JPS63143218A - Heating treatment for chromium-molybdenum steel having site welding part - Google Patents

Heating treatment for chromium-molybdenum steel having site welding part

Info

Publication number
JPS63143218A
JPS63143218A JP28984286A JP28984286A JPS63143218A JP S63143218 A JPS63143218 A JP S63143218A JP 28984286 A JP28984286 A JP 28984286A JP 28984286 A JP28984286 A JP 28984286A JP S63143218 A JPS63143218 A JP S63143218A
Authority
JP
Japan
Prior art keywords
temperature
heat
heat treatment
site
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28984286A
Other languages
Japanese (ja)
Inventor
Teruo Koyama
小山 輝夫
Koji Tamura
広治 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP28984286A priority Critical patent/JPS63143218A/en
Publication of JPS63143218A publication Critical patent/JPS63143218A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Abstract

PURPOSE:To execute heating treatment, so that heat-affected zone by welding of Cr-Mo steel is not softened by normalizing and tempering treatments to the Cr-Mo steel having site welding part in the each specific temp. range, and executing heat-treatment after processing at higher than Ac3 transformation point of the site welding part. CONSTITUTION:For example, in main steam piping 1 composing of 9 Cr-1Mo series, where necessary bending working or welding has already been, executed, in order to execute site assembling, the end part of piping 2 is welded at T7 temp. which is higher than the Ac3 transformation point. Subsequently, heat treatment is executed by winding induction heating type electric heater at the position to be post-heat treated, including the site welding part. Then, the post heat-treatment temp. T6 shall be 760 deg.C. Further, this position is the part, which has been kept outside the furnace in the factory. On the other hand, at the time of executing the finishing heat treatment in the factory, by holding the tempering near the position of site welding at >=680 deg.C, the softening at the heat-affected zone developed by the site welding is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はクロム−モリブデン(Cr−Mo)mの熱処理
方法に係り、特に加熱加工したCr−MO鋼材を現場で
熱間加工もしくは溶接する場合の熱処理方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for heat treatment of chromium-molybdenum (Cr-Mo), particularly when hot-processing or welding heat-processed Cr-MO steel materials on-site. The present invention relates to a heat treatment method.

(従来の技術) 火力発電プラント用機器や化学プラント用機器等のよう
に、高温、高圧の条件下で運転される機器に対してはC
rとMoを添加したC r −M o鋼が使用される。
(Prior art) For equipment operated under high temperature and high pressure conditions, such as equipment for thermal power plants and equipment for chemical plants, C
Cr-Mo steel with addition of r and Mo is used.

これはCrとMoによる析出強化および固溶強化によっ
て高温での強度が向上すること、さらに緻密なCr酸化
物の形成によって耐酸化性が向上するためである。
This is because the strength at high temperatures is improved by precipitation strengthening and solid solution strengthening by Cr and Mo, and the oxidation resistance is improved by the formation of dense Cr oxides.

しかしながら、c r −M o mはオーステナイト
系ステンレス鋼に比べて高温での強度と耐酸化性は劣る
ことから、さらにCr含有量を増大させるとともに、焼
ならし処理、焼もどし処理によって焼もどしマルテン号
イトあるいは焼もどしベーナイトの組織となるように調
質して高温強度と耐酸化性を向上させたCr−M’o&
Iが開発され、その一部はオーステナイト系ステンレス
鋼の代替材料として実用化されている。このCr−Mo
鋼で高温強度が向上する理由を説明すると、まず第1に
Cr添加量の増大によって母地の鉄中の固溶Cr量が増
加することによる固溶強化である。第2に熱処理による
強化で、焼ならし処理によってCr、Moが母地中に均
一に固溶されると同時に強度の高いマルテンサイトある
いはベーナイト組織となる。このままの状態では延性と
靭性が低いことがら、さらに焼もどし処理を実施してマ
ルテンサイトとベーナイトを軟化させるが、その時点で
母地中に固溶したCrとMoがC等と結合して析出物を
形成し、該析出物によって強度が強化される。
However, since cr-Mom is inferior in strength and oxidation resistance at high temperatures compared to austenitic stainless steel, it is necessary to further increase the Cr content and to improve tempered marten by normalizing and tempering treatments. Cr-M'o&
I was developed, and some of them have been put into practical use as a substitute for austenitic stainless steel. This Cr-Mo
To explain the reason why high-temperature strength of steel improves, firstly, it is solid solution strengthening due to an increase in the amount of solid solution Cr in the base iron due to an increase in the amount of Cr added. Secondly, by strengthening by heat treatment, Cr and Mo are uniformly dissolved in the matrix by normalizing treatment, and at the same time, a high-strength martensite or bainitic structure is formed. Since the ductility and toughness are low in this state, further tempering treatment is performed to soften the martensite and bainite, but at that point Cr and Mo dissolved in the matrix combine with C etc. and precipitate. The precipitate strengthens the strength.

焼もどし処理時の焼もどし温度が高くなるとマルテンサ
イトあるいはベーナイj〜の軟化が著しくなり、また析
出物も粗大化して強度の向上に寄与できなくなる。した
がって、適切な強度と延性、靭性を確保するために種々
の特性を検討して適正な焼もどし温度範囲が決定されて
いる。
If the tempering temperature during the tempering treatment becomes high, martensite or boehni j ~ will become significantly softened, and the precipitates will also become coarser, making it impossible to contribute to improving the strength. Therefore, in order to ensure appropriate strength, ductility, and toughness, various properties are examined to determine an appropriate tempering temperature range.

第1図は従来の熱処理方法と本発明の熱処理方法の原理
を説明する図で、実線は従来法を示す。
FIG. 1 is a diagram illustrating the principles of a conventional heat treatment method and a heat treatment method of the present invention, and the solid line indicates the conventional method.

同図の縦軸は加熱温度、横軸は時間を示し、図中の曲線
Aは焼ならし温度曲線、曲線Bは焼もどし温度曲線、曲
線Cは加工に伴う加熱温度曲線、曲線りは後熱処理温度
曲線、直線E、FはAc1変態点およびA C3変態点
を示す。
The vertical axis of the figure shows the heating temperature, and the horizontal axis shows the time. Curve A in the figure is the normalizing temperature curve, curve B is the tempering temperature curve, curve C is the heating temperature curve associated with processing, and the curve is after. The heat treatment temperature curve, straight lines E and F indicate the Ac1 transformation point and the AC3 transformation point.

Cr−Mo鋼を用いて機器を製作する場合、Cr−Mo
mの熱処理は曲線Aに示すように変態点以上の焼ならし
温度(T1)で焼ならし処理を行なった後に、曲線Bで
示すようにA c 1変態点以下でかつActよりも1
00℃低い温度以上の焼もどし温度(T2)で焼もどし
処理を行ない、次に曲線Cで示すようにA c 3変態
点以上の加工温度(T3)で加工を行ない、その後に曲
線りで示すようにA c 1変態点より100℃以上低
い温度の後熱処理温度(T4)で後熱処理が行なわれて
いた。
When manufacturing equipment using Cr-Mo steel, Cr-Mo
As shown in curve A, the heat treatment of m is performed at a normalizing temperature (T1) higher than the transformation point, and then as shown in curve B, A c is lower than 1 transformation point and 1 lower than Act.
Tempering is performed at a tempering temperature (T2) higher than 00℃ lower temperature, then processing is performed at a processing temperature (T3) higher than the A c 3 transformation point as shown by curve C, and then the curved line is shown. Thus, the post-heat treatment was performed at a post-heat treatment temperature (T4) that was 100° C. or more lower than the A c 1 transformation point.

このような熱処理を再現して種々の特性を検討したとこ
ろ、加工に伴う加工温度(T3)にCr−M o II
材を加熱することによって特定の温度範囲に加熱された
加工部周辺領域で軟化現象が生じ、強度が低下する現象
があることがわかった。この軟化現象を第3図を用いて
説明する。
When we reproduced such heat treatment and examined various properties, we found that Cr-Mo II
It has been found that by heating the material, a softening phenomenon occurs in the area around the processed part heated to a specific temperature range, resulting in a decrease in strength. This softening phenomenon will be explained using FIG.

