeating the N-pole magnetic pole that occupies a width of ” and the S-pole magnetic pole that occupies a width of 40°.
Although eight poles of 7' are attached to form a rotor, the width of the magnetic poles is not limited to this, and magnetic poles of the same width may be used.

以上がこの発明を実施せるモータの一構成例であって、
以下この例のモータについて、その結線および動作を説
明する。
The above is an example of the configuration of a motor that can carry out this invention,
The wiring and operation of the motor in this example will be explained below.

第2回答図は前記第1図に示した3相8極モータの動作
原理を示す図である。
The second answer diagram is a diagram showing the operating principle of the three-phase eight-pole motor shown in FIG. 1.

同図(1)なしい同図(6)において、各上段に示す磁
極7と下段に示す各電機子6とはいずれも第1図に示す
磁極7.7′・・・・・・および各電機子6.6′・・
・・・・の360°を1つの直線状に展開して両者の位
置関係を示したものである。
In FIG. 1 (1) and FIG. 6 (6), the magnetic poles 7 shown in the upper row and the armatures 6 shown in the lower row are the magnetic poles 7, 7', etc. shown in FIG. Armature 6.6'...
. . 360° is expanded into one straight line to show the positional relationship between the two.

同図の磁極7の各Nl、Sl、N2.S2の符号は、S
、Nが各磁極の極性を示し、次の小文字数字はその各磁
極を区別するための番号である。また各電機子6のNA
、SA、N* 、Snの符号は、はじめのN、Sの文字
が各図の各瞬間における各電機子6の極性を示し、次の
小文字符号、・・・・・・。と組み合わせたことによっ
て各電機子の識別およびその瞬間における極性を表示す
るものとする。また各電機子6の符号のうち、例えば第
2図(1)のSA→NAとあるのは、この電機子はそれ
以前の瞬間、即ち第2図(6)の瞬間にはSの極性をな
していたが、この同図+11の瞬間においては、コイル
5に通電される電流の転流によりNの極性を示している
ことを表すものとする。
Each of Nl, Sl, N2 . of the magnetic pole 7 in the same figure. The sign of S2 is S
, N indicates the polarity of each magnetic pole, and the next lowercase number is a number for distinguishing each magnetic pole. Also, the NA of each armature 6
, SA, N*, and Sn, the first letters N and S indicate the polarity of each armature 6 at each moment in each figure, and the following lowercase letters... The identification of each armature and the polarity at that moment shall be indicated by combining the Also, among the codes of each armature 6, for example, SA→NA in Fig. 2 (1) means that this armature had the polarity S at the moment before that, that is, at the moment shown in Fig. 2 (6). However, at the moment of +11 in the same figure, the polarity of N is shown due to the commutation of the current applied to the coil 5.

しかして第2回答図の左から三つの各電機子、即ち第1
図に記載した120°の範囲内にある各電機子毎に、A
相、B相、C相の電流を通電するコイルを巻回したこと
を示す。同−相内の隣接する各電機子6の極性が異なっ
ているのは、第1図に図示し且つ説明したように、各隣
接する鉄芯毎に逆方向にコイルを巻回したためである。
Therefore, each of the three armatures from the left in the second answer diagram, namely the first
For each armature within the 120° range indicated in the figure,
Indicates that a coil is wound to conduct phase, B-phase, and C-phase currents. The reason that the polarities of adjacent armatures 6 in the same phase are different is that the coils are wound in opposite directions on each adjacent iron core, as shown and explained in FIG.

