JP3673224B2 - Current transformer - Google Patents

Current transformer Download PDF

Info

Publication number
JP3673224B2
JP3673224B2 JP2002014796A JP2002014796A JP3673224B2 JP 3673224 B2 JP3673224 B2 JP 3673224B2 JP 2002014796 A JP2002014796 A JP 2002014796A JP 2002014796 A JP2002014796 A JP 2002014796A JP 3673224 B2 JP3673224 B2 JP 3673224B2
Authority
JP
Japan
Prior art keywords
current transformer
winding
toroidal core
core
electric wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002014796A
Other languages
Japanese (ja)
Other versions
JP2003217952A (en
Inventor
弘樹 中川
Original Assignee
株式会社エネゲート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エネゲート filed Critical 株式会社エネゲート
Priority to JP2002014796A priority Critical patent/JP3673224B2/en
Publication of JP2003217952A publication Critical patent/JP2003217952A/en
Application granted granted Critical
Publication of JP3673224B2 publication Critical patent/JP3673224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transformers For Measuring Instruments (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、電流トランスに関するものである。さらに詳しくは、この出願の発明は、ホール素子を用いることなくコア磁束を能動的に零に保つことのできる、新しい磁束零方式の電流トランスに関するものである。
【0002】
【従来の技術】
従来、電流トランスにおいて、そのコア磁束を零に保つことによって入出力特性を直線化し改善するには、ホール素子を用いて磁束を検出して零に保つように制御することがしばしば行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、ホール素子を用いた磁束零方式の電流トランスでは、温度変化による検出誤差が大きいため、高精度の検出を目指すにはそれを補正するための複雑な補正回路が必要になるといった問題があった。
【0004】
また、ホール素子はコアの一部もしくは全部にギャップを作り、そのギャップに挿入する必要があるため、磁気回路が乱され、構造的な変換誤差も生じてしまう。
【0005】
この出願の発明は、以上のとおりの事情に鑑みてなされたものであり、従来技術の問題点を解消し、ホール素子を用いることなくコア磁束を能動的に零に保つことのできる、新しい磁束零方式の電流トランスを提供することを課題としている。
【0006】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、第1には、トロイダルコアに対して2本の電線を束ねたバイファイラ方式で巻き線が行われている電流トランスであって、電線の一方が二次巻線、他方が三次巻線とされ、二次巻線は演算増幅器の入力に、三次巻線は演算増幅器の出力に接続されており、二次巻線の両端に発生する電圧が常に零になるように三次巻線に流れる電流が制御されることを特徴とする電流トランスを提供する。
【0007】
また、第2には、バイファイラ方式巻き線の前記電線とは別の電線をトロイダルコアの穴に通すもしくはトロイダルコアに複数回巻き付けることで、一次巻線が構成されていることをさらに特徴とする電流トランス、第3には、サーボ型であることをさらに
特徴とする上記電流トランスを提供する。
【0008】
【発明の実施の形態】
図1は、上記のとおりの特徴を有するこの出願の発明の一実施形態を示した回路構成図であり、サーボ型の電流トランスとなっている。
【0009】
この図1の実施形態では、ドーナツ形状の磁気コアであるトロイダルコアに対して2本の電線を束ねたバイファイラ方式で巻き線を行い、電線の一方および他方を巻数比1:1の二次巻線2ndおよび三次巻線3rdとし、一次巻線1stについては別途の電線によりトロイダルコアの穴を貫通するもしくはトロイダルコアに複数回巻き付けることで構成している。そして、演算増幅器を設け、その入力に二次巻線2ndを接続し、出力には三次巻線3rdを接続して、二次巻線2ndの両端に発生する電圧が常に零になるように三次巻線3rdに流れる電流を制御しながら動作するようになっている。
【0010】
これにより、計測対象である一次巻線1stに流れる電流により誘導される磁束が三次巻線3rdにより誘導される磁束によって打ち消され、結果としてコア内部の磁束は零に保たれることとなる。また、測定したい一次電流に比例した電流が三次巻線3rdに流れるため、この電流を測定することによって一次電流を知ることもできる。
【0011】
ここで、図1の回路を等価回路にすると図2に示したようになる。この図2における一次近似による伝達関数は、
【0012】
【数1】

