JPS63143992A - Treatment of waste liquid from photographic process and apparatus thereof - Google Patents

Treatment of waste liquid from photographic process and apparatus thereof

Info

Publication number
JPS63143992A
JPS63143992A JP29194386A JP29194386A JPS63143992A JP S63143992 A JPS63143992 A JP S63143992A JP 29194386 A JP29194386 A JP 29194386A JP 29194386 A JP29194386 A JP 29194386A JP S63143992 A JPS63143992 A JP S63143992A
Authority
JP
Japan
Prior art keywords
waste liquid
tank
photographic processing
metal
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29194386A
Other languages
Japanese (ja)
Inventor
Masayuki Kurematsu
雅行 榑松
Shigeharu Koboshi
重治 小星
Kazuhiro Kobayashi
一博 小林
Nobutaka Goshima
伸隆 五嶋
Naoki Takabayashi
高林 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP29194386A priority Critical patent/JPS63143992A/en
Publication of JPS63143992A publication Critical patent/JPS63143992A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To effectively remove offensive odor, by heating, evaporating and concentrating waste liquid under the existence of metal such as Fe, Ba, Zn and Ni or oxide and salt thereof. CONSTITUTION:Waste liquid is fed to an evaporation tank 3 via a feed pipe 1A thereof and metal such as Fe, Ba, Zn, Ni and Cu or oxide such as FeO, ZnO, NiO and CuO or metallic salt such as FeCl3, ZnCl2, NiCl2 and CuSO4 is added at 0.0001-3.0mol/l expressed in terms of metal. The mixture is heated and evaporated in such a state that the pH of waste liquid is maintained at 3.0-11.0. A pH regulating agent is fed from a tank 13 thereof with a pump 14 for the pH regulating agent. As a heating means, an electric heater or the like is preferably provided to the inside of the evaporation tank 3. Thereby the load of secondary treatment can be remarkably decreased.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、写真用自動現像機による写真感光材料の現像
処理に伴ない発生する廃液(本明細書において写真処理
廃液ないし廃液と略称)の加熱・蒸発処理における悪臭
を効果的に抑制するのに適切な方法及びその装置に関す
る。 [発明の背景] 近年、補充量の低減や水洗に替わる安定化処理を用い、
実質的に水洗を行わない、いわゆる無水洗自動現像機に
よる写真処理の普及によって廃液量は大幅に減少してき
た。 しかしかかる低補充や無水洗方式の写真処理によっても
、比較的小規模な処理でも1例えばXレイ感光材料の処
理で1日にlO交程度、印刷製版用感光材料の処理で1
日に301程度、カラー感光材料の処理で1日に50見
程度の廃液が発生し、その処理が問題となる。 本発明者は、少量で高濃度(例えばBOD 20,00
0〜30.OOOppm、 NH4’ 20,000 
N40.OOOppm程度)の写真処理廃液を効率的に
処理するには蒸発法が優れていることを見い出し、種々
の提案を行ってきた(特願昭80−2511001号〜
259010号、特願昭81−132098号、特願昭
61−185099号、特願昭81−185100号等
参照)。 しかしこの加熱・蒸発法においては、蒸発ガスあるいは
留液等から、亜硫酸ガス、硫化水素ガス、イオウガス、
アンモニアガス等に基づく悪臭が発生するという問題が
あり、この問題を解決しない限り、完成されたプロセス
とはならなかった。 従来かかる悪臭対策として、実開昭80−70841号
には、4J気管部に吸着処理部を設ける方法が提案され
ている。 しかしこの方法は排出された悪臭ガスを末端(系外に排
出されるすぐ手前、以下同じ)で処理しようとする点で
、これまで知られている排ガス処理と同様の技術思想に
基づくものであり1本発明の如き小規模な廃液処理設備
に付加するガス処理設備としては不適切なものであった
。 即ち悪臭ガスは一般に(成分によっても異なるが)凝結
の問題を解決すれば吸着等の設備で処理可能であると考
えられるが、写真廃液を蒸発して(すられる排ガス中の
悪臭ガス濃度は極めて高く、この高濃度の悪臭ガスを吸
着処理しようとすると、吸着剤がすぐに飽和してしまい
、ランニングコストが莫大にかかり、また吸着剤の交換
作業な須繁に行う必要が生じ、極めて煩雑である欠点が
あった。更に交換作業を少なくしようとすると吸着塔の
大きさを大きくする必要があり、設備コストの増大を招
くという欠点があった。 [発明の目的] 本発明は従来技術の欠点を解決し、コスト増を招くこと
なく、かつ煩雑な作業を要することなく、効率よく悪臭
を抑制できる方法を及びその装置を提供することを目的
とする。 [問題点を解決するための手段] 本発明者等は上記目的を達成すべく鋭意検討を重ねた結
果、本発明に至ったものである。 即ち本発明に係る写真処理廃液の処理方法は。 下記(1)〜(3)の金属等(以下1本発明の金属等と
いう)の少なくとも1種の存在下で写真処理廃液を加熱
・蒸発・濃縮することを特徴とする写真処理廃液の処理
方法。 [全屈等] (1) Fe、Ha、Zn、 Ni、 [:u、 Sn
、 Bi、 Co、 Cr、Ce。 ?i、 Zr、 Me、 Wからなる金属(2)上記金
属の酸化物 (3)上記金属の塩 本発明の好ましい実施態様としては、写真処理廃液がチ
オ硫酸イオン(例えばチオ硫酸アンモニウム)を含有す
ることであり、更にチオ硫酸イオンに加えて銀イオンを
含有することである。 また本発明に係る写真処理廃液の処理装置は、写真処理
廃液の供給手段と、該廃液を受け入れる蒸発槽と、該蒸
発槽内の廃液を加熱する加熱手段とを有し、該廃液を加
熱・蒸発・C腟する写真処理廃液の処理装置において、
前記写真処理廃液に本発明の金属等の少なくとも1種を
含有させる手段を有することを特徴とする。 [作用] 本発明は従来の如き排出された悪臭ガスを末端で処理す
る技術思想とは全く逆の発想に基づく技術思想であり、
悪臭の発生源に着目し、従来はとんど試みられたことの
ない悪臭対策の一手段を提供するものである。 即ち、写真処理廃液には、イオウ化合物(特にチオ硫酸
イオン等)の塩が大量に含有されており、蒸発濃縮過程
及び留液より H2Sの悪臭が発生する。またH2Sが
遂には硫化してSとなり、パイプが詰まったり、あるい
は留液が濁ったりする。 更に留液のpHが上昇すればアミンやアンモニアの悪臭
もある。 本発明者等はかかる悪臭等の問題を解決するため鋭意検
討を重ねた結果、金属の中でも特定の全屈、金属酸化物
、金属塩を廃液及び/又は濃縮液に含有せしめることに
よってH2S、 S 、アンモニアに伴う悪臭を抑制で
き、かつSに伴う渇り等の問題が解決できることを見い
出した。 この原因は定かではないが、本発明特有の金属等が加熱
された廃液中で水酸化物を作り、H2S。 Sのガスの発生を抑制する作用を呈し、またアンモニア
と錯塩を形成してアンモニアガスの流出を抑制し、更に
硫化物を形成してSの流出を抑制できるからであると推
定される。 [実施例] 以下、本発明の実施例を悪臭の抑制方法の場合の一例に
ついて添付図面に基づき説明する。 第1図は悪臭の抑制方法の一例を示す概念図である。 図において、1は写真処理廃液の供給手段、LAは該供
給手段lに用いられる廃液供給管。 2は写真処理廃液を加熱前に予熱するための予熱器、3
は蒸発槽、4は加熱手段、たとえばヒーター、5は蒸発
槽3内の廃液を加熱した時に発生する蒸気を蒸発槽3外
に排出するための蒸気排出管、6は該ノヘ気を冷却する
ためのガスクーラー。 7はガスクーラー用ファン、8は前記ノ入気を冷却して
得られる留液を貯留するための留液槽、9は脱湿された
ガスを蒸発槽に戻すための循環ファン、Aは本発明の金
属等を含有させる手段であり、例えば金属等溶解タンク
lO2金属等溶解供給ポンプ11.金属等供給管12等
からなる。Bは写真処理廃液にpH調整剤を供給する手
段であり1例えばp)I調整剤タンク13、pH2g1
整剤ポンプ+4. p)l調整剤供給管15、pHコン
トローラーPHC等からなる。 TOは温度コントローラーである。 以上の装置を用いて加熱・蒸発処理するプロセスの概略
を説明すると、廃液は廃液供給管IAを介して蒸発槽3
に供給され、本発明の金属等が添加され、ヒーター4に
より加熱・蒸発される。この間濃縮液のpHは3.0〜
11.0に維持されることが好ましく、より好ましくは
4.0〜8.0、より好ましくは5.0〜7.0に維持
されることである。 加熱温度は温度コントローラーTCで適宜調整される。 7人気は予熱器2で廃液と熱交換され、ガスクーラー6
に送られ、冷却され調湿されて、留液が分離される。留
液は留液槽8に貯留され、悪臭を感じさせることなく、
またROD、 COD、 SS等の排水規制値を満足す
るものであるため、必要に応じ河川等への放流又は再利
用が可痺である。留液が分離されたガスは悪臭を感じさ
せることもなく、また問題となる成分も含有しないため
、系外に排出できる。 一方1に発槽中の廃液は加熱・蒸発時間の経過と共に容
量が減少しelIi’!される。加熱用のヒーター4は
例えばタイマーの作動によって停止し、加熱が終了する
。残留′cwj液は系外に排出される。 次に本発明の一実施例である悪臭抑制方法について具体
的に説明する。 本発明の金属等としては、下記(1)〜(3)の金属等
から選ばれる少なくとも1種が用いられる。 [金属等] (1) Fe、Ba、Zn、Ni、Cu、Sn、Bi、
Go、Or、Ce、Ti。 Zr、Mo、Wからなる金属 (2)上記金属の酸化物 (3)上記金属の塩(例えば塩化物、硫酸塩。 硝酸塩、炭酸塩、リン酸用等) 上記(+)〜(3)の金属等の中でもFe、 Zn、 
Mi。 Cuの金属酸化物、金属塩が好ましく、より好ましくは
Fe、 Znの金属酸化物、金属塩である。 上記(2)の金属酸化物の具体例としては、例え1fF
e203. Fen、 ZnO,Nip、 Cuo、 
Cu70. Sno。 Bi2O+、 Cod、 Cr21h、 CI!203
.7in?、 ZrO;+等が挙げられ、上記(3)の
金属塩の具体例としては、例えばFeC13,Fe2(
SOs)3. FeC12,Fe5Os、 ZnC12
゜ZnSO4,NiC12,N15Oa、 CuSO4
,Cu2’JOa、 5nC12゜Bi(413,Co
CJl 2. Cr(NOz)x、 Cez(SO4)
3.Ti09O4゜Zr(SOs)2. Na2M03
0+e、 Na+oW+20a+等が挙げられる。 本発明の金属等の添加量は、 0.0001〜3.0■
ol/i (金属として)が好ましく、より好ましくは
0.001〜2.0+sol/JL 、特に好ましくは
0.005〜1.0aol/4である。 本発明の金属等は蒸発槽に供給される廃液に予め添加し
ておいてもよいし、蒸発槽に供給された後に添加されて
もよい、また蒸発槽内に添加する場合、加熱・蒸発開始
の前後を問わない、さらに蒸発槽に本発明の金属等を入
れておいてその後写真処理廃液を供給してもよく、この
場合メツシュ容器に本発明の金属等を詰め、これを蒸発
槽内に吊り下げておいてもよい。 蒸発槽に外添する場合1本発明の金属等が液体である場
合には第1図に示す如く、金属等溶解タンク1Gから金
属等供給ポンプ1Kを用いて、廃液とは別に添加しても
よい、また本発明の金属等が粉末等の固体である場合に
は、蒸発槽に直接添加してもよいし、第1図に示すタン
ク10に一度溶解後溶液として添加してもよい。 本発明の金属等を2種以上用いる場合、第1図に示すよ
うにタンクから外添する場合には、各添加金hA等毎に
複数のタンクを設けることが好ましいが、金属等の物性
によっては、1つのタンクで共用できる場合もある。 本発明においては廃液(濃縮液)のPHを好ましくは3
.0〜11.0.より好ましくは4.0〜8.0、特に
好ましくは5.0〜7.0に維持した状態で加熱・蒸発
することにより、悪臭をより効果的に抑制することがで
きる。 通常、廃液のpHは廃液の種類によって異なるが、チオ
硫酸イオン(例えばチオ硫酸アンモニウム)や亜硫酸イ
オン(例えば亜硫酸アンモニウム)を含みpHの低い定
着液等である場合には、 pHがかなり低く(例えばp
H3〜4程度)、またこれにpHの高い発色現像液が混
入する場合にはこの混廃液のpHは中性よりやや高め(
例えばpH7〜8程度)にあると考えられる。 これらの廃液は、蒸発Mas内で加熱されると、PH変
動(主に低下)を引き起す、このpH変動を制御するた
めにpH調整剤が用いられる。 本発明に用いることができるpH調整剤は、広義の調整
剤であり、必ずしも明確に分けられる訳ではないが、例
えば(I)pH変動に対して廃液に緩衝性を持たせる化
合物、(■)蒸発過程でp)Iの変動(主に低下)に対
し外添によりpHを制御する(主に上昇)する化合物が
挙げられる。 上記(1)の化合物としては1例えば (1) Ca、 Mg、AIL、Fe、 Zn等の金属
酸化物、金属水酸化物又は金属塩のようなPH低下によ
って
[Industrial Application Field] The present invention aims to eliminate bad odors during heating and evaporation treatment of waste liquid (herein referred to as photographic processing waste liquid or waste liquid) generated during the processing of photographic light-sensitive materials using automatic photographic processors. The present invention relates to methods and devices suitable for effective suppression. [Background of the invention] In recent years, stabilization treatments have been used to reduce the amount of replenishment and replace washing with water.
With the spread of photographic processing using so-called waterless automatic processors that do not substantially require water washing, the amount of waste liquid has been significantly reduced. However, even with such low-replenishment and water-free photographic processing, even relatively small-scale processing is possible, for example, in the processing of X-ray photosensitive materials, the amount of 1 O exchange per day is about 1, and in the processing of photosensitive materials for printing plate making, it is about 1
Approximately 301 waste liquids are generated per day, and approximately 50 waste liquids are generated per day in the processing of color photosensitive materials, and their disposal becomes a problem. The inventor has discovered that a small amount and a high concentration (e.g. BOD 20,00
0-30. OOOppm, NH4' 20,000
N40. We discovered that the evaporation method is an excellent way to efficiently treat photographic processing waste liquid (approximately OOppm), and have made various proposals (Japanese Patent Application No. 80-2511001~
259010, Japanese Patent Application No. 81-132098, Japanese Patent Application No. 61-185099, Japanese Patent Application No. 81-185100, etc.). However, in this heating/evaporation method, sulfur dioxide gas, hydrogen sulfide gas, sulfur gas, etc.
There was a problem in that a bad odor was generated due to ammonia gas, etc., and the process could not be completed unless this problem was solved. As a conventional measure against such bad odors, Japanese Utility Model Application Publication No. 80-70841 proposes a method in which an adsorption treatment section is provided in the 4J trachea. However, this method is based on the same technical concept as conventional exhaust gas treatment in that it attempts to treat the emitted foul-smelling gas at the end (immediately before it is emitted outside the system; the same applies hereinafter). 1. It was inappropriate as a gas treatment facility to be added to a small-scale waste liquid treatment facility such as the one of the present invention. In other words, it is generally thought that malodorous gases can be treated with equipment such as adsorption if the problem of condensation is solved (although this varies depending on the components), but the concentration of malodorous gases in the exhaust gas that is evaporated from photographic waste liquid is extremely high. Attempting to adsorb and treat this highly concentrated foul-smelling gas would quickly saturate the adsorbent, incurring huge running costs, and requiring frequent replacement of the adsorbent, making it extremely complicated. Furthermore, in order to reduce the replacement work, it is necessary to increase the size of the adsorption tower, resulting in an increase in equipment cost. [Object of the Invention] The present invention solves the drawbacks of the prior art. The purpose of the present invention is to provide a method and a device for efficiently suppressing bad odors without increasing costs or requiring complicated work. [Means for solving problems] The present inventors have made extensive studies to achieve the above object, and as a result, have arrived at the present invention. That is, the method for treating photographic processing waste liquid according to the present invention is: The following metals (1) to (3) (hereinafter referred to as the metal of the present invention), a method for processing a photographic processing waste liquid is characterized by heating, evaporating and concentrating the photographic processing waste liquid in the presence of at least one of the following. [Total bending etc.] (1) Fe , Ha, Zn, Ni, [:u, Sn
, Bi, Co, Cr, Ce. ? (2) Oxides of the above metals (3) Salts of the above metals In a preferred embodiment of the present invention, the photographic processing waste solution contains thiosulfate ions (for example ammonium thiosulfate). and further contains silver ions in addition to thiosulfate ions. Further, the processing apparatus for photographic processing waste liquid according to the present invention has a means for supplying the photographic processing waste liquid, an evaporation tank for receiving the waste liquid, and a heating means for heating the waste liquid in the evaporation tank, and includes heating means for heating the waste liquid in the evaporation tank. In a processing device for photographic processing waste liquid that evaporates and evaporates,
It is characterized in that it has a means for making the photographic processing waste liquid contain at least one kind of metal or the like of the present invention. [Function] The present invention is a technical idea based on an idea completely opposite to the conventional technical idea of treating emitted malodorous gas at the end,
Focusing on the source of the odor, the present invention provides a method of countermeasures against odor that has almost never been attempted before. That is, the photographic processing waste liquid contains a large amount of salts of sulfur compounds (particularly thiosulfate ions, etc.), and the foul odor of H2S is generated during the evaporation concentration process and from the distillate. Furthermore, H2S eventually sulfurizes and becomes S, which can clog pipes or make the distillate cloudy. Furthermore, if the pH of the distillate increases, there will be a foul odor from amines and ammonia. The inventors of the present invention have conducted extensive studies to solve problems such as bad odors, and have found that H2S, S It has been found that the odor associated with ammonia can be suppressed, and problems such as thirst associated with S can be solved. The cause of this is not clear, but the metals unique to the present invention produce hydroxides in the heated waste liquid, resulting in H2S. This is presumed to be because it exhibits the effect of suppressing the generation of S gas, forms a complex salt with ammonia to suppress the outflow of ammonia gas, and further forms sulfides to suppress the outflow of S. [Example] Hereinafter, an example of the method of suppressing a bad odor will be described based on the accompanying drawings. FIG. 1 is a conceptual diagram showing an example of a method for suppressing bad odor. In the figure, 1 is a supply means for photographic processing waste liquid, and LA is a waste liquid supply pipe used in the supply means 1. 2 is a preheater for preheating the photographic processing waste liquid before heating; 3
is an evaporation tank; 4 is a heating means, such as a heater; 5 is a steam exhaust pipe for discharging steam generated when the waste liquid in the evaporation tank 3 is heated to the outside of the evaporation tank 3; and 6 is for cooling the nozzle air. gas cooler. 7 is a gas cooler fan, 8 is a distillate tank for storing the distillate obtained by cooling the incoming air, 9 is a circulation fan for returning the dehumidified gas to the evaporation tank, and A is the main body. It is a means for containing the metal etc. of the invention, for example, a metal etc. dissolution tank lO2 metal etc. dissolution supply pump 11. It consists of a metal etc. supply pipe 12 and the like. B is a means for supplying a pH adjuster to the photographic processing waste liquid; for example, p) I adjuster tank 13, pH 2g1;
Regulatory pump +4. p) Consists of l regulator supply pipe 15, pH controller PHC, etc. TO is a temperature controller. To explain the outline of the heating and evaporation process using the above-mentioned device, the waste liquid is passed through the waste liquid supply pipe IA to the evaporation tank 3.
The metal of the present invention and the like are added thereto, and heated and evaporated by the heater 4. During this time, the pH of the concentrate was 3.0~
It is preferably maintained at 11.0, more preferably between 4.0 and 8.0, and even more preferably between 5.0 and 7.0. The heating temperature is appropriately adjusted by a temperature controller TC. 7 Popular is heat exchange with waste liquid in preheater 2, gas cooler 6
It is cooled and humidity-controlled, and the distillate is separated. The distilled liquid is stored in the distilled liquid tank 8, so that it does not give off a bad odor.
Furthermore, since it satisfies wastewater regulation values such as ROD, COD, and SS, it can be discharged into rivers or reused as necessary. The gas from which the distillate is separated does not give off a bad odor and does not contain any problematic components, so it can be discharged from the system. On the other hand, the volume of the waste liquid in the developing tank decreases with the passage of heating and evaporation time, and elIi'! be done. The heater 4 for heating is stopped by the operation of a timer, for example, and the heating is completed. The remaining 'cwj liquid is discharged outside the system. Next, a method for suppressing bad odor, which is an embodiment of the present invention, will be specifically described. As the metal of the present invention, at least one selected from the following metals (1) to (3) is used. [Metals, etc.] (1) Fe, Ba, Zn, Ni, Cu, Sn, Bi,
Go, Or, Ce, Ti. Metals consisting of Zr, Mo, and W (2) Oxides of the above metals (3) Salts of the above metals (e.g. chlorides, sulfates, nitrates, carbonates, phosphoric acids, etc.) of the above (+) to (3) Among metals, Fe, Zn,
Mi. Metal oxides and metal salts of Cu are preferred, and metal oxides and metal salts of Fe and Zn are more preferred. As a specific example of the metal oxide in (2) above, for example, 1fF
e203. Fen, ZnO, Nip, Cuo,
Cu70. Sno. Bi2O+, Cod, Cr21h, CI! 203
.. 7in? , ZrO;
SOs)3. FeC12, Fe5Os, ZnC12
゜ZnSO4, NiC12, N15Oa, CuSO4
,Cu2'JOa, 5nC12゜Bi(413,Co
CJl 2. Cr(NOz)x, Cez(SO4)
3. Ti09O4゜Zr(SOs)2. Na2M03
Examples include 0+e, Na+oW+20a+, and the like. The amount of metal etc. added in the present invention is 0.0001 to 3.0■
ol/i (as metal) is preferred, more preferably 0.001 to 2.0+sol/JL, particularly preferably 0.005 to 1.0 aol/4. The metal etc. of the present invention may be added in advance to the waste liquid supplied to the evaporation tank, or may be added after being supplied to the evaporation tank, or when added into the evaporation tank, heating and evaporation start. In addition, the metal of the present invention may be placed in the evaporation tank and then the photographic processing waste liquid may be supplied. In this case, the metal of the present invention is filled in a mesh container and placed in the evaporation tank. You can also leave it hanging. When adding externally to the evaporation tank 1 When the metal etc. of the present invention is a liquid, it can be added separately from the waste liquid using the metal etc. supply pump 1K from the metal etc. dissolution tank 1G as shown in Fig. 1. Also, when the metal of the present invention is a solid such as a powder, it may be added directly to the evaporation tank, or it may be added as a solution after being dissolved once in the tank 10 shown in FIG. 1. When using two or more types of metals, etc. of the present invention, it is preferable to provide multiple tanks for each additive metal, hA, etc., when externally adding them from a tank as shown in Figure 1. However, depending on the physical properties of the metals, etc. may be shared in one tank. In the present invention, the pH of the waste liquid (concentrated liquid) is preferably 3.
.. 0-11.0. By heating and evaporating while maintaining the temperature more preferably at 4.0 to 8.0, particularly preferably 5.0 to 7.0, malodors can be suppressed more effectively. Normally, the pH of waste liquid varies depending on the type of waste liquid, but if it is a fixer containing thiosulfate ions (e.g. ammonium thiosulfate) or sulfite ions (e.g. ammonium sulfite) and has a low pH, the pH may be quite low (e.g. p
H3 to 4), and if a color developing solution with a high pH is mixed in, the pH of this mixed waste solution will be slightly higher than neutral (
For example, it is considered to be at a pH of about 7 to 8). When these waste liquids are heated in the evaporator Mas, they cause pH fluctuations (mainly decreases), and pH regulators are used to control this pH fluctuation. The pH adjusting agent that can be used in the present invention is a adjusting agent in a broad sense, and is not necessarily clearly classified, but includes, for example, (I) a compound that imparts buffering properties to the waste liquid against pH fluctuations, (■) Examples include compounds that control (mainly increase) the pH by external addition in response to fluctuations (mainly decrease) in p)I during the evaporation process. Examples of compounds in (1) above include (1) metal oxides, metal hydroxides, or metal salts such as (1) Ca, Mg, AIL, Fe, Zn, etc.

