JPS6314426Y2 - - Google Patents

Info

Publication number
JPS6314426Y2
JPS6314426Y2 JP1986090593U JP9059386U JPS6314426Y2 JP S6314426 Y2 JPS6314426 Y2 JP S6314426Y2 JP 1986090593 U JP1986090593 U JP 1986090593U JP 9059386 U JP9059386 U JP 9059386U JP S6314426 Y2 JPS6314426 Y2 JP S6314426Y2
Authority
JP
Japan
Prior art keywords
current
wiring
gap
current transformer
hall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986090593U
Other languages
Japanese (ja)
Other versions
JPS6212932U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986090593U priority Critical patent/JPS6314426Y2/ja
Publication of JPS6212932U publication Critical patent/JPS6212932U/ja
Application granted granted Critical
Publication of JPS6314426Y2 publication Critical patent/JPS6314426Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Transformers For Measuring Instruments (AREA)

Description

【考案の詳細な説明】 〔考案の目的〕 (産業上の利用分野) 本考案は磁気回路と半導体感磁素子と制御電源
とを組合わせた電流変成器に係り、特に半導体感
磁素子、例えば、ホール素子を磁気回路の空隙に
容易且つ確実に挿入することのできる基板ユニツ
トを用いた電流変成器に関する。
[Detailed description of the invention] [Purpose of the invention] (Field of industrial application) The present invention relates to a current transformer that combines a magnetic circuit, a semiconductor magneto-sensitive element, and a control power supply. The present invention relates to a current transformer using a substrate unit in which a Hall element can be easily and reliably inserted into a gap in a magnetic circuit.

(従来の技術) 一般に半導体感磁素子例えばホール素子を用い
た電流変成器は、第4図に示されるように、鉄心
からなるコア1に空隙2を設けて空隙2を含む磁
気回路を形成し、そのコア1の空隙2に半導体感
磁素子例えばホール素子3に挿入し、そして、こ
のホール素子3に制御電流ICを流するための制御
電源4を設け、更に被測定電流I1を流す導体5を
コア1に貫通して成るものである。
(Prior Art) In general, a current transformer using a semiconductor magnetic sensing element, such as a Hall element, has a core 1 made of an iron core with a gap 2 to form a magnetic circuit including the gap 2, as shown in FIG. A semiconductor magnetic sensing element, such as a Hall element 3, is inserted into the gap 2 of the core 1, and a control power source 4 is provided for flowing a control current I C through the Hall element 3, and further a current to be measured I 1 is caused to flow therethrough. The conductor 5 is formed by penetrating the core 1.

また、このように構成される電流変成器の動作
原理は以下の通りである。
Further, the operating principle of the current transformer configured as described above is as follows.

即ち、導体5に電流I1が流れると、その電流I1
に比例した磁束Φがコア1中を通る。この磁束Φ
は空隙2内のホール素子3を通る。このとき、ホ
ール素子3に流す制御電流ICを一定に保つと空隙
2を通る磁束Φに比例したホール電圧VHがホー
ル素子3から出力として取り出される。換言すれ
ば、電流I1から磁束Φへの変換、そして、磁束Φ
からホール電圧VH(制御電流ICは一定)への変換
により電流I1に比例したホール電圧VHを得ること
ができる。従つて、ホール電圧VHの大きさから
電流I1を測定することができる。
That is, when a current I 1 flows through the conductor 5, the current I 1
A magnetic flux Φ proportional to Φ passes through the core 1. This magnetic flux Φ
passes through the Hall element 3 within the air gap 2. At this time, if the control current I C flowing through the Hall element 3 is kept constant, a Hall voltage V H proportional to the magnetic flux Φ passing through the air gap 2 is extracted from the Hall element 3 as an output. In other words, the conversion from current I 1 to magnetic flux Φ, and magnetic flux Φ
A Hall voltage V H proportional to the current I 1 can be obtained by converting from V H to a Hall voltage V H (control current I C is constant). Therefore, the current I 1 can be measured from the magnitude of the Hall voltage V H.