第3図において、直線ESFは第1図のものと同一のも
のを示し、1は母材原質部、2は細粒熱影響部、3は粗
粒熱影響部を示す。第3図の左側は室温に保持したまま
の母材原質部l、中央はAC1変態点EからA c 3
変態点Fに加熱された細粒熱影響部2、右側はA c 
3変態点F以上に加熱された粗粒熱影響部3の断面を示
している。
In FIG. 3, the straight line ESF is the same as that in FIG. 1, with 1 indicating the base material original zone, 2 indicating the fine-grained heat-affected zone, and 3 indicating the coarse-grained heat-affected zone. The left side of Fig. 3 is the base metal original l kept at room temperature, and the center is the AC1 transformation point E to AC3.
Fine grain heat affected zone 2 heated to transformation point F, right side is A c
3 shows a cross section of a coarse-grained heat-affected zone 3 heated to a transformation point F or higher.

この図からも明らかなように、A c 3変態点F以上
に加熱された粗粒熱影響部3ではオーステナイトに変態
を完了して結晶粒が粗大化した領域であり、細粒熱形1
部2ではA c 1変態点EからAc3変態点Fの間の
温度に加熱されて変態途中で結晶粒は微細である。母材
原質部1ではA C1変態点E以下の温度に加熱された
領域で熱影響を受けていないことがわかる。
As is clear from this figure, in the coarse-grained heat-affected zone 3 heated above the A c 3 transformation point F, the transformation to austenite has been completed and the crystal grains have become coarse;
In part 2, it is heated to a temperature between the A c 1 transformation point E and the A c 3 transformation point F, and the crystal grains are fine in the middle of transformation. It can be seen that in the base material original part 1, the region heated to a temperature below the AC1 transformation point E is not affected by heat.

このように軟化現象が生ずるのは細粒熱影響部2で、高
温引張り試験およびクリープ破断試験において当該領域
で破断した。特にクリープ破断試験においては、母材原
質部1の破断時間の約115以下となる場合もある。
The softening phenomenon occurs in the fine-grained heat-affected zone 2, and fracture occurred in this region in the high-temperature tensile test and the creep rupture test. In particular, in the creep rupture test, the rupture time may be about 115 times or less than the rupture time of the base material original part 1.

この軟化現象について金属組織学的に調査した結果、当
該領域において著しい結晶粒の微細化とCr、M□の析
出物が他の領域に比べて粗大化していることが大きく影
響していることが明らかとなった。
As a result of metallographic investigation of this softening phenomenon, we found that it is largely influenced by the remarkable refinement of crystal grains in this region and the coarsening of Cr and M□ precipitates compared to other regions. It became clear.

さて、プラント機器をこれらCr −M Oglで製作
する場合には熱間曲げ加工、溶接などの加工に伴うA 
c 3変態点F以上の加熱は不可避であり、このような
現象を考慮し、必要板厚に対してかなりの裕度を見込ん
だ設計がされているが、長時間運転された機器において
は、当該領域でクリープ亀裂が発生し事故に到る場合も
あった。以上の観点から、調質されたCr−Mailの
通用範囲を拡大するためにもこの軟化現象に対する対策
を確立する必要がある。
Now, when manufacturing plant equipment with these Cr-M Ogl, there are A
c3 Heating above the transformation point F is unavoidable, and in consideration of this phenomenon, the design allows a considerable margin for the required plate thickness, but in equipment that has been operated for a long time, In some cases, creep cracks occurred in this area, leading to accidents. From the above viewpoint, it is necessary to establish countermeasures against this softening phenomenon in order to expand the usable range of tempered Cr-Mail.

この問題点を解決する発明を本発明者らは昭和61年6
月12日に特願昭61−134948号として出願した
。本願発明の内容も前記特願昭61−134948号と
基本的思想は同一であるので、前記先願の内容をまず説
明する。先願発明の熱処理方法の要点を第1表を用いて
説明する。
The present inventors invented an invention to solve this problem in June 1986.
The application was filed as Japanese Patent Application No. 134948/1986 on May 12th. Since the content of the present invention has the same basic idea as that of the above-mentioned Japanese Patent Application No. 134948/1982, the content of the above-mentioned earlier application will be explained first. The main points of the heat treatment method of the prior invention will be explained using Table 1.