【0ト】を遊離し、緩衝性を有する化合物 (2)炭酸塩の固体(例えばCt4CO3)のようにp
Hの低下によって溶解し、アルカリ性を呈する化合物(
3)有機m(例えばクエン酸等)及びその塩のような緩
衝剤 (0無機m(例えばホウ酸、リン酸等)及びその塩のよ
うな緩衝剤 (5) E[lTA等の7ミノカルポン酸系のキレート
剤(8) 1−tニトロキシエチリデン−1,1−ジホ
スホン酸等が挙げられ、これらの1種又は2種以上を組
合せ使用できる。 また上記(II)の化合物としては、例えば(1) N
a0)1. KOH,Ca(OH)2等のアルカリ金属
、又はアルカリ土類金属の水酸化物 (2)炭酸塩 (3)ケイm塩(例えばケイ酸ソーダ等)(4)リン酸
塩 (5)ホウ酸塩 (8) (a塩やN8塩等のアルカリ土類金属塩(7)
有機酸及び無機酸等の各種酸(pH上昇時に使用) 等が挙げられ、これらの1種又は2種以上を組合せて使
用できる。 本発明において上記pH調整剤の添加場所は。 上記(I)の化合物の場合には、加熱前に予め添加され
ていればよいので、蒸発槽3に供給される前の廃液に含
有せしめておいてもよいし、あるいは蒸発槽に供給後、
加熱開始前に外部から添加されてもよい、なお上記(■
)の化合物の場合には蒸発槽3に外部から供給されるこ
とは勿論である。 p)l調整剤を外部から供給する場合には、第1図に示
す如く、pHyA整剤タンク13からpH調整剤ポンプ
14により供給するようにしてもよいし、pH調整剤ポ
ンプ14を用いずにタンク13を蒸発槽3の上方に設は
ヘッド圧で供給するようにしてもよい。 本発明においてp)l調整剤が液体である場合には、例
えば第1図に示すように添加できるが、固体である場合
には、該固体を直接廃液又は濃縮液に添加してもよいし
、あるいは予めタンクに溶解してm1図に示すように添
加してもよい。 本発明においてPH調整剤を2種以上用いる場合、第1
図に示すようにタンクから外添する場合には、各添加化
合物毎に複数のタンクを設けることが好ましいが、化合
物の物性によっては、lっのタンクで共用できる場合も
ある。 本発明において第1図に示すようにpHXl8J整剤を
外添する場合には、pHコントローラー(7) 信号ニ
よって添加量を制御することもできる0例えば蒸発槽3
内のpHが加熱・蒸発時間の経過と共に低下した場合に
、コントローラーからの信号でポンプ13をONさせ、
 pHI整剤を供給するようにすることができる。なお
ポンプ13がストローク調整式である場合には、該スト
ロークを自動調整するようにすることもできる。 本発明において悪臭を効果的に抑制するには。 蒸発槽3内でヒーター4から供給される熱量を調整する
ことが好ましい、即ち、単位時聞出りの加える熱量を多
くすると、チオ硫酸塩が分解する前に結晶化され、外部
に放出されず悪臭を抑制でき、反面加える8量が少ない
と、分解が促進され、悪臭の原因となる物−賀の流出が
活発化される。 以上、悪臭の抑制方法及びその装この一例について説明
したが、これに限定されず、本発明の範囲には1種々の
態様を含む、以下にその主な態様を挙げる。なお下記以
外の態様については既出願(例えば特願昭Go−259
001号〜25i3010号、特願昭81−13209
8号、特願昭8l−1850H号、特願昭61−185
100号等)の明細書を参照できる。 (1)本発明の写真処理廃液はチオ硫酸イオン(例えば
チオ硫酸アンモニウム)が含有されている時に特に本発
明が有効に作用し、該チオ硫酸イオンの含有濃度は千オ
硫酸アンモニウム場合には5〜500 ginが好まし
い、廃液の種類としては例えば発色現像液と漂白定着液
又は安定液との混廃液又、あるいは漂白定着液や定着液
単独の廃液等が挙げられる。また廃液には銀イオンが含
有されている時に本発明が特に有効に働き、その濃度は
0.01〜50g/見の範囲にあることが好ましい。 また本発明においては、例えば無水洗自動現像機等のよ
うな小容量の廃液の処理に適用することが好ましい、こ
こに小容量とは、大容量な工場廃液等に対するJ!念と
して用いているもので、格別数(/i上限定される訳で
はないが1例えば1見/D〜1000M /D程度をい
う。 (2)本発明−において廃液を蒸発槽3に供給する手段
は、図示されていない廃液タンクからポンプアップして
供給する方法、ヘッド圧を利用して供給する方法、その
他人子によって供給する方法がある。 また廃液の供給は連続・不連続のいずれでもよく、蒸発
処理が連続式か回分式かによって決まる。 更に廃液は液状のまま供給してもよいが、スプレー状に
供給してもよい。 (3)本発明において蒸発41!I3は、供給された廃
液を加熱し、その一部を蒸発させることにより廃液を濃
縮して廃棄すべき廃液の量を少量化する槽である0本明
細書において濃縮とは、蒸発後の廃液体積を蒸発曲の体
積の4分の1以下、好ましくは5分の1以下、最も好ま
しくは10分の1にすることである。なお本発明は廃液
の全部(略全部を含む)を蒸発させ乾固させる場合にも
適用きる。 蒸発槽3の形態は特に限定される訳〒はないが、外槽(
外釜)と内槽(内釜)の2重構造をなし、内槽が例えば
樹脂製の袋で着脱可能に形成されることが好ましい、な
お蒸発槽3の外周には断熱材(例えばグラスウールマッ
ト)が設けられることが好ましい、蒸発槽3の上部には
ヒンジ付の開閉蓋が設けられることが好ましい。 (4)本発明において加熱手段は、特に限定されず、第
1図にはその一例としてヒーター加熱方式が挙げられて
いる。ヒーターには、例えば電熱ヒーター、石英管内蔵
ニクロム線ヒーター、セラミックヒータ−等があり、こ
れらを図示の如く蒸発槽3の内部に設けることが好まし
い、なおヒーター以外に直火やマイクロ波の照射の如く
誘電加熱方式の採用も可能であり、またこれらを組合せ
て利用するものであってもよい。 なおヒーターによる加熱は、タイマーの作動によって停
止してもよいが、これに限定されず、例えば濃縮液の液
面をレベルセンサーで検出し。 該検出信号によって加熱を停止するようにしてもよい。 (5)本発明において蒸発ガスは1例えばガスクーラー
6を用いて冷却されるが、冷却手段は任意である。なお
本発明の目的を達成する上では強制的に冷却することは
木質的要件ではない、自然冷却によって留液を生成し、
廃棄するような場合も本発明の範囲に包含される。 なお本発明において、冷却後には濁りのない臭気等の問
題のない、しかも亜硫酸アンモン等のアンモニウム塩を
含有する留液が得られ、自動現像機における写真処理液
(例えば補充液の溶解水。 或いは水沈水)以外にも1例えば肥料等としての再利用
も可能となる。 (6)冷却・調湿後のガスは悪臭をほとんど感じさせな
い程抑制されるが、更に完全に悪臭をなくすには、活性
炭等の吸着剤を用いることも好ましい。 このようにすれば従来のように高濃度の悪臭ガスを処理
するときのような間B(例えば飽和が早くなる。交換作
業の煩雑さ等)がない点で優れており、更に上述した悪
臭抑制手段が末端に設けられる吸着処理等の前処理とし
て効果的に機能する点で優れている。 [実験例] 以下の実験例は、下記に示す写真処理廃液を利用して行
なったものである。 (ネガフィルム処理) SR−V100フィルム(小西六写真工業社製)に露光
後、次の処理工程と処理液を使用してネガフィルムの連
続処理を行った。 処理工程 処理温度    処理時間 発色現像      38℃     3分15秒漂 
 白       38℃      3分15秒定 
 着       38℃      3分15秒第1
安定第1槽   32℃〜38℃  1分第1安定第2
槽   32℃〜38℃  1分第2安定      
38℃     1分位   燥         4
5℃〜65℃[発色現像液] 炭酸カリウム            30g炭酸水素
ナトリウム        2.5g亜硫酸カリウム 
          5g1−ヒドロキシエチリデン−
!、l− ジホスホン酸(80%)        1.0g臭化
ナトリウム          1.3g沃化カリウム
            2sgヒドロキシルアミン硫
酸塩     2.5g塩化ナトリウム       
   0.6g4−アミノ−3−メチル−に−エチル ート(β−ヒドロキシルエチル) アニリン硫酸塩         4.8g水酸化カリ
ウム          1.2g木を加えてl皇とし
、水酸化カリウムまたは20%硫酸を用いてpH10,
08に調整する。 〔発色現像補充液] 炭酸カリウム           40g炭酸水素ナ
トリウム         3g亜硫酸カリウム   
        7g臭化ナトリウム        
  0.9g!−ヒドロキシエチリデンー1.1− ジホスホン酸(60%)        1.2gヒド
ロキシルアミン硫酸a!3.1g 4−アミノ−3−メチル−N−エチル −N−(β−ヒドロキシルエチル) アニリン硫酸kM8.0g 水酸化カリウム           2g水を加えて
11とし、水酸化カリウムまたは20%硫酸を用いてp
H10,12に調整する。 [漂白液] エチレンジアミンテトラ酢酸鉄 アンモニウム           180gエチレン
ジアミンテトラ酢酸 2ナトリウム          10g臭化アンモニ
ウム         150g氷酢酸       
       101文水を加えて1文とし、アンモニ
ア水または氷酢酸を用いてp)l 5.8に調整する。 [l)j白補充液] エチレンジアミンテトラ酢酸鉄 アンモニウム          170gエチレンジ
アミンテトラ酢酸 2ナトリウム          12g文化アンモニ
ウム         178g氷酢酸       
        21m文水を加えて11とし、アンモ
ニア水または氷酢酸を用いてp)+ 5.fiに調整す
る。 [定着液] チオ硫酸アンモニウム       150g無水重亜
硫酸ナトリウム       12gメタ重亜硫酸ナト
リウム      2.5gエチレンジアミンテトラ酢
酸 2ナトリウム         0.5g炭酸ナトリウ
ム           10g水を加えて11とし、
アンモニア水または氷酢酸を用いてp)I 7.0に調
整する。 [定石補充液] チオ硫酸アンモニウム       300g無水重亜
硫酸ナトリウム       15gメタ重亜硫酸ナト
リウム       3gエチレンジ7ミンテトラ酢酸 2ナトリウム          0.8g炭酸ナトリ
ウム           14g水を加えて1文とし
、アンモニア水または氷酢酸を用いてpH7,5に調整
する。 [第1安定液及び第1安定補充液] 5−クロロ−2−メチル−4− イソチアゾリン−3−オン     Q、02゜2−才
クチル−4−インチアゾリン −3−オン              0.02gエ
チレングリコール        1.0g水で1文と
し、20%硫酸でpH7,0に調整する。 [第2安定液及び第2安定補充液] ホルマリン(37%水溶液)      2m文コニダ
ックス(小西六写真工業社製)5鳳立木を加えて1交と
する。 発色現像補充液は、カラーネガフィルム1oOcrn’
当り 13.5++文を発色現像浴に補充し、漂白補充
液は、カラーネガフィルム100crn’当り5.5+
JLを漂白浴に補充し、定着補充波は、カラーネガフィ
ルム100crrI′当り8層文を定着浴に補充し、更
に第1安定補充液は、カラーネガフィルム100crn
’当り81文ヲ第1安定浴に補充し、第2安定浴には第
2安定補充液をカラーネガフィルム100crrf当り
+50aJL Rした。 (ペーパー処理) 次いでサクラカラーSRペーパー(小西六写真工業社製
)に絵焼き後、次の処理工程と処理液を使用して連続処
理を行った。 ノ、(準処理工程 (+)発色現像  38°C3分30秒(2)漂白室−
;77  38℃     1分30秒(3)安定化処
理 25℃〜35℃  3分(4)乾  燥  75℃
〜100℃ 約2分処理液組成 [発色現像タンク液] ベンジルアルコール         15層文エチレ
ングリコール         15腸す亜硫酸カリウ
ム           2.0g臭化カリウム   
         1.3g塩化ナトリウム     
      0−.2g炭酸カリウム        
   24.0゜3−メチル−4−アミノ−N−エチル
−N−(β−メタンスルホンアミドエチル) アニリン硫酸a!             4.5゜
蛍光増白剤(4,4′−ジアミノスチルベンズスルホン
酸誘導体)(商品名ケイコールPK−コンク(新日曹化
工社製) )      1.0gヒドロキシルアミン
硫酸塩      3.0g1−ヒドロキシエチリデン
−1,1− ニホスホン酸            0.4gヒドロ
キシエチルイミノジ酢酸    5.0g塩化マグネシ
ウムΦ6水塩      0.7g1.2−ヒドロキシ
ベンゼン−3,5−ジスルホン酸−二ナトリウム塩  
  0.28水を加えて1文とし、水酸化カリウムと硫
酸でpH10,20とする。 [発色現像補充液] ベンジルアルコール         20.見エチレ
ングリコール        20mM亜硫酸カリウム
           3.0g炭酸カリウム    
       30.0gヒドロキシルアミン硫酸塩 
     4.0g3−メチル−4−アミノ−N−エチ
ル−N−(β−メタンスルホンアミドエチル) アニリンVL酪塩             8.0g
蛍光増白剤(4,4”−ジアミノスチルベンズスルホン
#誘導体)(商品名ケイコールPに一コンク(新ロ曹化
工社製) )      2.5g1−ヒドロキシエチ
リデン−1,1− ニホスホン酸            0.5gヒドロ
キシエチルイミノジ酢酸    5.0g塩化マグネシ
ウム・6水塩      0.8g1.2−ヒドロキシ
ベンゼン−3:5−ジスルホン酸−二ナトリウム[0,
3g水を加えて11とし、水酸化カリウムでpH10,
70とする。 [漂白定着タンク液] エチレンジアミンテトラ酢酸第2鉄 アンモニウム2水塩        6G、0gエチレ
ンジアミンテトラ酢酸     3.0gチオ硫酸アン
モニウム(70%溶液)  100.0謬見亜硫酸アン
モニウム(40%溶液)    27.5鳳立木を加え
て全量を1文とし、炭酸カリウムまたは氷酢酸でpH7
,1に調整する。 [漂白定着補充液A] エチレンジアミンテトラ酢酸第2鉄 アンモニウム2水塩        2B0.0g炭酸
カリウム           42.0g水を加えて
全量を11にする。 この溶液のpHは6.7± 0.1である。 [漂白定着補充液B] チオ硫酸アンモニウム(70%溶液)  500.0層
交亜硫酪アンモニウム(40%溶液)   250.0
層文エチレンジアミンテトラ酢酸     17.0g
水酢酸               85゜0■皇水
を加えて全量を141とする。 この溶液のpHは5.3±0.1である。 [水洗代科安定タンク液及び補充液] エチレングリコール         1.0g1−ヒ
ドロキシエチリデン−1,l− ニホスホン酸(60%水溶液)      1.0gア
ンモニア水(水酸化アンモニウム 25%水溶液)             2.0g水
でillとし、硫酸でp)l 7.0とする。 自動現像機に上記の発色現像タンク液、漂白定性タンク
液及び安定タンク液を満し、前記サクラカラーsnペー
パー試料を処理しながら3分間隔毎に上記した発色現像
補充液と漂白定着補充液A、Bと安定補充液を定縫カッ
プを通じて補充しながらランニングテストを行った。補
充量はカラーペーパーlゴ当りそれぞれ発色現像タンク
への補充量として190腸見、漂白定着タンクへの補充
量として漂白定看補充液A、B各々50m1 、安定化
槽への補充量として水洗代替安定補充液を250膳立補
充した。なお、自動現像機の安定化槽は試料の流れの方
向に第1槽〜第3槽となる安定槽とし、最終槽から補充
を行い、最終槽からのオーバーフロー液をその前段の槽
へ流入させ、さらにこのオーバーフロー液をまたその前
段の槽に流入させる多槽向流方式とした。 水洗代任安定液の総補充量が安定タンク容量の3倍とな
るまで連続処理を行った。 上記処理によって生じるすべての写真処理廃液を混合し
、次の処理を行った。 実験例1 5文の写真処理廃液を第1図に示す装置に受け入れて、
蒸発処理を行った。 廃液l見に下記表1に示す金属等を30g/l添加後、
HCIとNaOHでpos、sに調整し、蒸発槽で50
0ttrlにe縮径、初期の留液上部のNH3ガス濃度
を測定した。その後更に留液が濁り、悪臭が発生し始め
るとき(モニター5名のうち2名が臭いを感じたとき)
まで濃縮した。 表   1 表1から明らかなように1本発明の金属等を未添加、或
は比較金属等の添加の場合には1/3に濃縮した所で悪
臭(H2Sと思われる)が発生し、留液が濁ったのに対
し、本発明の金属等を添加した場合には濃縮を更に進め
ることができ、非常に好ましいことが判る。 実験例2 下記の3つのサンプルを用意した。 (1)実験例1で用いた廃液にFe5Oz 80g/見
添加したサンプル(A) (2)実験例1で用いた廃液にCu7SO4Bog/l
添加したサンプル(B) (3)実験例1で用いた廃液に何も添加しないサンプル
(C) 上記サンプル(A)〜(C)を加熱開始前に表2.3に
示すPHに調整した。 p)1wA整剤として)1(4
とNaOHを用いた。 蒸発・濃縮を開始し、100鳳交蒸発するごとにpHを
表2,3のように調整した。 50oII見になるまで蒸発・ewiし、蒸発ガスを冷
却して留液を111だ。 留液の温度が25℃のとき、留液の外観を調べた。その
結果を表2に記した。また留液中のアンモニウム濃度(
NH4’)を測定した。その結果を表3に記した。 表   2 表   3 NH4”濃度(g/立) 表2から明らかなように、本発明の金属等の添加がない
場合には、廃液のpH4,0以下の時留液の潤りが見ら
れるが1本発明の金属等が添加された場合には廃液のp
Hが3.0以下になっても濁りは見られない。 また表3から明らかなように1本発明の金属等が添加さ
れた場合には、留液中のアンモニウム濃度は、広いpH
域に渡って低いことが判る。 実験例3 チオ硫酸塩を含有しない発色現像廃液をMo、13とし
、同様にチオ硫酸塩を含有しない漂白廃液を発色現像廃
液に30容量%加えた廃液をMo、14とし、Mo、 
14の廃液にチオ硫酸アンモニウムを50g1見加えた
廃液をMo、15とし、 Mo、14の廃液にチオ硫酸
アンモニウム50g/lとAgBr 5g/lを加えた
廃液をMo、16とし、 Mo、14の廃液に定性廃液
を30%容量加えた廃液をMo、17とした。 上記廃液のそれぞれにFe!110420g/41 、
 ZIISO420g/4、CuSO420g/iの混
合物を添加すると共にそれぞれHCIとNaOHでpH
4,0に調整し、蒸発濃縮を行った。 留液中のアンモニウム濃度及び硫化水素濃度並びに留液
の外観を調べた。その結果を表4に示す。 表  4 表4から明らかなように、本発明の金属等を混入した場
合には留液中のアンモニウム濃度及び硫化水素濃度がか
なり低下し、且つ留液の外観も濁りのない無色透明とな
っていることが判る。 [発明の効果] 本発明によれば1本発明特有の金属等が加熱された廃液
中に存在することにより、H2S、 Sのガスの発生を
抑制し、またアンモニアガスの流出全抑制し、更にSの
流出を抑制できる。 また例え)12S、 Sガスが留液上部のガス側に、ま
たH2S、NH3,SO2が留液中に存在したとしても
、その濃度が低いので、ガス及び液の各々の二次処理と
して例えばガス処理用及び液処理用の活性炭処理設備等
を設ければ完全に除去できる。このため二次処理の負荷
が大巾に軽減され、吸着剤の消費量が軽減され、吸着剤
の交換に要する煩雑さもなくなる。 また本発明によれば、留液の濁り等も解消され、廃棄上
問題ないだけでなく再利用等も可能となり、極めて汎用
性が高いプロセスを提供できる。 なお本発明は上記した悪臭の抑制や留液の濁り防止以外
にも適用が可能である。
Compound (2) which liberates p
Compounds that dissolve and become alkaline as H decreases (
3) Buffers such as organic m (e.g. citric acid, etc.) and their salts (0) Buffers such as inorganic m (e.g. boric acid, phosphoric acid, etc.) and their salts (5) E [7 Minocarboxylic acids such as TA Chelating agent (8) 1-tnitroxyethylidene-1,1-diphosphonic acid and the like can be mentioned, and one or more of these can be used in combination. Further, as the compound (II) above, for example ( 1) N
a0)1. Hydroxide of alkali metal or alkaline earth metal such as KOH, Ca(OH)2, etc. (2) Carbonate (3) Silicate (e.g. sodium silicate etc.) (4) Phosphate (5) Boric acid Salt (8) (Alkaline earth metal salts such as a salt and N8 salt (7)
Examples include various acids such as organic acids and inorganic acids (used when pH increases), and these acids can be used alone or in combination of two or more. In the present invention, where is the pH adjuster added? In the case of the compound (I) above, it is sufficient that it is added in advance before heating, so it may be contained in the waste liquid before being supplied to the evaporation tank 3, or after being supplied to the evaporation tank.
It may be added externally before the start of heating, and the above (■
), it goes without saying that it is supplied to the evaporation tank 3 from the outside. p) When supplying the adjuster from the outside, it may be supplied from the pHyA adjuster tank 13 with the pH adjuster pump 14 as shown in FIG. 1, or it may be supplied without using the pH adjuster pump 14. Alternatively, the tank 13 may be installed above the evaporation tank 3 to supply water with head pressure. In the present invention, when the p)l regulator is a liquid, it can be added, for example, as shown in Figure 1, but when it is a solid, the solid may be added directly to the waste liquid or concentrated liquid. Alternatively, it may be dissolved in a tank in advance and added as shown in the m1 diagram. When using two or more types of PH adjusters in the present invention, the first
As shown in the figure, when adding externally from a tank, it is preferable to provide a plurality of tanks for each additive compound, but depending on the physical properties of the compound, one tank may be used in common. In the present invention, as shown in FIG. 1, when externally adding a pHX18J regulator, the amount of addition can be controlled by a pH controller (7) signal.
When the pH within the tank decreases with the passage of heating and evaporation time, the pump 13 is turned on by a signal from the controller,
A pHI modifier can be provided. In addition, when the pump 13 is of a stroke adjustable type, the stroke can also be automatically adjusted. How to effectively suppress bad odor in the present invention. It is preferable to adjust the amount of heat supplied from the heater 4 in the evaporation tank 3. In other words, if the amount of heat applied per unit time is increased, the thiosulfate will crystallize before it decomposes and will not be released to the outside. Offensive odors can be suppressed, but on the other hand, when the amount of 8 added is small, decomposition is promoted and the outflow of substances that cause offensive odors is activated. Although an example of a method for suppressing a bad odor and a device thereof has been described above, the present invention is not limited thereto, and the scope of the present invention includes various embodiments, and the main embodiments thereof are listed below. Note that aspects other than the following may be applied to existing applications (for example, Japanese Patent Application No. 259
No. 001 to No. 25i3010, patent application No. 81-13209
No. 8, Patent Application No. 1881-1850H, Patent Application No. 1885-1983
100 etc.) can be referred to. (1) The present invention works particularly effectively when the photographic processing waste solution of the present invention contains thiosulfate ions (for example, ammonium thiosulfate), and the concentration of the thiosulfate ions is 5 to 500% in the case of ammonium thiosulfate. Examples of the types of waste liquids for which gin is preferable include mixed waste liquids of a color developing solution and a bleach-fixing solution or a stabilizing solution, or waste liquids of a bleach-fixing solution or a fixing solution alone. The present invention works particularly effectively when the waste liquid contains silver ions, and the concentration thereof is preferably in the range of 0.01 to 50 g/ml. In addition, the present invention is preferably applied to the treatment of small-volume waste liquids such as waterless automatic processors, etc. Here, small capacity refers to J! It is used as a precaution, and refers to a particular number (/i, although not limited to 1, for example, about 1/D to 1000M/D. (2) In the present invention, waste liquid is supplied to the evaporation tank 3. Possible means include pumping up and supplying from a waste liquid tank (not shown), supplying using head pressure, and other methods of supplying by hand. Also, waste liquid can be supplied either continuously or discontinuously. This often depends on whether the evaporation process is continuous or batchwise.Furthermore, the waste liquid may be supplied in liquid form, or may be supplied in spray form.(3) In the present invention, evaporation 41!I3 is not supplied. This is a tank that heats the waste liquid and evaporates a part of it to concentrate the waste liquid and reduce the amount of waste liquid to be disposed of. In this specification, concentration means to reduce the volume of waste liquid after evaporation to the value of the evaporation curve. The volume should be reduced to 1/4 or less, preferably 1/5 or less, and most preferably 1/10.In addition, the present invention is applicable when all (including substantially all) of the waste liquid is evaporated to dryness. The form of the evaporation tank 3 is not particularly limited, but the outer tank (