Figure 0003673224
【0013】
となる。
【0014】
電気機器の消費電力を測定する等の目的において、その電源周波数は50および60Hzであり、その付近の周波数帯における一般的な演算増幅器のオープンループゲインは通常105程度あるため、数1からも明らかなように、電流の変換誤差が0.01%程度の電流トランスを比較的簡単に実現することができる。
【0015】
もちろん、この出願の発明は以上の実施形態に限定されるものではなく、細部については様々な態様が可能である。
【0016】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、ホール素子を用いることなくコア磁束を能動的に零に保つことができ、それによる入出力特性の直線化改善が実現された、新しい磁束零方式の電流トランスが提供される。
【0017】
この電流トランスは当然、ホール素子に起因する温度変動はなく、また磁気コアに対する加工も必要ないので理想的な形状の磁気回路を使用することができる。また、バイファイラ方式の巻き線を採用しているので二次巻線と三次巻線の巻数比が必ず1:1になり、簡易な巻線装置を用いてもその比率が保証され、コストダウンを図ることができる。また、安価なコア材を用いても高い変換精度を維持でき、回路構成も機械的構造も非常に単純である。これらのことから、安価に高精度な電流トランスの製造が可能となる。
【図面の簡単な説明】
【図1】この出願の発明の一実施形態を示した回路構成図である。
【図2】図1の等価回路を示した図である。[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a current transformer. More specifically, the invention of this application relates to a new zero-flux-type current transformer capable of actively keeping the core magnetic flux at zero without using a Hall element.
[0002]
[Prior art]
Conventionally, in a current transformer, in order to linearize and improve the input / output characteristics by keeping the core magnetic flux at zero, it is often performed to detect the magnetic flux using a Hall element and keep it at zero. .
[0003]
[Problems to be solved by the invention]
However, a zero-flux current transformer using a Hall element has a large detection error due to a temperature change. Therefore, there is a problem that a complicated correction circuit is required to correct it in order to achieve high-precision detection. It was.
[0004]
In addition, since the Hall element needs to create a gap in a part or all of the core and insert it into the gap, the magnetic circuit is disturbed and a structural conversion error occurs.
[0005]
The invention of this application has been made in view of the circumstances as described above, and solves the problems of the prior art, and a new magnetic flux that can keep the core magnetic flux at zero without using a Hall element. It is an object to provide a zero-type current transformer.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the invention of this application is firstly a current transformer in which winding is performed by a bifilar system in which two electric wires are bundled with respect to a toroidal core. One is the secondary winding, the other is the tertiary winding, the secondary winding is connected to the input of the operational amplifier, the tertiary winding is connected to the output of the operational amplifier, and the voltage generated across the secondary winding Provided is a current transformer characterized in that the current flowing in the tertiary winding is controlled so that is always zero.
[0007]
Moreover, 2ndly, the primary winding is further comprised by letting the electric wire different from the said electric wire of a bifilar system winding pass through the hole of a toroidal core, or to wind to a toroidal core several times, It is further characterized by the above-mentioned. A current transformer, and third, the current transformer is further characterized in that it is of a servo type.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a circuit configuration diagram showing an embodiment of the invention of this application having the features as described above, which is a servo-type current transformer.
[0009]
In the embodiment of FIG. 1, a toroidal core, which is a donut-shaped magnetic core, is wound by a bifilar system in which two electric wires are bundled, and one and the other of the electric wires are wound in a secondary winding with a turns ratio of 1: 1. A wire 2nd and a tertiary winding 3rd are used, and the primary winding 1st is configured by penetrating a hole in the toroidal core with a separate electric wire or by being wound around the toroidal core multiple times. Then, an operational amplifier is provided, and the secondary winding 2nd is connected to the input, and the tertiary winding 3rd is connected to the output, so that the voltage generated at both ends of the secondary winding 2nd is always zero. It operates while controlling the current flowing through the winding 3rd.
[0010]
As a result, the magnetic flux induced by the current flowing in the primary winding 1st to be measured is canceled by the magnetic flux induced by the tertiary winding 3rd, and as a result, the magnetic flux inside the core is kept at zero. Further, since a current proportional to the primary current to be measured flows through the tertiary winding 3rd, the primary current can be known by measuring this current.
[0011]
Here, when the circuit of FIG. 1 is converted into an equivalent circuit, it is as shown in FIG. The transfer function by the first order approximation in FIG.
[0012]
[Expression 1]
Figure 0003673224
[0013]
It becomes.
[0014]
For the purpose of measuring the power consumption of electric equipment, the power supply frequency is 50 and 60 Hz, and the open loop gain of a general operational amplifier in the frequency band in the vicinity thereof is usually about 10 5. As is apparent, a current transformer having a current conversion error of about 0.01% can be realized relatively easily.
[0015]
Of course, the invention of this application is not limited to the above embodiments, and various aspects are possible for details.
[0016]
【The invention's effect】
As described above in detail, the invention of this application enables the core magnetic flux to be actively maintained at zero without using a Hall element, thereby improving the linearization of input / output characteristics. A current transformer is provided.
[0017]
Naturally, this current transformer has no temperature fluctuation caused by the Hall element and does not require any processing on the magnetic core, so that an ideally shaped magnetic circuit can be used. In addition, since the bifilar winding is adopted, the turn ratio of the secondary winding and the tertiary winding is always 1: 1, and even if a simple winding device is used, the ratio is guaranteed and the cost is reduced. Can be planned. Moreover, even if an inexpensive core material is used, high conversion accuracy can be maintained, and the circuit configuration and mechanical structure are very simple. For these reasons, it is possible to manufacture a current transformer with high accuracy at low cost.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram showing an embodiment of the invention of this application.
2 is a diagram showing an equivalent circuit of FIG. 1. FIG.