第5図はコア1に複数例えば4個の空隙を設
け、各空隙2にそれぞれホール素子3を一個ずつ
挿入し、各ホール素子3から出力される各ホール
電圧VHを加算増幅器6によつて加算するように
した電流変成器を示すものである。このような電
流変成器によれば、取り出すホール電圧VHを高
くすることができ、外部磁束の影響を避けること
ができる。
In FIG. 5, a plurality of, for example, four, air gaps are provided in the core 1, one Hall element 3 is inserted into each air gap 2, and each Hall voltage V H output from each Hall element 3 is collected by a summing amplifier 6. This figure shows a current transformer configured to add. According to such a current transformer, the Hall voltage V H taken out can be increased, and the influence of external magnetic flux can be avoided.

(考案が解決しようとする問題点) さて、以上のように構成される電流変成器にお
いて、コアの全空隙の総間隔gについて考察する
と、その間隔gは次式で与えられる。
(Problems to be Solved by the Invention) Now, in the current transformer configured as described above, considering the total spacing g of all the voids in the core, the spacing g is given by the following equation.

g=μp・μg・I1/Bm ……(1) 但し、I1は被測定電流、μpは空気の透磁率、μg
は空隙部の比透磁率、BmはI1の最大値において、
ホール素子の出力に最も適した空隙の必要磁束密
度である。
g=μ p・μ g・I 1 /Bm ...(1) However, I 1 is the current to be measured, μ p is the magnetic permeability of air, μ g
is the relative magnetic permeability of the air gap, Bm is the maximum value of I 1 ,
This is the required magnetic flux density of the air gap that is most suitable for the output of the Hall element.

上記(1)式から、Bmがホール素子によつて決ま
り、μgがコアの構造で決まるので、gはほぼI1
比例するとみてよい。
From the above equation (1), since Bm is determined by the Hall element and μg is determined by the structure of the core, g can be considered to be approximately proportional to I 1 .

ところが、元来、ホール素子を用いた電流変成
器は、分流器や磁気増幅器の大電流領域における
測定の困難さ、構造の大形化、経済上の不利等の
問題を克服するために開発されたものである。従
つて、それは必然的に大電流領域用となり、それ
につれてgも比較的大きいのが実情であつた。
However, current transformers using Hall elements were originally developed to overcome the problems of current shunts and magnetic amplifiers, such as difficulty in measuring in the large current range, large structures, and economic disadvantages. It is something that Therefore, it is inevitably used in a large current range, and the actual situation is that g is relatively large accordingly.

一方、ホール素子は、第6図に示すように、セ
ラミツクから成る小片にホール素子原体11を接
着し、所要の配線13を施したものが最も一般的
である。このホール素子を第7図に示すように、
前記gの間隔に合つた間隔片14の適当なところ
に埋設し、この間隔片14をコア1の空隙2に挿
入するのが普通である。
On the other hand, the most common Hall element is one in which a Hall element element 11 is adhered to a small piece of ceramic and the required wiring 13 is provided, as shown in FIG. As shown in Fig. 7, this Hall element is
It is common practice to embed the spacing piece 14 at an appropriate location corresponding to the spacing g, and to insert this spacing piece 14 into the gap 2 of the core 1.

しかるに最近は、直流電源の制御、保護が精密
に行なわれるようになり、ホール素子を用いた電
流変成器は、測定電流の変化に対する応答性が良
く、正負の電流極性を弁別することができ、測定
精度も良く、更に測定電流回路と出力回路とが絶
縁されているという利点を有するので見直されて
きている。しかも、従来、ホール素子を用いた電
流変成器においては特性上不利であるとされてい
た小電流領域用のもの、また、特性上第5図のよ
うに多数の空隙をもつたものが強く要求されるよ
うになつてきている。このことは、必然的に空隙
の間隔gを非常に狭くすることを要請し、その結
果、ホール素子を第6図に示されるような単体の
状態でコアの空隙に挿入固定することを困難にし
ている。また、第7図のように間隔片を用いると
狭いgの間隔に対応することを困難にする。従つ
て、小電流域で特性の良い電流変成器を得ること
ができないという問題点があつた。
However, in recent years, DC power supplies have become more precisely controlled and protected, and current transformers using Hall elements have good responsiveness to changes in measured current and can distinguish between positive and negative current polarities. The measurement accuracy is good, and the measurement current circuit and output circuit are insulated, which is why it is being reconsidered. In addition, there is a strong demand for current transformers that use Hall elements to be used in small current ranges, which have been disadvantageous due to their characteristics, and for those that have a large number of air gaps as shown in Figure 5 due to their characteristics. This is becoming more and more common. This inevitably requires the gap g to be made very narrow, and as a result, it becomes difficult to insert and fix the Hall element as a single unit into the gap in the core as shown in FIG. ing. Further, if spacing pieces are used as shown in FIG. 7, it becomes difficult to accommodate narrow g spacings. Therefore, there is a problem that it is not possible to obtain a current transformer with good characteristics in a small current range.

