JPH02247549A - Analysis of multilayered film and formation of multilayered film - Google Patents

Analysis of multilayered film and formation of multilayered film

Info

Publication number
JPH02247549A
JPH02247549A JP1068056A JP6805689A JPH02247549A JP H02247549 A JPH02247549 A JP H02247549A JP 1068056 A JP1068056 A JP 1068056A JP 6805689 A JP6805689 A JP 6805689A JP H02247549 A JPH02247549 A JP H02247549A
Authority
JP
Japan
Prior art keywords
film
substrate
characteristic
rays
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1068056A
Other languages
Japanese (ja)
Inventor
Kenichi Sano
謙一 佐野
Takashi Ebisawa
孝 海老沢
Takaharu Yonemoto
米本 隆治
Hideaki Murata
秀明 村田
Taiichi Mori
泰一 森
Tsugio Miyagawa
宮川 亜夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Original Assignee
RAIMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIMUZU KK filed Critical RAIMUZU KK
Priority to JP1068056A priority Critical patent/JPH02247549A/en
Publication of JPH02247549A publication Critical patent/JPH02247549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily make analysis with good productivity without losing the electrolyzing power required for each of respective layers by analyzing the compsn. of the surface layer at the respective timing at the time of film formation to analyze the compsn. modulated structure of the multilayered films formed on a substrate. CONSTITUTION:Fe and Au are subjected to evaporation 12a, 12b in a vacuum chamber 13 and shutters 11a, 11b are opened and closed cooperatively with film thickness sensors 9a, 9b to deposit the Fe and Au by evaporation alternately on the substrate 2 by which the multilayered films are formed. An electron ray is made incident at about 1 deg. glancing angle with the film on the substrate 2 from an electron gun 1 installed in the chamber 13 simultaneously with this film formation to excite a characteristic X-ray. After the characteristic X-ray is detected by a semiconductor detector 13 in the chamber 3 and is amplified 4, the integration coefft. by the characteristic X-ray is separated and is taken into a data processor 6. The outputs of the sensors 9a, 9b are also amplified 10 and are taken into the processor 6 which displays and analyzes the intensity of the characteristic X-ray as the function of a film thickness. The temp. of the substrate 2 is so controlled 7 as to minimize the deviation from the reference value of the characteristic X-ray intensity of the Fe and Au set as the function of the film thickness in the processor 6, by which the multilayered films having the excellent steepness of the boundary are formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多層膜の分析方法及びその形成方法に関し、
特に基板上に形成した多層膜の組成変調構造を分析する
方法、及びその分析値に基づいて組成変調構造を制御す
る多層膜の形成方法に係わる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for analyzing a multilayer film and a method for forming the same.
In particular, the present invention relates to a method of analyzing a compositionally modulated structure of a multilayer film formed on a substrate, and a method of forming a multilayer film that controls the compositionally modulated structure based on the analyzed values.

[従来の技術及び課題] 基板上に形成した多層膜の組成変調構造を分析する方法
は、非破壊的分析法とは破壊的分析法の2種に大別され
る。非破壊的分析法には、■X線回折法(XRD法)、
■ラザフォード後方散乱法(RBS法)が、破壊的分析
法には■オージェ分光分析法(AES法)、■断面薄膜
透過電子顕微鏡法(XTEM法)がそれぞれ代表的な方
法として知られている。しかしながら、これらの分析法
はいずれも成膜終了後に実施されるため、これら分析値
に基いて成膜過程での制御を行うことができないという
問題があった。
[Prior Art and Problems] Methods for analyzing the compositional modulation structure of a multilayer film formed on a substrate are roughly divided into two types: non-destructive analysis methods and destructive analysis methods. Non-destructive analysis methods include ■X-ray diffraction method (XRD method),
■ Rutherford backscattering method (RBS method) is known as a typical destructive analysis method, ■ Auger spectroscopy (AES method), and cross-sectional thin film transmission electron microscopy (XTEM method) are known as representative methods. However, since all of these analysis methods are carried out after the completion of film formation, there is a problem in that the film formation process cannot be controlled based on these analytical values.