Claims (3)

トロイダルコアに対して2本の電線を束ねたバイファイラ方式で巻き線が行われている電流トランスであって、電線の一方が二次巻線、他方が三次巻線とされ、二次巻線は演算増幅器の入力に、三次巻線は演算増幅器の出力に接続されており、二次巻線の両端に発生する電圧が常に零になるように三次巻線に流れる電流が制御されることを特徴とする電流トランス。A current transformer in which two wires are wound on a toroidal core and wound by a bifilar method, one of the wires being a secondary winding and the other being a tertiary winding, The tertiary winding is connected to the output of the operational amplifier at the input of the operational amplifier, and the current flowing through the tertiary winding is controlled so that the voltage generated at both ends of the secondary winding is always zero. And current transformer. バイファイラ方式巻き線の前記電線とは別の電線をトロイダルコアの穴に通すもしくはトロイダルコアに複数回巻き付けることで、一次巻線が構成されている請求項1記載の電流トランス。The current transformer according to claim 1, wherein the primary winding is configured by passing an electric wire different from the electric wire of the bifilar winding through the hole of the toroidal core or by winding the electric wire around the toroidal core a plurality of times. サーボ型である請求項1または2記載の電流トランス。3. The current transformer according to claim 1, wherein the current transformer is a servo type.
JP2002014796A 2002-01-23 2002-01-23 Current transformer Expired - Fee Related JP3673224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014796A JP3673224B2 (en) 2002-01-23 2002-01-23 Current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014796A JP3673224B2 (en) 2002-01-23 2002-01-23 Current transformer

Publications (2)

Publication Number Publication Date
JP2003217952A JP2003217952A (en) 2003-07-31
JP3673224B2 true JP3673224B2 (en) 2005-07-20

Family

ID=27651376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014796A Expired - Fee Related JP3673224B2 (en) 2002-01-23 2002-01-23 Current transformer

Country Status (1)

Country Link
JP (1) JP3673224B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154802A (en) * 2006-09-29 2008-04-02 唯冠科技(深圳)有限公司 Detecting method for output loop high-voltage arc of double-high output transformer and its processing equipment
US7719258B2 (en) 2008-10-13 2010-05-18 National Taiwan University Of Science And Technology Method and apparatus for current measurement using hall sensors without iron cores
JP6362837B2 (en) 2012-08-29 2018-07-25 京セラ株式会社 Zero-phase current transformer, ground fault current detection device, power conditioner, and zero-phase current transformer failure detection method
JP2021090023A (en) * 2019-12-06 2021-06-10 Tdk株式会社 Current transformer and electromagnetic induction type power generation device using the same

Also Published As

Publication number Publication date
JP2003217952A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
US7365535B2 (en) Closed-loop magnetic sensor system
CN107037251A (en) Current sensor and the device for measuring electric current
JP2002318250A (en) Current detector and overload current protective device using the same
US10295573B2 (en) Compensated rogowski coil
JP2004501341A (en) Current transformer for compensating current sensor
KR20080034765A (en) Apparatus for measuring current using rogowski sensor
JP2010529425A (en) Device for measuring the current through a conductor
CN107103982B (en) Magnetic core for sensor
JP2017058288A (en) Non-contact dc current sensor and dc current measuring system using non-contact dc current sensor
US20030071609A1 (en) Magnetic flux sensor and method
JP3673224B2 (en) Current transformer
US6191575B1 (en) Device for measuring linear displacements
CN103597367A (en) Method and system for controlling the turn-on time of a device that includes a magnetic circuit
JP2016017767A (en) Rogowski coil and current measuring instrument
JP2002202328A (en) Magnetic field type current sensor
JP2005503561A (en) Measuring transducer
JP5889114B2 (en) Current detector and current detection method
CN116106610A (en) TMR current sensor and design method
JP4310895B2 (en) Magnetic measuring instrument
JP2000097973A (en) D.c. current sensor
CN108362925B (en) Zero-flux large-current detection system and method for magnetic field cancellation of double-8-shaped three-wire
JP2010107247A (en) Quick reacting and less current consuming non-contact direct current sensor
JP2008101914A (en) Current sensor and electronic watthour meter
JP2000283998A (en) Magnetic circuit for converting electricity quantity into magnetic flux
WO2023077900A1 (en) Iron core-annular array multi-ring magnetosensitive current sensor and current measurement method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050118

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050421

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees