JPS63142811A - Manufacture of boundary superstructure - Google Patents

Manufacture of boundary superstructure

Info

Publication number
JPS63142811A
JPS63142811A JP61290881A JP29088186A JPS63142811A JP S63142811 A JPS63142811 A JP S63142811A JP 61290881 A JP61290881 A JP 61290881A JP 29088186 A JP29088186 A JP 29088186A JP S63142811 A JPS63142811 A JP S63142811A
Authority
JP
Japan
Prior art keywords
sample
ray
superstructure
boundary
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61290881A
Other languages
Japanese (ja)
Inventor
Koichi Akimoto
秋本 晃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61290881A priority Critical patent/JPS63142811A/en
Publication of JPS63142811A publication Critical patent/JPS63142811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To grow a sample in a multilayer by monitoring the intensity of a diffracted X-ray in a boundary superstructure when a depositing substance is deposited on the sample, thereby preventing the sample from damaging. CONSTITUTION:A sample 1 is attached to a sample stand 2 of a rotating mechanism 3 of a goniometer to set the sample 1 at a predetermined position, a shutter 10 is opened to discharge a depositing substance from a deposition source 5 toward the sample 1 of the stand 2, thereby depositing the substance 4 on the sample 1. In this case, strong X-ray 11 such as synchrotron radiation X-ray from the window 7a of an ultrahigh vacuum tank 8 is irradiated to the sample 1. The X-ray 11 radiated to the sample 1 is diffracted by a boundary superstructure of the sample 1, and irradiated as diffracted X-ray 12 from the beryllium window 7b of the tank 8. One to multiple layers are laminated while evaluating with the X-ray the superstructure having a larger period than a bulk crystal and present on several atom layers near the boundary while observing it on-site by monitoring the intensity of the X-ray 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は界面超構造の製造方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing interfacial superstructures.

〔従来の技術〕[Conventional technology]

従来、フィジカル レビュー レターズ(Phys。 Previously, Physical Review Letters (Phys.

Rev、Lell、)56(1986)355に記載さ
れているように、アモルファスSLと(111)Siの
界面に7X7超構造が存在することが透過電子線回折法
により示されている。しかし、これは電子線回折を行う
ために試料を破壊する手法であり、これまでその場観察
による製造方法は報告されていない。
As described in Rev. Lell, ) 56 (1986) 355, it has been shown by transmission electron diffraction that a 7X7 superstructure exists at the interface between amorphous SL and (111) Si. However, this is a method that destroys the sample in order to perform electron beam diffraction, and a manufacturing method based on in-situ observation has not been reported so far.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

界面超構造のその場wt察による製造方法がないために
、界面超構造を多層に成長させることが困難である。ま
た、評価したあとの構造物の電気的、光学的性質を利用
できない。
The lack of in-situ fabrication methods for interfacial superstructures makes it difficult to grow interfacial superstructures in multiple layers. Furthermore, it is not possible to utilize the electrical and optical properties of the structure after it has been evaluated.

本発明の目的は試料を破壊しないで評価しながら界面超
構造を製造する方法を提供することにある。
An object of the present invention is to provide a method for manufacturing an interfacial superstructure while evaluating the sample without destroying it.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は固体一固体界面において、界面付近の数原子層
に存在するバルク結晶より大きい周期をもつ超構造をX
線によって評価しながら一層または多層にわたって積層
することを特徴とする界面超構造の製造方法である。
The present invention creates a superstructure with a period larger than that of the bulk crystal existing in several atomic layers near the interface at a solid-solid interface.
This is a method for manufacturing an interfacial superstructure, which is characterized by laminating one layer or multiple layers while evaluating by lines.

〔作用〕[Effect]

本発明は界面超構造作成の際、その場観察をX線で行う
ものである。X線は電子線より固体内への侵入深さが大
きく試料を破壊する必要がなく、多層にわたって積層可
能となる。
In the present invention, in-situ observation is performed using X-rays when creating an interface superstructure. X-rays penetrate deeper into solids than electron beams, and there is no need to destroy the sample, making it possible to stack multiple layers.

〔実施例〕〔Example〕

以下、本発明の一実施例を図により説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明に係る界面超構造の製造装置を示すもの
である。第1図において、超高真空槽8に真空ポンプ9
を接続し、該超高真空槽8の底部側に、蒸着物質4を充
填してなる蒸着源5を設置する。6は液体窒素シュラウ
ドである。
FIG. 1 shows an apparatus for manufacturing an interface superstructure according to the present invention. In FIG. 1, a vacuum pump 9 is connected to an ultra-high vacuum chamber 8.
A vapor deposition source 5 filled with a vapor deposition substance 4 is installed on the bottom side of the ultra-high vacuum chamber 8. 6 is a liquid nitrogen shroud.

さらに、前記蒸着源5の上部に設けた窓部5aの上方の
所定位置に試料台2をゴニオメータによる回転機構3に
支持させて設置し、該試料台2の下面に試料1をセット
する。また蒸着源5の窓部5aにシャッター10を開閉
可能に設置する。
Further, a sample stage 2 is supported by a goniometer rotating mechanism 3 and installed at a predetermined position above a window 5a provided at the top of the vapor deposition source 5, and a sample 1 is set on the lower surface of the sample stage 2. Further, a shutter 10 is installed in the window portion 5a of the vapor deposition source 5 so as to be openable and closable.

一方、前記超高真空槽8の側壁には前記試料台2とほぼ
同一高さ位置にX線11の入射用窓7aと回折XA11
2の出射用ベリリウム窓7bとを設けである。
On the other hand, on the side wall of the ultra-high vacuum chamber 8, there is an entrance window 7a for X-rays 11 and a diffraction XA 11 located at almost the same height as the sample stage 2.
Two exit beryllium windows 7b are provided.

まず、ゴニオメータの回転機構3の試料台2に試料1を
取付けて該試料1を所定位置にセットし。
First, the sample 1 is attached to the sample stage 2 of the rotation mechanism 3 of the goniometer, and the sample 1 is set at a predetermined position.

シャッター10を開いて蒸着源5から蒸着物質を試料台
2の試料1に向けて放出し該試料1に蒸着物質4を蒸着
させる。その際、超高真空槽8の窓7a。
The shutter 10 is opened to release the vapor deposition material from the vapor deposition source 5 toward the sample 1 on the sample stage 2, and the vapor deposition material 4 is vapor-deposited onto the sample 1. At that time, the window 7a of the ultra-high vacuum chamber 8.

からシンクロトロン放射X線などの強力なX線11を試
料1に照射する。試料1に照射されたX線11は試料1
の界面超構造で回折され、回折X線12となって超高真
空槽8のベリリウム窓7bから出射する。この回折X線
12の強度をモニターすることにより、その場観察を行
いつつ、界面付近の数原子層に存在するノ1ルク結晶よ
り大きい周期をもつ超構造をX線で評価しながら一層又
は多層にわたって積層する。また、X線で超構造のその
場観察を行う場合には、ゴニオメータによる回転機構3
を駆動して試料1を適宜角回転させ超構造に対するX線
の入射方向を変更してX線での評価を多方向から行う。
The sample 1 is irradiated with powerful X-rays 11 such as synchrotron radiation X-rays. The X-rays 11 irradiated on sample 1
It is diffracted by the interface superstructure, becomes diffracted X-rays 12, and exits from the beryllium window 7b of the ultra-high vacuum chamber 8. By monitoring the intensity of this diffraction Laminated over the entire length. In addition, when performing in-situ observation of superstructures using X-rays, a rotating mechanism 3 using a goniometer is used.
is driven to rotate the sample 1 by an appropriate angle to change the direction of incidence of X-rays on the superstructure, thereby performing X-ray evaluation from multiple directions.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、試料に蒸着物質を蒸着さ
せる際、界面超構造での回折X線の強度をモニターする
ことにより、その場EPXを行うことができ、かつ試料
を破壊することがないため、多層に成長させることがで
きる効果を有するものである。
As explained above, the present invention enables in-situ EPX to be performed by monitoring the intensity of diffracted X-rays at the interface superstructure when depositing a deposition substance on a sample, and without destroying the sample. Therefore, it has the effect of being able to grow in multiple layers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図である。 1・・・試料       2・・・試料台3・・・回
転機構     4・・・蒸着物質5・・・蒸着源  
    6・・・液体窒素シュラウド7a・・・窓  
      7b・・・ベリリウム窓8・・・超高真空
槽    9・・・真空ポンプ10・・・シャッター 
   11・・・入射X線12・・・回折X線
FIG. 1 is a block diagram showing an embodiment of the present invention. 1... Sample 2... Sample stage 3... Rotation mechanism 4... Vapor deposition substance 5... Vapor deposition source
6...Liquid nitrogen shroud 7a...Window
7b... Beryllium window 8... Ultra-high vacuum chamber 9... Vacuum pump 10... Shutter
11... Incident X-ray 12... Diffracted X-ray