同図によって前記実施例のモータの動作原理を説明する
とまず回転子度を構成する磁極7.7′・・・・・・と
固定子を構成する各電機子6.6′・・・・・・とが同
図(1)の位置関係になった瞬間についてみると、図示
から容易に判るとおり、回転子度を構成する磁極7のN
2は固定電機子1を構成する各電機子6のNAに反発さ
れ且つ各電機子6のSlに吸引され、また磁極7の82
は各電機子、のS、に反発され且つ各電機子6のNBに
吸引されるというように、以下第2図+11の右端まで
全ての磁極と各電機子との間で、磁極7が図面右方向に
回転させられる力が生じることが理解できよう。但し、
第2(l)図左端に見られるように磁極7のN1と各電
機子6のNAおよび磁極7のS、と各電機子の84とは
、ニュートラル・ゾーンとしてこの瞬間においては回転
力を生じないことになるが、磁極7が少しでも図面右方
向に回転すれば、やはりN1はNAに反発され、SIも
SAに反発されて、前記同様に同図右方向に回転力が生
じることになる。
To explain the operating principle of the motor of the above embodiment with reference to the same figure, first, the magnetic poles 7.7', which constitute the rotor, and the armatures 6,6', which constitute the stator. Looking at the moment when
2 is repelled by the NA of each armature 6 constituting the fixed armature 1 and attracted to Sl of each armature 6, and is also attracted to the 82 of the magnetic pole 7.
is repelled by the S of each armature and attracted to the NB of each armature 6, and so on, between all the magnetic poles and each armature up to the right end of Figure 2+11, the magnetic pole 7 is It can be seen that a force is generated that rotates the object to the right. however,
As seen at the left end of Fig. 2(l), N1 of the magnetic pole 7, NA of each armature 6, S of the magnetic pole 7, and 84 of each armature act as a neutral zone, producing rotational force at this moment. However, if the magnetic pole 7 rotates even slightly to the right in the drawing, N1 will still be repelled by NA, SI will also be repelled by SA, and a rotational force will be generated in the right direction in the drawing as before. .

このモータの回転数が上がって印加電圧の周波数に同期
したときは、回転+1を構成する磁極7が15°回転す
ると、回転+1を構成する磁極7と固定電機子2を構成
する各電機子6との位置関係 ゛は、磁極7が同図右方
向へ15/360だけ移転することによって第2図(2
)に示すような位置関係になる。
When the rotation speed of this motor increases and synchronizes with the frequency of the applied voltage, when the magnetic pole 7 that constitutes rotation +1 rotates 15 degrees, the magnetic pole 7 that constitutes rotation +1 and each armature 6 that constitutes fixed armature 2 2 (2) by moving the magnetic pole 7 by 15/360 to the right in the figure.
) The positional relationship will be as shown in ().

このように回転子9が15°回転する寸前に、このモー
タに供給される3和文番電流のC相の電流に転流が生じ
るようにする。
In this manner, just before the rotor 9 rotates by 15 degrees, commutation occurs in the C-phase current of the 3 Japanese pattern current supplied to this motor.

このようなタイミングで転流を生じさせるためには、実
施例のようにモータ外部から3和文番電流を通電する場
合には、位相の進行により該3和文番電流の一つの相に
転流が生じる時間、即ち1サイクルに要する時間の1/
6の時間にモータが15/360回だけ回転するような
回転数に達していればモータは印加電圧に同期するわけ
で、そのような回転数に達するまでがこのモータの立ち
上がり時間ということになる。このようにモータ外部か
ら3和文番電流を通電する場合には、立ち上がり時間を
経て上記のようにモータの回転数が印加電圧の周波数に
同期したときに初めてこのモータは以下述べるような所
期の回転力を発揮することになる。
In order to cause commutation at such a timing, when the 3-Japanese current is applied from outside the motor as in the example, commutation occurs in one phase of the 3-Japanese current due to phase progression. The resulting time, i.e. 1/ of the time required for one cycle.
If the motor reaches a rotation speed such that it rotates only 15/360 times at time 6, the motor will synchronize with the applied voltage, and the time it takes to reach that rotation speed is the motor's rise time. . When applying a 3-Japanese current from the outside of the motor in this way, the motor reaches the desired state as described below only when the motor rotation speed synchronizes with the frequency of the applied voltage as described above after the rise time. It will exert rotational force.