It is preferable that it has a double structure of an outer pot (outer pot) and an inner tank (inner pot), and the inner tank is removably formed, for example, by a resin bag. ) is preferably provided, and a hinged opening/closing lid is preferably provided at the top of the evaporation tank 3. (4) In the present invention, the heating means is not particularly limited, and FIG. 1 shows a heater heating method as an example thereof. Heaters include, for example, electric heaters, nichrome wire heaters with built-in quartz tubes, ceramic heaters, etc., and it is preferable to install these inside the evaporation tank 3 as shown in the figure. It is also possible to employ a dielectric heating method as described above, or a combination of these methods may be used. Note that the heating by the heater may be stopped by operating a timer, but is not limited to this. For example, the liquid level of the concentrated liquid may be detected by a level sensor. Heating may be stopped based on the detection signal. (5) In the present invention, the evaporated gas is cooled using, for example, a gas cooler 6, but any cooling means may be used. In order to achieve the purpose of the present invention, forced cooling is not a wood-based requirement; distillate is generated by natural cooling,
The scope of the present invention also includes cases where the product is discarded. In the present invention, after cooling, a distillate that is not cloudy, has no problems such as odor, and contains ammonium salts such as ammonium sulfite is obtained, and can be used as a photographic processing solution (for example, water dissolved in a replenisher) in an automatic processor. In addition to water submersion), it can also be reused as fertilizer, etc. (6) After cooling and humidity conditioning, the gas is suppressed to the extent that almost no foul odor is felt, but in order to eliminate the foul odor more completely, it is also preferable to use an adsorbent such as activated carbon. This method is advantageous in that it does not require the conventional method of processing high-concentration malodorous gases (e.g., saturation occurs quickly, the complexity of replacement work, etc.), and it also has the advantage of eliminating the above-mentioned malodor control. It is excellent in that it functions effectively as a pretreatment such as adsorption treatment where the means is provided at the end. [Experimental Example] The following experimental example was conducted using the photographic processing waste liquid shown below. (Negative Film Processing) After exposing SR-V100 film (manufactured by Konishiroku Photo Industry Co., Ltd.), the negative film was continuously processed using the following processing steps and processing liquid. Processing process Processing temperature Processing time Color development 38℃ 3 minutes 15 seconds bleaching
White 38℃ constant for 3 minutes 15 seconds
Arrive 38℃ 3 minutes 15 seconds 1st
Stability 1st tank 32℃~38℃ 1 minute 1st stability 2nd
Tank 32℃~38℃ 1 minute second stabilization
Dry at 38℃ for about 1 minute 4
5℃~65℃ [Color developer] Potassium carbonate 30g Sodium bicarbonate 2.5g Potassium sulfite
5g1-hydroxyethylidene-
! , l-diphosphonic acid (80%) 1.0g Sodium bromide 1.3g Potassium iodide 2sg Hydroxylamine sulfate 2.5g Sodium chloride
0.6 g 4-amino-3-methyl-ethylate (β-hydroxylethyl) aniline sulfate 4.8 g potassium hydroxide 1.2 g ,
Adjust to 08. [Color developer replenisher] Potassium carbonate 40g Sodium bicarbonate 3g Potassium sulfite
7g sodium bromide
0.9g! -Hydroxyethylidene-1.1- Diphosphonic acid (60%) 1.2g Hydroxylamine sulfate a! 3.1g 4-amino-3-methyl-N-ethyl-N-(β-hydroxylethyl) Aniline sulfate kM 8.0g Potassium hydroxide 2g Add water to make 11, and use potassium hydroxide or 20% sulfuric acid to make p
Adjust to H10,12. [Bleach solution] Iron ammonium ethylenediaminetetraacetate 180g Disodium ethylenediaminetetraacetate 10g Ammonium bromide 150g Glacial acetic acid
Add 101 ml of water to make 1 ml and adjust to p)l 5.8 using aqueous ammonia or glacial acetic acid. [l)j White replenisher] Iron ammonium ethylenediaminetetraacetate 170g Disodium ethylenediaminetetraacetate 12g Ammonium culture 178g Glacial acetic acid
Add 21m water to make 11, and use ammonia water or glacial acetic acid to make p)+5. Adjust to fi. [Fixer] Ammonium thiosulfate 150g Anhydrous sodium bisulfite 12g Sodium metabisulfite 2.5g Disodium ethylenediaminetetraacetate 0.5g Sodium carbonate 10g Add water to make 11,
Adjust p)I to 7.0 using aqueous ammonia or glacial acetic acid. [Joseki replenisher] Ammonium thiosulfate 300g Anhydrous sodium bisulfite 15g Sodium metabisulfite 3g Ethylenedi7mine disodium tetraacetate 0.8g Sodium carbonate 14g Add water to make one sentence, and adjust to pH 7.5 using aqueous ammonia or glacial acetic acid. adjust. [First stable solution and first stable replenisher] 5-chloro-2-methyl-4-isothiazolin-3-one Q, 02° 2-year old cutyl-4-inthiazolin-3-one 0.02g ethylene glycol 1 Make up to 1 sentence with .0g water and adjust the pH to 7.0 with 20% sulfuric acid. [Second Stable Solution and Second Stable Replenisher] Formalin (37% aqueous solution) Add 2 m of Conidax (manufactured by Konishiroku Photo Industry Co., Ltd.) and make 1 solution. The color developer replenisher is used for color negative film 1oOcrn'
Replenish the color developing bath with 13.5++ per 100 crn of color negative film, and the bleach replenisher is 5.5+ per 100 crn' of color negative film.
JL is replenished into the bleach bath, the fixing replenishment wave replenishes the fixing bath with 8 layers per 100 crn of color negative film, and the first stable replenisher replenishes the fixing bath with 8 layers per 100 crn of color negative film.
The first stabilizing bath was replenished with 81 grams per 100 crrf of color negative film, and the second stabilizing bath was replenished with +50 aJL R per 100 crrf of color negative film. (Paper Processing) Next, after printing on Sakura Color SR Paper (manufactured by Konishiroku Photo Industry Co., Ltd.), continuous processing was performed using the following processing steps and processing liquid. (Semi-processing step (+) Color development 38°C 3 minutes 30 seconds (2) Bleaching room -
;77 38°C 1 minute 30 seconds (3) Stabilization treatment 25°C to 35°C 3 minutes (4) Drying 75°C
~100℃ for about 2 minutes Processing solution composition [Color developing tank solution] Benzyl alcohol 15-layer ethylene glycol 15-layer potassium sulfite 2.0g Potassium bromide
1.3g sodium chloride
0-. 2g potassium carbonate
24.0゜3-Methyl-4-amino-N-ethyl-N-(β-methanesulfonamidoethyl) Aniline sulfate a! 4.5゜Fluorescent brightener (4,4'-diaminostilbenzsulfonic acid derivative) (trade name Keikol PK-Conc (manufactured by Shin Nisso Kako Co., Ltd.)) 1.0g Hydroxylamine sulfate 3.0g 1-Hydroxyethylidene -1,1- Niphosphonic acid 0.4g Hydroxyethyliminodiacetic acid 5.0g Magnesium chloride Φ hexahydrate 0.7g 1.2-Hydroxybenzene-3,5-disulfonic acid disodium salt
Add 0.28 water to make one sentence, and adjust the pH to 10.20 with potassium hydroxide and sulfuric acid. [Color developer replenisher] Benzyl alcohol 20. Ethylene glycol 20mM potassium sulfite 3.0g potassium carbonate
30.0g hydroxylamine sulfate
4.0g3-Methyl-4-amino-N-ethyl-N-(β-methanesulfonamidoethyl) Aniline VL Butysalt 8.0g
Fluorescent brightener (4,4”-diaminostilbenzsulfone # derivative) (trade name Keikol P Niichikonku (manufactured by Shinro Sokako Co., Ltd.)) 2.5g 1-Hydroxyethylidene-1,1-niphosphonic acid 0.5g Hydroxyethyliminodiacetic acid 5.0g Magnesium chloride hexahydrate 0.8g 1.2-Hydroxybenzene-3:5-disulfonic acid disodium [0,