このようなことから、成膜中の多層膜を分析し得る方法
として、(a)高速反射電子線回折(RHEED)振動
法、(b)その場オージェ分光分析法(そま場AES法
)を用いることが試みられている。これら方法の特徴と
問題点を以下に説明する。
For this reason, as methods that can analyze the multilayer film being formed, (a) high-speed reflection electron diffraction (RHEED) vibration method, and (b) in-situ Auger spectroscopy (in-situ AES method) are used. That is what is being attempted. The features and problems of these methods will be explained below.

(a)RHEED振動法 この方法は、分子線エピタキシー装置による単結晶膜の
エピタキシー成長時に、回折ビーム強度が時間と共に振
動し、その周期が一原子層の成長に対応することを利用
して成膜の進行を監視し、また膜成長が層状成長機構に
よっていることを確認するものである。この方法では、
組成変調構造に関する情報を得ることができる。しかし
ながら、対象が特定の結晶方位を有する単結晶膜に限定
されること、極め狭い温度範囲や成膜速度など特殊な成
膜条件でのみRHEED振動現象が観察可能となるなど
制御が多く、用途が限定される。また、直接化学組成に
対応する物理量が計測されないため、間接的な情報とな
る。
(a) RHEED vibration method This method takes advantage of the fact that during epitaxial growth of a single crystal film using a molecular beam epitaxy device, the intensity of the diffracted beam oscillates over time, and the period corresponds to the growth of one atomic layer. This is to monitor the progress of the process and to confirm that the film growth is based on a layered growth mechanism. in this way,
Information regarding the composition modulation structure can be obtained. However, the target is limited to single-crystal films with a specific crystal orientation, and the RHEED vibration phenomenon can only be observed under special film-forming conditions such as an extremely narrow temperature range and film-forming rate. Limited. Furthermore, since physical quantities corresponding to the chemical composition are not directly measured, the information is indirect.

(b)その場AES法 この方法は、MBE装置などのAES装置を内蔵する成
膜装置において、成膜を中断してAES分光分析を実施
する。その場AES測定の場合、AES分光分析管の焦
点距離が101m程度と短いため、分析管を基板の直上
に設置する必要があるため、成膜時に成膜と同時に分析
を実施することが極めて困難であり、実用的ではない。
(b) In-situ AES method In this method, in a film forming apparatus such as an MBE apparatus that incorporates an AES apparatus, film forming is interrupted and AES spectroscopic analysis is performed. In the case of in-situ AES measurement, the focal length of the AES spectroscopic analysis tube is as short as approximately 101 m, so it is necessary to install the analysis tube directly above the substrate, which makes it extremely difficult to conduct analysis at the same time as film formation. and is not practical.

通常は、分析管を同一真空槽内の成膜時の基板位置とは
十分に離し、成膜蒸着ビームによって分析管が汚染され
ず、分析管によって蒸着ビームが遮断される恐れのない
位置に設置するか、成膜用真空槽とは別に設けた分析用
真空槽内に設置し、分析時には蒸着を中断し、前記基板
を分析管まで移動又は搬送した後、分析を実施する。そ
の結果、分析のための成膜の中断時間も成膜上無視でき
なくなり、十分な位置の分解能を得るために成膜を中断
して分析を実施する回数を増大させると、そのための所
要時間より生産性を著しく低下させる問題を生じる。
Normally, the analysis tube is placed far enough away from the substrate position during film formation in the same vacuum chamber, and installed in a position where the analysis tube will not be contaminated by the film-forming deposition beam and there is no risk that the deposition beam will be blocked by the analysis tube. Alternatively, the substrate is placed in an analysis vacuum chamber provided separately from the film-forming vacuum chamber, and during analysis, vapor deposition is interrupted and the substrate is moved or transported to an analysis tube before analysis is performed. As a result, the time required to interrupt film formation for analysis cannot be ignored during film formation, and if we increase the number of times film formation is interrupted and analyzed in order to obtain sufficient positional resolution, the time required This causes problems that significantly reduce productivity.