第    1    表 単位 (”C) 焼ならしはCr、Moなどの添加元素を母地中に均一に
固溶させるとともに結晶粒の調整のために必要であり、
その温度は従来の熱処理方法と同様にA c 3変態点
F以上の焼ならし温度T1とする。
Table 1 Unit ("C) Normalizing is necessary to uniformly dissolve additive elements such as Cr and Mo in the matrix and to adjust the crystal grains.
The temperature is set to the normalizing temperature T1, which is equal to or higher than the A c 3 transformation point F, as in the conventional heat treatment method.

焼もどし処理は前記先願発明の熱処理のポイントであり
、発明者らの種々の検討によって従来の熱処理方法の必
要最低限の焼もどし温度T2よりも50℃以上低い焼も
どし温度TSとする必要があることがわかった。このよ
うな焼もどし温度T5で焼もどし処理をすることにより
、焼もどし処理中のCrやMOの析出物は従来の熱処理
方法による場合に比べて小さくなる。このため、その後
の加工に伴う加熱によってA C1変態点E近傍に加熱
された周辺領域においても、これらの析出物の一部のも
のは固溶されて、オーステナイト粒の成長に対する障害
とはならず、結晶粒の著しい微細化は軽減される。軟化
防止の観点からは焼もどし温度はできるだけ低温のほう
がよいのは当然であるが、前記したように延性、靭性を
回復させる必要があり、その下限はAc1変態点Eより
も100℃未満低い従来の焼もどし温度T2よりもさら
に50〜100℃低い焼もどし温度T5とするのが好ま
しい。焼もどし2処理後溶接や熱間曲げ加工などの加工
に伴いA Cコ変態点F以上の加熱温度Tコで加熱した
後の後熱処理温度は、従来の熱処理方法による必要最低
限の焼もどし温度T4 (Ac1変態点よりも100℃
以上低い温度)よりも高い後熱処理温度T6とした。好
ましくはAc1点とA C1〜100℃の間の温度が採
用される。
The tempering treatment is the key point of the heat treatment in the prior invention, and the inventors' various studies revealed that it is necessary to set the tempering temperature TS at least 50°C lower than the minimum necessary tempering temperature T2 of the conventional heat treatment method. I found out something. By performing the tempering treatment at such a tempering temperature T5, precipitates of Cr and MO during the tempering treatment become smaller than in the case of conventional heat treatment methods. Therefore, even in the surrounding area heated to near the A C1 transformation point E by heating during subsequent processing, some of these precipitates are dissolved in solid solution and do not become an obstacle to the growth of austenite grains. , significant grain refinement is reduced. From the viewpoint of preventing softening, it is natural that the tempering temperature should be as low as possible, but as mentioned above, it is necessary to restore ductility and toughness, and the lower limit is conventionally lower than the Ac1 transformation point E by less than 100°C. It is preferable to set the tempering temperature T5 to be 50 to 100°C lower than the tempering temperature T2. After tempering 2 processing During processing such as welding and hot bending, the post-heat treatment temperature after heating at a heating temperature T above the transformation point F is the minimum tempering temperature required by the conventional heat treatment method. T4 (100℃ above Ac1 transformation point
The post-heat treatment temperature T6 was set higher than the lower temperature). Preferably, a temperature between the Ac1 point and A C1 to 100°C is employed.

この熱処理によって、焼もどしだけでは十分に回復して
いなかった延性と靭性は必要な値にまで回復し、構造物
として必要な機械的性質を保証することができる。
Through this heat treatment, the ductility and toughness, which were not fully recovered by tempering alone, are restored to the required values, and the mechanical properties necessary for the structure can be guaranteed.

次に先願発明の詳細な説明する。材料は9Cr −I 
M o系(Ac1変態点が830〜840℃1、A c
 3変態点が870〜880°C)のものとする。
Next, the invention of the prior application will be explained in detail. The material is 9Cr-I
Mo system (Ac1 transformation point is 830-840℃1, Ac
3) whose transformation point is 870 to 880°C.

従来の熱処理方法による熱処理は、焼ならし温度T1が
1050℃、焼もどし最低温度T2が730℃で実際に
は760℃で焼もどし処理される。
In the heat treatment according to the conventional heat treatment method, the normalizing temperature T1 is 1050°C, the minimum tempering temperature T2 is 730°C, and the tempering process is actually performed at 760°C.