これに反し、モータ外部からは直流電流を通電し、整流
子またはスイッチング素子等により転流を生じさせるモ
ータにあっては、上記のような立ち上がり時間の問題は
なく、実施例のモータにあっては、回転手工が15′回
転したとき毎に1つの相の転流が生じるように整流子お
よびブラシを配置しておけばよいし、またスイッチング
素子による場合には、位置検出センサによって回転子9
が15′回転する毎にスイッチング素子に信号を送り、
これに応じてスイッチング素子から3相の各コイルに順
次転流を生じさせれば良い。
On the other hand, a motor in which direct current is applied from outside the motor and commutation is caused by a commutator or switching element, etc., does not have the problem of rise time as described above, and the motor of the embodiment does not have the problem of rise time. In this case, the commutator and brushes may be arranged so that commutation of one phase occurs every 15' rotation of the rotary hand, and if a switching element is used, the rotor 9 can be switched by a position detection sensor.
Sends a signal to the switching element every 15' rotation,
In response to this, commutation may be sequentially caused from the switching element to each of the three-phase coils.

上記いずれの構成によっても、第2図F11の位置関係
から回転+1を構成する磁極7が15′回転すると、磁
極7と各電機子6との位置関係は第2図(2)に示すよ
うな位置関係になり、またC相の電流を通電している第
2図(1)の瞬間におけるNc。
In any of the above configurations, when the magnetic pole 7 that constitutes rotation +1 rotates 15' from the positional relationship shown in FIG. 2 F11, the positional relationship between the magnetic pole 7 and each armature 6 becomes as shown in FIG. 2 (2). Nc at the moment of FIG. 2 (1) when the positional relationship is established and the C-phase current is flowing.

Sc 、Ncの各電機子のコイルには前記理由によって
、この位置関係になる寸前に転流が生じるから、該各電
機子はそれぞれ第2図(2)の瞬間においては極性が変
わり、Sc 、Nc 、Scとなる。即ち各電機子の内
で360°を3で除した120°の範囲内にある前記N
 c、 S c、 N C+の各電機子には同時に転流
が生じS。N、、SC1となったのである。
Due to the above-mentioned reason, commutation occurs in the coils of the armatures Sc and Nc just before they reach this positional relationship, so the polarity of each armature changes at the moment shown in FIG. 2 (2), and Sc, Nc and Sc. That is, the above N within a range of 120°, which is 360° divided by 3,
Commutation occurs simultaneously in each of the armatures c, S c, and N C+. It became N., SC1.

他の各電機子6の極性は第2図(1)における極性と変
わらない。
The polarity of each other armature 6 is the same as that in FIG. 2(1).

第2図(2)の瞬間における磁極7と各電機子6との位
置関係による力の発生をみると、回転子9を構成する磁
極7のN、は固定電機子2を構成する各電機子6のNA
に反発され且つSAに吸引され、磁極機7のSIは各電
機子6のSAに反発され且つNAに吸引され、磁極7の
N2は各電機子6のNAに反発され且つS、に吸引され
るというように、以下第2図(2)の右端に到るまで、
いずれの個所においても回転子を構成する磁極が同図右
方向に回転する力が生じることが判る。
Looking at the force generated due to the positional relationship between the magnetic poles 7 and each armature 6 at the moment shown in FIG. NA of 6
SI of the magnetic pole machine 7 is repelled by the SA of each armature 6 and attracted to the NA, and N2 of the magnetic pole 7 is repelled by the NA of each armature 6 and attracted to S. and so on, until you reach the right end of Figure 2 (2).
It can be seen that a force that causes the magnetic poles constituting the rotor to rotate in the right direction in the figure is generated at any location.