Claims (1)

【特許請求の範囲】[Claims] (1)固体−固体界面において、界面付近の数原子層に
存在するバルク結晶より大きい周期をもつ超構造をX線
によって評価しながら一層または多層にわたって積層す
ることを特徴とする界面超構造の製造方法。
(1) Manufacturing an interfacial superstructure at a solid-solid interface, which is characterized by laminating one layer or multiple layers while evaluating the superstructure with a period larger than the bulk crystal existing in several atomic layers near the interface using X-rays. Method.
JP61290881A 1986-12-05 1986-12-05 Manufacture of boundary superstructure Pending JPS63142811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61290881A JPS63142811A (en) 1986-12-05 1986-12-05 Manufacture of boundary superstructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61290881A JPS63142811A (en) 1986-12-05 1986-12-05 Manufacture of boundary superstructure

Publications (1)

Publication Number Publication Date
JPS63142811A true JPS63142811A (en) 1988-06-15

Family

ID=17761716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61290881A Pending JPS63142811A (en) 1986-12-05 1986-12-05 Manufacture of boundary superstructure

Country Status (1)

Country Link
JP (1) JPS63142811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233350U (en) * 1988-08-29 1990-03-02
JPH02247549A (en) * 1989-03-20 1990-10-03 Raimuzu:Kk Analysis of multilayered film and formation of multilayered film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233350U (en) * 1988-08-29 1990-03-02
JPH02247549A (en) * 1989-03-20 1990-10-03 Raimuzu:Kk Analysis of multilayered film and formation of multilayered film

Similar Documents

Publication Publication Date Title
Hart Synchrotron radiation–its application to high-speed, high-resolution X-ray diffraction topography
Hasegawa et al. A study of adsorption and desorption processes of Ag on Si (111) surface by means of RHEED-TRAXS
Shimatsu et al. Metal bonding during sputter film deposition
Dippel et al. Local atomic structure of thin and ultrathin films via rapid high-energy X-ray total scattering at grazing incidence
US6306668B1 (en) Control method and system for use when growing thin-films on semiconductor-based materials
Slaughter et al. Interfaces in Mo/Si multilayers
JPS63142811A (en) Manufacture of boundary superstructure
Zhou et al. Growth of thin Cu films on MgO (001)
Fine et al. Sputter depth profiles of Ni/Cr thin‐film structures obtained from the emission of Auger electrons and x rays
Zheludeva et al. X-ray standing waves in bragg diffraction and in total reflection regions using langmuir-blodgett multilayers
Röhlsberger et al. Observation of nuclear diffraction from multilayers with a Fe/57Fe superstructure
Tadayyon et al. Auger electron spectroscopy and X-ray diffraction study of interdiffusion and solid state amorphization of Ni/Ti multilayers
Jenkins et al. TEM studies of displacement cascades in Nb3Sn
Höchst et al. Synchrotron radiation assisted metalorganic layer epitaxy
Loginov et al. TEM Study of Sub‐Threshold Electron Irradiation Damage in II–VI Compounds
Sinha et al. Glancing angle soft x-ray reflectivity (SXR) and total electron yield (TEY) characterization of ZrO2 thin film near O K-edge
Stucki et al. Photoemission study of GeAs (2̄01): A model for the As‐stabilized Ge surface on GaAs/Ge heterojunctions
Sanyal et al. X-ray reflectivity study of semiconductor interfaces
JPH0678995B2 (en) Interface superstructure evaluation method
Kubo et al. A novel in-situ molecular beam epitaxy monitoring system using low energy ion scattering
Macrander et al. Laterally graded multilayer double-monochromator
Dietsch et al. Characterization of ultra smooth interfaces in Mo/Si-multilayers
Martin et al. Relative quantum efficiency measurements of CsI, CsBr, and CsI/CsBr coated microchannel plates
Alford et al. X-ray fiducial foils
Gunnella et al. X-ray absorption spectroscopy study of atomic structure of epitaxial ErSi 1.7 (0001) on Si (111)