先願発明の熱処理は、焼ならし温度T1が1050°C
1焼もどし温度T、は従来の焼もどし温度T2よりも低
い温度(670℃)とした。このように熱処理した材料
を大熱量25KJ/(至)で溶接加工した後、焼もどし
温度T、より高い後熱処理温度Tg(760℃)で後熱
処理した。従来法では740℃で後熱処理される。
In the heat treatment of the prior invention, the normalizing temperature T1 is 1050°C.
1. The tempering temperature T was set lower than the conventional tempering temperature T2 (670° C.). The thus heat-treated material was welded at a large heat amount of 25 KJ/(to), and then post-heat-treated at a tempering temperature T and a higher post-heat treatment temperature Tg (760° C.). In the conventional method, post-heat treatment is performed at 740°C.

(発明が解決しようとする問題点) 発明者らの前記先願に係る特願昭61−134948号
の発明は、溶接や熱間曲げ加工による局部加熱で発生す
る軟化を防止する方法として非常に有効であるが、工場
内でこの方法で処理されたCr−Mo5jl材の一部に
ついてさらに現地溶接などの加工を実施する場合には、
さらに工夫が必要である。すなわち、先願発明の方法で
は溶接や熱間曲げ加工後の後熱処理は、溶接部や熱間曲
げ加工部だけでな(、母材の性能を確保するため全体熱
処理を前提としており、このため、現地溶接する部分に
ついても必要最低限の焼もどし温度に相当する温度T6
に加熱されている。
(Problems to be Solved by the Invention) The invention of Japanese Patent Application No. 134948/1989, which is related to the earlier application by the inventors, is very effective as a method for preventing softening caused by local heating caused by welding or hot bending. Although it is effective, when further processing such as on-site welding is performed on a part of the Cr-Mo5jl material treated with this method in the factory,
Further efforts are needed. In other words, in the method of the prior invention, the post-heat treatment after welding or hot bending is not only performed on the welded part or the hot bent part (it is assumed that the entire base material is heat treated to ensure the performance of the base material, , the temperature T6, which corresponds to the minimum necessary tempering temperature for the parts to be welded on-site.
is heated to.

この温度は従来から行なわれている焼ならし後の焼もど
し温度T2に相当するものであり、現地で溶接した後、
この部分を後熱処理をすると前述した細粒熱影響部、す
なわち軟化部が発生して強度が低下する。
This temperature corresponds to the conventional tempering temperature T2 after normalizing, and after welding on site,
If this portion is subjected to post-heat treatment, the aforementioned fine-grained heat-affected zone, ie, a softened zone, will occur and the strength will decrease.

本発明の目的は、c r −M o 鋼からなる製品を
工場などで部分的に溶接した後、最終的な構造物とする
ために必要な現地溶接を実施するに際して、溶接熱影響
部が軟化しないような方法を提供することにある。
The purpose of the present invention is to prevent softening of the weld heat-affected zone when performing on-site welding necessary to make the final structure after partially welding a product made of cr-Mo steel in a factory or the like. The goal is to provide a way to do so.

(問題点を解決するための手段) 本発明は上記問題点を解決するためになされたもので、
現地加工部分を有するC r −M a illを、A
 C,3変態点以上に加熱して焼ならし処理を行なった
後に、A C1変態点より100℃未満低い必要最低限
焼もどし温度よりもさらに50℃以上低い温度で焼もど
し処理を行ない、A c コ変態点以上での加工をした
後に、現地加工部分は前記必要最低限焼もどし温度より
50℃以上低い温度に保ちつつ、他の部分については必
要最低限の焼もどし温度以上の後熱処理を行ない、しか
る後現地加工部分についてA c 3変態点以上での加
工をした後、その部分について必要最低限の焼もどし温
度以上の後熱処理を行なう現地加工部分を有するCr−
Mo&Hの加熱処理方法を提供するものである。
(Means for Solving the Problems) The present invention has been made to solve the above problems.
Cr-M aill with on-site processing part
After performing normalizing treatment by heating to the C.3 transformation point or higher, further tempering treatment at a temperature lower than the necessary minimum tempering temperature of less than 100 °C lower than the A C1 transformation point by 50 °C or more, c After processing at or above the transformation point, the on-site processed part is kept at a temperature 50°C or more lower than the above-mentioned minimum required tempering temperature, while other parts are subjected to post-heat treatment at a temperature higher than the required minimum tempering temperature. Cr- having an on-site processed part where the on-site processed part is processed at a temperature higher than the A c 3 transformation point, and then the part is subjected to post-heat treatment at a temperature higher than the minimum necessary tempering temperature.
A method for heat treatment of Mo&H is provided.