以下第2図(6)まで、いずれも同様であって、いずれ
も前図よりも回転子1を構成する磁極7が15°づつ回
転した状態における磁極7と各電機子6との位置関係を
示しており、また第2図(1)の瞬間から第2図(2)
の瞬間になる直前にC相の電流を通電している各電機子
に同時に転流が生じ、次に同図(3)の瞬間になる直前
にB相の電流を通電している各電機子に転流が生じ、次
に同図(4)の瞬間になる直前にA相の電流を通電して
いる各電機子に同時に転流が生じるとういうことを繰り
返し、いずれも前図と比較して転流が生じた各電機子の
極性が前図と変化していることを示しているが、第2図
のどの図の瞬間においても、回転子■を構成する磁極7
が図面右方向に回転する力を生じていることが、前記同
様の説明で理解できよう。
The following figures up to Figure 2 (6) are all the same, and in each case the positional relationship between the magnetic poles 7 and each armature 6 is shown in a state where the magnetic poles 7 constituting the rotor 1 are rotated by 15 degrees compared to the previous figure. and from the moment of Figure 2 (1) to Figure 2 (2)
Immediately before the moment (3) in the same figure, commutation occurs simultaneously in each armature carrying the C-phase current, and then immediately before the moment (3) in the same figure, each armature carrying the B-phase current occurs. Commutation occurs at , and then immediately before the moment (4) in the same figure, commutation occurs at the same time in each armature carrying the A-phase current. Compare each case with the previous figure. This shows that the polarity of each armature where commutation occurred has changed from the previous figure, but at any moment in Figure 2,
It can be understood from the same explanation as above that it generates a force that rotates in the right direction in the drawing.

(他の実施例) 勿論本発明は前記実施例に限定されるべき必要はないこ
とは言うまでもなく、例えば、回転子を構成する磁極に
各電機子を用い、固定子を永久磁石等の磁極で構成して
もよいし、また第1図では3相の結線をY結線で示した
が、これをΔ結線にしてもよく、また各種類の各電機子
の幅と各種類の磁極の幅や、相の数、“極数等も上記実
施例に限定されることなく、設計上自由に構成できる。
(Other Embodiments) Of course, it goes without saying that the present invention is not limited to the above-mentioned embodiments. In addition, although the three-phase connection is shown as a Y connection in Figure 1, it may be a Δ connection, and the width of each type of armature and the width of each type of magnetic pole may be , the number of phases, the number of poles, etc. are not limited to the above embodiments, and can be freely configured in terms of design.

転流の方法も同様であって、前記実施例に傍論として述
べたように、センサとスイッチング機構によっても、整
流子とブラシによっても、その他の転流方法によっても
本発明を実施できる。
The method of commutation is similar, and as mentioned in the above embodiments, the present invention can be implemented using a sensor and a switching mechanism, a commutator and brushes, or other commutation methods.

また第2回答図に示す展開図と全く同様に、直線状にス
テータを構成する電機子と、固定磁極から成るスライダ
を配置し、またはその逆に配置することによって、リニ
ア・モータとして本発明を実施できる。
Also, just like the development diagram shown in the second answer diagram, the present invention can be implemented as a linear motor by arranging the armature that constitutes the stator and the slider consisting of fixed magnetic poles in a straight line, or vice versa. Can be implemented.

(発明の効果) 本発明は上記のように、固定子または回転子を構成する
電機子について、各電機子のうちの全周360°を整数
で除した中心角の範囲内の角電機子に同時に転流が生じ
るように結線構成したことと、1ポール1コイル巻きに
したことにより、従来のモータにみられるように一つの
電機子のコイルに逆方向に電流が流れることもな(、ま
たスロ・ノド跨線もないことによって、モータ定数の高
いモータが得られることば等の効果を有する。
(Effects of the Invention) As described above, the present invention deals with the armatures constituting the stator or the rotor. By arranging the wiring so that commutation occurs at the same time and by winding one coil per pole, current does not flow in the opposite direction to one armature coil (as seen in conventional motors). Since there is no slot/throat crossing line, there is an advantage that a motor with a high motor constant can be obtained.