本考案は、上記問題点を解決し、非常に狭い間
隔の空隙に容易且つ確実にホール素子を挿入する
ことができる基板ユニツトを用いた電流変成器を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a current transformer using a substrate unit that allows Hall elements to be inserted easily and reliably into very narrow gaps.

〔考案の構成〕[Structure of the idea]

(問題点を解決するための手段および作用) 本考案は以上の目的を達成するために空隙を有
し磁気回路を形成するコア部と、その空隙に挿入
される半導体感磁素子部と、その半導体感磁素子
部に制御電流を供給する制御電源とから成る電流
変成器において、前記半導体感磁素子部を、予め
引出配線をプリントした絶縁基板に半導体感磁素
子を装着・配線した基板ユニツトによつて構成し
この基板ユニツトにプリント配線によつて誘導起
電力補償回路を形成したことを特徴とする。
(Means and effects for solving the problems) In order to achieve the above-mentioned objects, the present invention includes a core portion having a gap and forming a magnetic circuit, a semiconductor magnetic sensing element portion inserted into the gap, and a core portion having a gap and forming a magnetic circuit. In a current transformer comprising a control power supply that supplies a control current to a semiconductor magnetically sensitive element section, the semiconductor magnetically sensitive element section is attached to a board unit in which the semiconductor magnetically sensitive element is mounted and wired on an insulating substrate on which lead wiring is printed in advance. Accordingly, the present invention is characterized in that an induced electromotive force compensation circuit is formed on this substrate unit by printed wiring.

(実施例) 以下、本考案を図の実施例を参照して説明す
る。
(Embodiments) The present invention will be described below with reference to embodiments shown in the drawings.

第1図は本考案の電流変成器に用いる基板ユニ
ツトの一実施例を示したものである。
FIG. 1 shows an embodiment of a board unit used in the current transformer of the present invention.

図において、11はホール素子原体、12はホ
ール素子原体11を接着固定するのに必要な小片
と狭い空隙に確実にホール素子原体11を設定す
るための基板とを兼ねる薄い絶縁基板(例えばセ
ラミツク基板)である。
In the figure, reference numeral 11 denotes a Hall element element, and 12 denotes a thin insulating substrate (12) that serves as a small piece necessary for adhesively fixing the Hall element element 11 and as a substrate for reliably setting the Hall element element 11 in a narrow gap. For example, a ceramic substrate).

この絶縁基板12にはホール素子原体11に制
御電流を流す配線およびホール電圧VHを取り出
す出力線がプリント配線により形成されている。
この基板ユニツトにおいては、ホール素子原体の
厚さ、プリント配線の厚さおよびそれらの表面を
被覆する絶縁被膜の厚さは非常に薄く、絶縁基板
12に空隙に挿入可能な強度があれば全体として
の厚さを例えば1mm以下にすることができる。従
つて、極めて薄い基板ユニツトを得ることができ
る。
On this insulating substrate 12, wiring for passing a control current through the Hall element body 11 and an output line for taking out the Hall voltage VH are formed by printed wiring.
In this substrate unit, the thickness of the Hall element element, the thickness of the printed wiring, and the thickness of the insulating film covering their surfaces are very thin, and if the insulating substrate 12 has enough strength to be inserted into the gap, then the whole The thickness can be made, for example, 1 mm or less. Therefore, an extremely thin substrate unit can be obtained.

また基板ユニツトのホール電圧VHを取り出す
回路の誘導起電力を丁度補償する回路16をプリ
ント配線により形成し、ホール電圧VHが発生す
る端子と直列に接続している。
Further, a circuit 16 for exactly compensating the induced electromotive force of the circuit for taking out the Hall voltage VH of the substrate unit is formed by printed wiring, and is connected in series with the terminal where the Hall voltage VH is generated.