(実施例) 本発明の実施例を第1〜2図を用いて詳細に説明する。(Example) Embodiments of the present invention will be described in detail using FIGS. 1 and 2.

第2図は火力発電所などに設置されるボイラ装置に用い
られる主蒸気配管の工場内での後熱処理を実施している
ところを示す。主蒸気配管1の材質は9Cr−IMo系
(Ac1変態点が830〜840°C−、A C3変態
点が870〜880℃)であり、必要な熱間曲げ加工や
溶接はすでに実施済みである。この材料の焼もどし温度
T、は680°Cとして、先願の特願昭61−1349
48号の熱処理を通用している。熱間曲げ加工や溶接作
業後の後熱処理温度T乙は760°Cに設定しているが
、電気炉3の扉11に管の寸法にあわせて穴12を開け
ておき、現地溶接を実施する管端部2は炉外に出しであ
る。したがって、管端部近くの配管温度は680℃(T
5)以下に保たれている。
Figure 2 shows post-heat treatment being carried out in a factory on main steam piping used in boiler equipment installed in thermal power plants and the like. The material of the main steam pipe 1 is 9Cr-IMo (Ac1 transformation point is 830-840°C, AC3 transformation point is 870-880°C), and the necessary hot bending and welding have already been carried out. . The tempering temperature T of this material is 680°C, and
No. 48 heat treatment has been passed. The post-heat treatment temperature T after hot bending and welding work is set at 760°C, but a hole 12 is drilled in the door 11 of the electric furnace 3 according to the dimensions of the pipe, and on-site welding is performed. The tube end 2 is exposed outside the furnace. Therefore, the pipe temperature near the pipe end is 680°C (T
5) Maintained below.

この680℃以下の加熱温度に保持する範囲は、その後
の現地溶接において発生する熱形ツ部を包含していれば
よい。このようにして後熱処理した主蒸気配管を現地で
組立てするため管端部2をAC3変態点以上の温度T7
で溶接する。この現地での溶接では母材と同じ成分系の
溶接材料を用いSMAWで行なった。その後に、部分的
な後熱処理を実施するが、やり方としてはこの現地溶接
部を含めて後熱処理すべき部分に誘導加熱式電気ヒータ
を巻いて熱処理する。この後熱処理温度T8は760℃
とし、後熱処理対象部分は工場での最後の熱処理時に炉
外に出していた部分である。
The range in which the heating temperature is maintained at 680° C. or lower only needs to include the hot forming portion that occurs during subsequent on-site welding. In order to assemble the main steam pipe post-heat-treated in this way on-site, the pipe end 2 is heated to a temperature T7 above the AC3 transformation point.
Weld with. This on-site welding was performed using SMAW using a welding material with the same composition as the base metal. After that, a partial post-heat treatment is performed, and the method is to wrap an induction electric heater around the area to be post-heat-treated, including this on-site welding part. After this, the heat treatment temperature T8 is 760℃
The part to be subjected to post-heat treatment is the part that was taken out of the furnace during the final heat treatment at the factory.

以上のように工場での最終熱処理時に、現地で溶接する
近傍を680℃以下にすることにより、現地溶接で発生
する熱影響部の軟化は防止できる。
As described above, softening of the heat-affected zone that occurs during on-site welding can be prevented by keeping the area near the on-site welding at 680° C. or lower during the final heat treatment at the factory.

これを確認するため、本実施例における現地溶接部につ
き単軸クリープ破断テストを行なった結果、破断強度は
母材と同等であることがわかり、しかもテストでは母材
部で破断した。
In order to confirm this, a uniaxial creep rupture test was performed on the on-site weld in this example, and it was found that the rupture strength was equivalent to that of the base metal, and moreover, in the test, the weld broke at the base metal.