さらに本発明にあっては、前記のように他の相の電流の
流れる電機子との間には非磁性体のように磁束の通り難
いものを介在させるから、各電機子から発生した磁界に
よる磁力線は第1図矢印11.11′に示すように同一
相の電流の流れる電板子の間を循環することになり、他
の相をの電機子から生じる磁束が別の相の磁束と交差し
たりすることが無く、そのため磁力線回路が簡単でスム
ーズな回路を辿ることになるから、磁気ヒステリシス等
によるエネルギーのロスも少なくなる等の3つの点で従
来のモータにおける不合理な点を是正したものであるか
ら、それらの相乗効果により、本発明のモータは実験に
よれば、同一の重量の従来の構造のモータに比してモー
タ定数が2倍以上という画期的なモータができるに到っ
たのである。
Furthermore, in the present invention, since a material such as a non-magnetic material through which magnetic flux is difficult to pass is interposed between the armatures through which currents of other phases flow, as described above, the magnetic field generated from each armature is As shown by arrows 11 and 11' in Figure 1, the lines of magnetic force circulate between the platers through which the current of the same phase flows, and the magnetic flux generated from the armature of the other phase intersects with the magnetic flux of the other phase. This corrects the unreasonable points of conventional motors in three ways: the magnetic field line circuit follows a simple and smooth circuit, and there is less energy loss due to magnetic hysteresis, etc. Therefore, due to these synergistic effects, experiments have shown that the motor of the present invention has a revolutionary motor with a motor constant that is more than twice that of a motor with the same weight and conventional structure. It was.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施せる3相8極モータの側面概念図
。第2図は第1図のモータの全周360゛を一つの直線
状に展開して磁極と電機子との位置関係を示す説明図で
ある。
FIG. 1 is a conceptual side view of a three-phase eight-pole motor in which the present invention can be implemented. FIG. 2 is an explanatory diagram showing the positional relationship between the magnetic poles and the armature by expanding the entire 360° circumference of the motor shown in FIG. 1 into a single straight line.

Claims (1)

【特許請求の範囲】[Claims] 固定子および回転子のうちの、一方は永久磁石等から成
る磁極で、他の一方は1ポール1コイル巻きの各電機子
で構成すると共に、該各電機子のうちの360°を整数
で除した中心角内に在る全ての電機子には或る1つの相
の電流だけを通電するように結線構成し、他の相の電流
の流れる電機子との間には非磁性体等のように磁束が通
り難いものを介在させて成るモータ。
One of the stator and rotor is composed of magnetic poles made of permanent magnets, etc., and the other is composed of armatures with one pole and one coil winding, and 360° of each armature is divided by an integer. All the armatures within the central angle are connected so that only one phase of current flows through them, and there is no material, such as a non-magnetic material, between them and the armatures through which other phase currents flow. A motor that is made by interposing something that makes it difficult for magnetic flux to pass through.
JP29302086A 1986-12-09 1986-12-09 Motor Pending JPS63144751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29302086A JPS63144751A (en) 1986-12-09 1986-12-09 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29302086A JPS63144751A (en) 1986-12-09 1986-12-09 Motor

Publications (1)

Publication Number Publication Date
JPS63144751A true JPS63144751A (en) 1988-06-16

Family

ID=17789441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29302086A Pending JPS63144751A (en) 1986-12-09 1986-12-09 Motor

Country Status (1)

Country Link
JP (1) JPS63144751A (en)

Similar Documents

Publication Publication Date Title
US10263480B2 (en) Brushless electric motor/generator
US5117142A (en) Permanent magnetized synchronous machine designed according to the transverse flux principle
US4883999A (en) Polyphase electronically commutated reluctance motor
US7852037B2 (en) Induction and switched reluctance motor
US3205384A (en) Homopolar generator
JPS6331453A (en) Electric equipment
US5202599A (en) Electric motor
US5798594A (en) Brushless synchronous rotary electrical machine
JPS6223536B2 (en)
EP0431178B1 (en) Synchronous machine
JPH04322150A (en) Motor
JPS63129840A (en) Motor
JPS63144751A (en) Motor
WO2002082622A1 (en) Permanent magnet type synchronous motor
US5952759A (en) Brushless synchronous rotary electrical machine
RU2256276C2 (en) Butt-end momentum motor
JPS63144749A (en) Motor
JP4056514B2 (en) Permanent magnet type three-phase rotating electric machine
JPS6377363A (en) High-efficiency motor
JPH09322455A (en) Permanent magnet type electric rotating machine having concentrated winding stator
JPS63140646A (en) Motor for forward or reverse rotation
EP0960465A1 (en) An electric machine
JP2003158863A (en) Hb permanent magnet ring coil type rotating electric machine
JPS56117570A (en) Brushless direct current motor
JPS63154052A (en) Motor