尚、基板ユニツトと外部の配線13との接続は
プリント配線の端部で行われる。
Note that the connection between the board unit and the external wiring 13 is made at the end of the printed wiring.

第2図及び第3図はそれぞれ本考案の具体的な
実施例を示すものである。
FIGS. 2 and 3 each show a specific embodiment of the present invention.

これらの実施例は、その構成では第1図に示さ
れたものと基本的に共通している。
These embodiments have basically the same construction as that shown in FIG.

第2図はプリント配線のうち、ホール電圧VH
を取り出すための一寸の線を磁束の方向に対して
重なるように多層配線し、それによつて誘導起電
力をできるだけ低くし、更に配線端におけるルー
プ16を生じる起電力を補償するためのループ1
7を形成したものを示している。
Figure 2 shows the Hall voltage V H of the printed wiring.
Loop 1 is made by wiring a one-inch wire so as to overlap in the direction of the magnetic flux in a multi-layered manner so as to make the induced electromotive force as low as possible, and furthermore to compensate for the electromotive force that causes loop 16 at the end of the wiring.
7 is shown.

第3図は基板の表裏に磁束方向に充分に重なつ
たプリント配線を設け、このプリント配線間をス
ルーホール18によつて接続し、それによつて誘
導起電力を全く生じないようにした基板ユニツト
を示したものである。
Figure 3 shows a board unit in which printed wiring is provided on the front and back of the board, sufficiently overlapping in the direction of magnetic flux, and these printed wirings are connected by through holes 18, thereby eliminating any induced electromotive force. This is what is shown.

〔考案の効果〕[Effect of idea]

このように本考案によれば、近年要望の高いホ
ール素子を利用した電流変成器において、非常に
薄い基板ユニツトを使用することができるので、
小電流用のもの、あるいは、外部磁界の影響を僅
少にし、特性向上を計つた多素子形のものができ
る利点がある。
As described above, according to the present invention, a very thin substrate unit can be used in a current transformer using a Hall element, which has been in high demand in recent years.
It has the advantage of being able to be used for small currents or of a multi-element type that minimizes the influence of external magnetic fields and improves characteristics.

また、配線にプリント配線を用いているので、
誤配線を防止することができ、その配線回路の誘
導起電力を補償する回路を計算どおり正確に設け
ることができる。更に、全く誘導起電力を生じな
いように配線を行うことができ、被測定電流に忠
実な応答特性のよい電流変成器が得られる。
In addition, since printed wiring is used for wiring,
Miswiring can be prevented, and a circuit that compensates for the induced electromotive force in the wiring circuit can be provided accurately as calculated. Furthermore, wiring can be performed so that no induced electromotive force is generated, and a current transformer with good response characteristics that is faithful to the current to be measured can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による基本的基板ユニツトの斜
視図、第2図及び第3図はそれぞれ本考案の他の
実施例を示す基板ユニツトの斜視図、第4図は半
導体感磁素子を用いた電流変成器の基本構成図、
第5図は複数の半導体感磁素子を用いた電流変成
器の構成図、第6図はホール素子の基本構成図、
第7図は従来の基板ユニツトの斜視図である。 1……コア、2……空隙、3……ホール素子、
4……制御電源、5……導体、6……加算増幅
器、11……ホール素子原体、12……基板、1
3……引出配線、14……間隔片、15……プリ
ント配線、18……スルーホール。
FIG. 1 is a perspective view of a basic substrate unit according to the present invention, FIG. 2 and FIG. 3 are perspective views of substrate units showing other embodiments of the present invention, and FIG. 4 is a basic configuration diagram of a current transformer using a semiconductor magnetic sensing element.
FIG. 5 is a diagram showing the configuration of a current transformer using a plurality of semiconductor magnetic sensing elements, and FIG. 6 is a basic diagram showing the configuration of a Hall element.
FIG. 7 is a perspective view of a conventional substrate unit. 1: core; 2: gap; 3: Hall element;
4: control power supply, 5: conductor, 6: summing amplifier, 11: Hall element body, 12: substrate, 1
3: lead-out wiring; 14: spacer; 15: printed wiring; 18: through hole.