本願発明の原理は先願の特願昭61−134948号と
同様である。すなわち、現地溶接部には、この部分は必
要最低尿の焼もどし温度よりも50℃以上低い温度(6
80℃)にしか加熱されておらず、このためCrやMo
の析出物の粗大化が遅れ、その後の現地溶接によってA
 c 3変態点より少し高い温度に加熱された部分にお
いて、これらの微細な析出物の一部は固溶され、変態に
よるオーステナイト粒の成長に対する障害とはならず、
結晶粒の著しい微細化は軽減され、軟化が防止できる。
The principle of the present invention is the same as that of the earlier application, Japanese Patent Application No. 61-134948. In other words, the on-site welding area must be kept at a temperature that is at least 50°C lower than the required minimum urine tempering temperature (60°C).
80℃), and for this reason Cr and Mo
The coarsening of the precipitates was delayed, and subsequent on-site welding caused A.
In the part heated to a temperature slightly higher than the c3 transformation point, some of these fine precipitates are dissolved in solid solution and do not become an obstacle to the growth of austenite grains due to transformation.
Significant refinement of crystal grains is reduced and softening can be prevented.

なお、第2図に示した工場内での加工後の後熱処理にお
いて、現地で溶接すべき管端部2を炉3の外に出せない
ような場合は、冷却用コイルを管端部近傍に巻きつけて
、これに冷却水を流すことにより目的を達することがで
きる。
In addition, in the post-processing heat treatment shown in Fig. 2 in the factory, if the tube end 2 to be welded on site cannot be taken out of the furnace 3, the cooling coil should be placed near the tube end. You can accomplish this by wrapping it around it and running cooling water around it.

(発明の効果) 本発明によれば、調質されたc r −M O6Mの局
部的な加熱による軟化現象を防止することができ、それ
だけ従来本鋼種によって農作されていた機器の信頼性を
向上させることができる。また、高価なオーステナイト
系ステンレスtAの代替材とし開発されている高Cr含
有Cr −M o &Hの通用範囲を熱処理方法によっ
て拡大することができ、その工業的価値は大きい。
(Effects of the Invention) According to the present invention, it is possible to prevent the softening phenomenon of tempered cr-M O6M due to local heating, thereby improving the reliability of agricultural equipment conventionally manufactured using this steel type. can be done. In addition, the range of application of high Cr-containing Cr-Mo&H, which has been developed as a substitute for expensive austenitic stainless steel tA, can be expanded by the heat treatment method, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る熱処理方法の原理説明図、第2
図は、本発明において現地加工すべき部分を炉外に出し
て残り部分を後熱処理する実施例図、第3図は、従来の
熱処理方法で処理した材料の断面図と加熱温度特性曲線
図である。 T1・・・焼ならし温度、T2・・・従来の焼もどし温
度、T3・・・加工温度、T4・・・従来の後熱処理温
度、T5・・・本発明の焼もどし温度、T6・・・本発
明の後熱処理温度、T7・・・本発明の現地加工温度、
T8・・・本発明の現地後熱処理温度。 代理人 弁理士 川 北 武 長 第1図 第3図 ?
FIG. 1 is an explanatory diagram of the principle of the heat treatment method according to the present invention, and FIG.
The figure shows an example in which the part to be processed on-site is taken out of the furnace and the remaining part is post-heat-treated in the present invention, and Figure 3 is a cross-sectional view and heating temperature characteristic curve diagram of the material treated by the conventional heat treatment method. be. T1... Normalizing temperature, T2... Conventional tempering temperature, T3... Processing temperature, T4... Conventional post-heat treatment temperature, T5... Tempering temperature of the present invention, T6... - Post-heat treatment temperature of the present invention, T7...on-site processing temperature of the present invention,
T8: Post-on-site heat treatment temperature of the present invention. Agent Patent Attorney Takenaga Kawakita Figure 1 Figure 3?

Claims (1)

【特許請求の範囲】[Claims] (1)現地加工部分を有するCr−Mo鋼を、Ac_3
変態点以上に加熱して焼ならし処理を行なった後に、A
c_1変態点より100℃未満低い必要最低限焼もどし
温度よりも50℃以上低い温度で焼もどし処理を行ない
、Ac_3変態点以上での加工をした後に、現地加工部
分は周辺部を含め前記必要最低限焼もどし温度より50
℃以上低い温度に保ちつつ、他の部分については必要最
低限の焼もどし温度以上の後熱処理を行ない、しかる後
現地加工部分についてAc_3変態点以上での加工をし
た後、周辺部を含めその部分について必要最低限の焼も
どし温度以上の後熱処理を行なう現地加工部分を有する
Cr−Mo鋼の加熱処理方法。
(1) Ac_3 Cr-Mo steel with on-site processing parts
After being heated above the transformation point and subjected to normalizing treatment, A
After performing tempering treatment at a temperature 50°C or more lower than the necessary minimum tempering temperature, which is less than 100°C lower than the c_1 transformation point, and processing at a temperature higher than the Ac_3 transformation point, the on-site processing area, including the surrounding area, shall be heated to the above-mentioned minimum temperature. 50 below the limited tempering temperature
While maintaining the temperature at a temperature lower than °C, other parts are subjected to post-heat treatment above the required minimum tempering temperature, and after that, the on-site processing part is processed at a temperature of Ac_3 transformation point or higher, and then that part, including the surrounding area, is processed. A method for heat treatment of Cr-Mo steel having an on-site processed part in which post-heat treatment is performed at a temperature higher than the minimum required tempering temperature.
JP28984286A 1986-12-05 1986-12-05 Heating treatment for chromium-molybdenum steel having site welding part Pending JPS63143218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28984286A JPS63143218A (en) 1986-12-05 1986-12-05 Heating treatment for chromium-molybdenum steel having site welding part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28984286A JPS63143218A (en) 1986-12-05 1986-12-05 Heating treatment for chromium-molybdenum steel having site welding part

Publications (1)

Publication Number Publication Date
JPS63143218A true JPS63143218A (en) 1988-06-15

Family

ID=17748471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28984286A Pending JPS63143218A (en) 1986-12-05 1986-12-05 Heating treatment for chromium-molybdenum steel having site welding part

Country Status (1)

Country Link
JP (1) JPS63143218A (en)

Similar Documents

Publication Publication Date Title
JPS61127815A (en) Production of high arrest steel containing ni
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JP3534413B2 (en) Ferritic heat-resistant steel excellent in high-temperature strength and method for producing the same
JPH04191319A (en) Manufacture of low carbon martensitic stainless steel line pipe
JPS63143218A (en) Heating treatment for chromium-molybdenum steel having site welding part
JPS6187818A (en) Manufacture of ultrathick steel material of high strength low alloy steel
JPH0387332A (en) High strength-low alloy-heat resistant steel
JPH08134585A (en) Ferritic heat resistant steel, excellent in high temperature strength and oxidation resistance, and its production
NO123551B (en)
JPH04276018A (en) Manufacture of door guard bar excellent in collapse resistant property
JPS62294129A (en) Heat treatment method for chromium-molybdenum steel
JPH0414179B2 (en)
JP3869576B2 (en) Heat-resistant steel welding method
JPH0211654B2 (en)
JPH01172516A (en) Manufacture of acicular ferritic stainless steel having excellent stress corrosive cracking resistance
JPS5817808B2 (en) Method for producing welded steel pipes with excellent stress corrosion cracking resistance
JPH0387317A (en) Production of steel tube or square steel tube having low yield ratio
JPS63157769A (en) Method for welding cr mo steel
JPH01172517A (en) Manufacture of stainless steel having excellent stress corrosive cracking resistance
JPH0297619A (en) Method for forming low-alloy steel for high-temperature service
JPH0310051A (en) High-carbon and high-nitrogen stainless steel having high strength and high toughness and its production
JPH04325628A (en) Production of resistance welded tube minimal in hardening in resistance welded zone
JPH066739B2 (en) Method for producing high strength steel having low surface hardness
JPH0196329A (en) Manufacture of steel for welding construction excellent in sulfide stress corrosion cracking resistance and having >=56kgf/mm2 tensile strength
JPH0453928B2 (en)