Add 3g of water to make the solution 11, and adjust the pH to 10 with potassium hydroxide.
70. [Bleach-fix tank solution] Ferric ammonium ethylenediaminetetraacetic acid dihydrate 6G, 0g ethylenediaminetetraacetic acid 3.0g ammonium thiosulfate (70% solution) 100.0% Ammonium sulfite (40% solution) 27.5 Add the total amount to 1 sentence, and adjust the pH to 7 with potassium carbonate or glacial acetic acid.
, 1. [Bleach-fixing replenisher A] Ferric ammonium ethylenediaminetetraacetate dihydrate 2B0.0g Potassium carbonate 42.0g Add water to bring the total volume to 11. The pH of this solution is 6.7±0.1. [Bleach-fix replenisher B] Ammonium thiosulfate (70% solution) 500.0 Layered ammonium butyrite (40% solution) 250.0
Layered ethylenediaminetetraacetic acid 17.0g
Add aqueous acetic acid 85°0■ Imperial water to bring the total volume to 141. The pH of this solution is 5.3±0.1. [Water-washing stable tank solution and replenishment solution] Ethylene glycol 1.0g 1-hydroxyethylidene-1,l-niphosphonic acid (60% aqueous solution) 1.0g ammonia water (ammonium hydroxide 25% aqueous solution) 2.0g ill with water and bring it to p)l 7.0 with sulfuric acid. Fill an automatic processor with the above color developing tank liquid, bleaching qualitative tank liquid and stabilizing tank liquid, and add the above color developing replenisher and bleach-fixing replenisher A every 3 minutes while processing the Sakura Color SN paper sample. , A running test was conducted while replenishing B and stable replenisher through the fixed stitch cup. The amount of replenishment is 190 mL per color paper to the color developing tank, 50 ml each of Bleach Constant Replenishment Solution A and B to the bleach-fixing tank, and 50 ml of each of bleach fixing solutions A and B to the stabilizing tank. 250 sets of stable replenisher were replenished. The stabilization tanks of the automatic processor are the first to third tanks in the direction of sample flow, and the final tank is replenished and the overflow liquid from the final tank is allowed to flow into the previous tank. Furthermore, a multi-tank countercurrent system was adopted in which this overflow liquid also flows into the preceding tank. Continuous processing was carried out until the total amount of water washing substitute stabilizing solution replenished was three times the capacity of the stabilizing tank. All of the photographic processing waste liquids produced by the above processing were mixed and subjected to the following processing. Experimental Example 1 The photographic processing waste liquid of 5 sentences was received into the apparatus shown in Fig. 1,
Evaporation treatment was performed. After adding 30 g/l of the metals shown in Table 1 below to the waste liquid,
Adjust to pos, s with HCI and NaOH, and evaporate to 50 s in an evaporator.
The diameter was reduced to 0 ttrl, and the initial NH3 gas concentration at the top of the distillate was measured. After that, when the distillate becomes cloudy and a bad odor begins to occur (when 2 out of 5 monitors feel the odor)
concentrated to. Table 1 As is clear from Table 1, when the metals of the present invention were not added or comparative metals were added, a bad odor (possibly from H2S) was generated when the concentration was reduced to 1/3, and the residue Although the liquid became cloudy, it was found that when the metal of the present invention was added, the concentration could be further advanced, which is very preferable. Experimental Example 2 The following three samples were prepared. (1) Sample (A) in which 80 g/l of Fe5Oz was added to the waste liquid used in Experimental Example 1 (2) Cu7SO4Bog/l was added to the waste liquid used in Experimental Example 1
Added sample (B) (3) Sample in which nothing was added to the waste liquid used in Experimental Example 1 (C) The above samples (A) to (C) were adjusted to the pH shown in Table 2.3 before starting heating. p) 1wA regulator) 1(4
and NaOH were used. Evaporation and concentration were started, and the pH was adjusted as shown in Tables 2 and 3 every 100 times. Evaporate and ewi until it reaches 50oII, cool the evaporated gas, and make the distillate 111. When the temperature of the distillate was 25°C, the appearance of the distillate was examined. The results are shown in Table 2. Also, the ammonium concentration in the distillate (
NH4') was measured. The results are shown in Table 3. Table 2 Table 3 NH4'' concentration (g/vertical) As is clear from Table 2, in the absence of the addition of the metals of the present invention, moisture in the distilled solution with a pH of 4.0 or less is observed in the waste solution. 1. When the metals of the present invention are added, the waste liquid p
No turbidity is observed even when H is 3.0 or less. Furthermore, as is clear from Table 3, when one of the metals of the present invention is added, the ammonium concentration in the distillate changes over a wide range of pH.
It can be seen that it is low across the region. Experimental Example 3 A color developing waste solution containing no thiosulfate was designated as Mo, 13, a waste solution obtained by adding 30% by volume of a bleaching waste solution not containing thiosulfate to the color developing waste solution was designated as Mo, 14, and Mo.
The waste liquid obtained by adding 50 g/l of ammonium thiosulfate to the waste liquid from Mo. The waste liquid to which 30% volume of the qualitative waste liquid was added was designated as Mo, 17. Fe! 110420g/41,
A mixture of ZIISO420g/4 and CuSO420g/i was added, and the pH was adjusted with HCI and NaOH, respectively.
The concentration was adjusted to 4.0 and concentrated by evaporation. The ammonium concentration and hydrogen sulfide concentration in the distillate and the appearance of the distillate were investigated. The results are shown in Table 4. Table 4 As is clear from Table 4, when the metal of the present invention was mixed, the ammonium concentration and hydrogen sulfide concentration in the distillate decreased considerably, and the appearance of the distillate also became colorless and transparent without turbidity. I know that there is. [Effects of the Invention] According to the present invention, the presence of metals and the like unique to the present invention in the heated waste liquid suppresses the generation of H2S and S gases, completely suppresses the outflow of ammonia gas, and further The outflow of S can be suppressed. For example, even if 12S and S gases exist on the gas side at the top of the distillate, and H2S, NH3, and SO2 exist in the distillate, their concentrations are low, so as a secondary treatment for each of the gas and liquid, for example, gas It can be completely removed by installing activated carbon treatment equipment for treatment and liquid treatment. Therefore, the load on secondary processing is greatly reduced, the amount of adsorbent consumed is reduced, and the complexity required for replacing the adsorbent is eliminated. Further, according to the present invention, turbidity of the distillate is eliminated, and not only is there no problem with disposal, but also reuse is possible, and an extremely versatile process can be provided. Note that the present invention can be applied to purposes other than the above-described suppression of bad odors and prevention of turbidity of distillate.