Claims (1)

【実用新案登録請求の範囲】 (1) 空隙を有し磁気回路を形成するコア部の前記
空隙に挿入される半導体感磁素子部と、その半
導体感磁素子部に制御電流を供給する制御電源
とから成る電流変成器において、前記半導体感
磁素子部を、予め引出配線をプリントした絶縁
基板に半導体感磁素子部を装着・配線した基板
ユニツトによつて構成し、前記基板ユニツトに
形成された引出配線のうち少なくとも一対は、
測定される電流による磁束通過方向に対し絶縁
された状態で重なる多層プリント配線をして誘
導起電力補償回路を形成したことを特徴とする
電流変成器。 (2) 実用新案登録請求の範囲第1項記載におい
て、基板ユニツトに形成された引出配線のうち
少なくとも一対は、そのうちの1本の配線がス
ルーホールを介して基板の表面にまわされ、そ
の配線と表面の他の1本の配線とが測定される
電流による磁束通過方向に対して充分な重なり
をもつように形成されていることを特徴とする
電流変成器。
[Claims for Utility Model Registration] (1) A semiconductor magneto-sensitive element section inserted into the gap of a core section that has an air gap and forms a magnetic circuit, and a control power source that supplies a control current to the semiconductor magneto-sensitive element section. In the current transformer comprising: At least one pair of the lead wires are
A current transformer characterized in that an induced electromotive force compensation circuit is formed by overlapping multilayer printed wiring in an insulated state with respect to the direction of magnetic flux passing by the current to be measured. (2) In claim 1 of the utility model registration claim, at least one pair of lead-out wirings formed on the board unit has one wiring routed around the surface of the board via a through-hole, and the wiring and one other wiring on the surface thereof are formed so as to have sufficient overlap in the direction of magnetic flux passing by the current to be measured.
JP1986090593U 1986-06-16 1986-06-16 Expired JPS6314426Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986090593U JPS6314426Y2 (en) 1986-06-16 1986-06-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986090593U JPS6314426Y2 (en) 1986-06-16 1986-06-16

Publications (2)

Publication Number Publication Date
JPS6212932U JPS6212932U (en) 1987-01-26
JPS6314426Y2 true JPS6314426Y2 (en) 1988-04-22

Family

ID=30950600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986090593U Expired JPS6314426Y2 (en) 1986-06-16 1986-06-16

Country Status (1)

Country Link
JP (1) JPS6314426Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173471A (en) * 1974-12-21 1976-06-25 Omron Tateisi Electronics Co DENRYUKENS HUTSUSOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173471A (en) * 1974-12-21 1976-06-25 Omron Tateisi Electronics Co DENRYUKENS HUTSUSOCHI

Also Published As

Publication number Publication date
JPS6212932U (en) 1987-01-26

Similar Documents

Publication Publication Date Title
US7365535B2 (en) Closed-loop magnetic sensor system
US5933003A (en) Magnetoresistive wheatstone bridge with compensating current conductor for measuring an electric current
US7164263B2 (en) Current sensor
KR100450012B1 (en) Current sensor
US8299779B2 (en) Device for measuring the intensity of an electric current and electric appliance including such device
US20090295384A1 (en) Magnetic field sensor and electrical current sensor therewith
CN107037251A (en) Current sensor and the device for measuring electric current
US20120146620A1 (en) Current sensor
JPS5991371A (en) Current sensor
JP2650211B2 (en) Current sensor based on compensation principle
JPS58501692A (en) Current measurement transformer
JP2005515667A (en) Integrated magnetic field strap for signal isolators
WO2023116280A1 (en) Stepped copper-bar current measurement apparatus
US5587652A (en) Alternating current sensor based on parallel-plate geometry and having a shunt for self-powering
JP2001153895A (en) Current sensor
JPH1026639A (en) Current sensor and electric device housing current sensor
US20190128974A1 (en) Magnetic sensor with integrated solenoid
JPS6314426Y2 (en)
Blagojević et al. Coreless open-loop current transducers based on hall effect sensor CSA-1V
JPH0650341B2 (en) Sensor structure of magnetic detector
JP2576763B2 (en) Ferromagnetic magnetoresistive element
JPH0424453Y2 (en)
JP3144051B2 (en) Current detector
US20230040496A1 (en) Current sensor
JP3673224B2 (en) Current transformer