【図面の簡単な説明】 第1図は、本発明の一実施例である悪臭の抑制方法の一
例を示す概念図である。 1: 廃液供給手段 2: 予熱器 3: 7M発槽 4: 加熱手段、ヒーター 5: 蒸気排出管 6: ガスクーラー 7: ガスクーラー用ファン 8: 留液槽 9: 循環ファン lO:  全屈等溶解タンク 11:  全屈等供給ポンプ 12:  金属等供給管 [:  pH調整剤タンク 14:  pH調整剤ポンプ 15:  pH調整剤供給管
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram showing an example of a method for suppressing bad odor, which is an embodiment of the present invention. 1: Waste liquid supply means 2: Preheater 3: 7M generation tank 4: Heating means, heater 5: Steam discharge pipe 6: Gas cooler 7: Gas cooler fan 8: Distillate tank 9: Circulation fan 1O: Total bending equal melting Tank 11: Full bending supply pump 12: Metal etc. supply pipe [: pH adjuster tank 14: pH adjuster pump 15: pH adjuster supply pipe

Claims (1)

【特許請求の範囲】 (1)下記(1)〜(3)の金属等の少なくとも1種の
存在下で写真処理廃液を加熱・蒸発・濃縮することを特
徴とする写真処理廃液の処理方法。 [金属等] (1)Fe、Ba、Zn、Ni、Cu、Sn、Bi、C
o、Cr、Ce、Ti、Zr、Mo、Wからなる金属 (2)上記金属の酸化物 (3)上記金属の塩 (2)写真処理廃液がチオ硫酸イオンを含有することを
特徴とする特許請求の範囲第1項記載の写真処理廃液の
処理方法。 (3)写真処理廃液が銀イオンを含有することを特徴と
する特許請求の範囲第2項記載の写真処理廃液の処理方
法。 (4)写真処理廃液のpHを3.0〜11.0に維持し
た状態で加熱・蒸発・濃縮することを特徴とする特許請
求の範囲第1項〜第3項のいずれかに記載の写真処理廃
液の処理方法。 (5)写真処理廃液の供給手段と、該廃液を受け入れる
蒸発槽と、該蒸発槽内の廃液を加熱する加熱手段とを有
し、該廃液を加熱・蒸発・濃縮する写真処理廃液の処理
装置において、前記写真処理廃液に下記(1)〜(3)
の金属等の少なくとも1種を含有させる手段を有するこ
とを特徴とする写真処理廃液の処理装置。 [金属等] (1)Fe、Ba、Zn、Ni、Cu、Sn、Bi、C
o、Cr、Ce、Ti、Zr、Mo、Wからなる金属 (2)上記金属の酸化物 (3)上記金属の塩
[Scope of Claims] (1) A method for processing a photographic processing waste liquid, which comprises heating, evaporating, and concentrating the photographic processing waste liquid in the presence of at least one of the following metals (1) to (3). [Metals, etc.] (1) Fe, Ba, Zn, Ni, Cu, Sn, Bi, C
(2) Oxides of the above metals (3) Salts of the above metals (2) A patent characterized in that the photographic processing waste liquid contains thiosulfate ions A method for treating photographic processing waste liquid according to claim 1. (3) The method for treating photographic processing waste liquid according to claim 2, wherein the photographic processing waste liquid contains silver ions. (4) The photograph according to any one of claims 1 to 3, wherein the photographic processing waste liquid is heated, evaporated, and concentrated while maintaining the pH of the photographic processing waste liquid at 3.0 to 11.0. Processing method for processing waste liquid. (5) A processing device for photographic processing waste liquid that has a supply means for photographic processing waste liquid, an evaporation tank that receives the waste liquid, and a heating means that heats the waste liquid in the evaporation tank, and that heats, evaporates, and concentrates the waste liquid. , the following (1) to (3) are added to the photographic processing waste liquid.
A processing apparatus for photographic processing waste liquid, characterized in that it has means for containing at least one metal such as metal. [Metals, etc.] (1) Fe, Ba, Zn, Ni, Cu, Sn, Bi, C
o, Cr, Ce, Ti, Zr, Mo, W (2) Oxide of the above metal (3) Salt of the above metal
JP29194386A 1986-12-08 1986-12-08 Treatment of waste liquid from photographic process and apparatus thereof Pending JPS63143992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29194386A JPS63143992A (en) 1986-12-08 1986-12-08 Treatment of waste liquid from photographic process and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29194386A JPS63143992A (en) 1986-12-08 1986-12-08 Treatment of waste liquid from photographic process and apparatus thereof

Publications (1)

Publication Number Publication Date
JPS63143992A true JPS63143992A (en) 1988-06-16

Family

ID=17775464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29194386A Pending JPS63143992A (en) 1986-12-08 1986-12-08 Treatment of waste liquid from photographic process and apparatus thereof

Country Status (1)

Country Link
JP (1) JPS63143992A (en)

Similar Documents

Publication Publication Date Title
EP0270358B1 (en) Method of concentrating photographic process waste liquor by evaporation
AU603400B2 (en) Method of treating photographic process waste liquor through concentration by evaporation and apparatus therefor
JPS63143992A (en) Treatment of waste liquid from photographic process and apparatus thereof
JPS63143991A (en) Treatment of waste liquid from photographic process and apparatus thereof
JPH0729095B2 (en) Evaporative concentration processing equipment for photographic processing waste liquid
JPS63143993A (en) Treatment of waste liquid from photographic process and apparatus thereof
JPS63147594A (en) Method and device for treating waste photographic processing liquid
JPS63147521A (en) Method and device for treating waste photographic processing solution
JPH01119385A (en) Treating equipment for photograph processing waste liquid
JPS63100458A (en) Method for evaporating photographic processing waste solution by using self-produced heat energy for preheating it before evaporation
JPS63319097A (en) Treatment of waste photographic processing fluid by evaporation
JPH0673662B2 (en) Photoprocessing waste liquid processing equipment
JPS62184457A (en) Method and apparatus for treating photographic processing waste solution
JPH0729098B2 (en) Photoprocessing waste liquid treatment method
AU610889B2 (en) Method of and apparatus for treating photographic process waste liquor through concentration by evaporation
JPH07303878A (en) Apparatus for evaporative concentration treatment of waste solution
JPS63287587A (en) Method and device for evaporating and concentrating waste photographic processing solution
JPH01143681A (en) Treating apparatus for photographic process waste liquid
JPH01143680A (en) Treating apparatus for photographic processed waste liquids
JPS63100994A (en) Evaporating treatment of photographic processing waste liquid condensing part of vapor in processing chamber
JPH01143682A (en) Treating apparatus for photographic processed waste liquid
JPH01310783A (en) Treatment of photographic treatment waste solution
JPH04190884A (en) Waste liquid treating device
JPH04281890A (en) Waste liquid treating equipment
JPH02211286A (en) Disposal apparatus for photographic processing waste liquid