一方、多層膜における組成変調構造に基づいて多層膜の
形成条件を制御する方法として、上述した位相制御エピ
タキシー法を除いて、いずれも各層の膜厚、成膜速度、
基板温度等の成膜パラメータを所定の値に保持するもの
で、組成変調膜の積層界面を含む構造を検出し、その結
果に基づいて成膜を制御するものではない。
On the other hand, as a method for controlling the formation conditions of a multilayer film based on the composition modulation structure in the multilayer film, except for the above-mentioned phase control epitaxy method, all of the methods include the film thickness of each layer, the film formation rate,
This method maintains film formation parameters such as substrate temperature at predetermined values, and does not detect the structure including the laminated interface of the composition modulated film and control film formation based on the result.

なお、積層界面の構造は蒸着速度、基板温度の他、表面
拡散係数、体積拡散係数、格子欠陥密度等に依存し、こ
れらも界面構造に依存する要素である。また、蒸着過程
では過飽和状態で進行する、いわゆる非平衡又は準安定
過程による場合が多い。
Note that the structure of the laminated interface depends on the deposition rate, substrate temperature, surface diffusion coefficient, volume diffusion coefficient, lattice defect density, etc., and these are also factors that depend on the interface structure. Further, in the vapor deposition process, a so-called non-equilibrium or metastable process that proceeds in a supersaturated state is often used.

これは、直接制御することが困難なパラメータに律速さ
れるため、予め設定した成膜パラメータによって所期の
積層界面構造を得ることは難しい。
This is rate-determined by parameters that are difficult to directly control, and therefore it is difficult to obtain the desired laminated interface structure using preset film formation parameters.

従って、実際に成膜過程を監視しなから成膜制御を行う
ことが極めて重要となる。しかしながら、成膜中に組成
変調構造を検出する適当な手段がなかったり、RHEE
D振動法のように特殊な場合にしか用いることができな
い等により実施は困難である状況であった。
Therefore, it is extremely important to control film formation without actually monitoring the film formation process. However, there is no appropriate means to detect the compositionally modulated structure during film formation, or there is no RHEE
It has been difficult to implement this method because it can only be used in special cases, such as the D-vibration method.

本発明は、上記従来の課題を解決するためになされたも
ので、基板上に形成される多層膜の組成変調構造を各層
毎に必要な分解能を失うことなく、かっ生産性よく簡便
に分析し得る方法、並びにその分析値に基づいて成膜条
件を制御して目的とする組成等を有する多層膜を形成し
得る方法を提供するものである。
The present invention was made in order to solve the above-mentioned conventional problems, and it is possible to easily analyze the compositional modulation structure of a multilayer film formed on a substrate with high productivity without losing the necessary resolution for each layer. The present invention provides a method for forming a multilayer film having a desired composition by controlling film forming conditions based on the analysis value.

[課題を解決するだめの手段] 本願第1の発明は、基板上の多層膜を分析するに際し、
成膜中の被膜表面に電子線を前記基板面に対する視斜角
がIO″以下となるように入射させ、被膜から励起され
る特性X線を前記被膜の全反射臨界角度の5倍以下の角
度で検出し、その特性X線に基づいて前記多層膜の組成
変調構造をn1定することを特徴とする多層膜の分析方
法である。
[Means for Solving the Problem] The first invention of the present application provides a method for analyzing a multilayer film on a substrate.
An electron beam is incident on the surface of the film being formed so that the oblique angle with respect to the substrate surface is IO'' or less, and the characteristic X-rays excited from the film are directed at an angle of 5 times or less than the critical angle for total reflection of the film. This method of analyzing a multilayer film is characterized in that the compositional modulation structure of the multilayer film is determined by n1 based on the characteristic X-rays.

本願第2の発明は、基板を加熱しながら、該基板上に2
種以上の蒸着を成膜して多層膜を形成するに際し、成膜
中の被膜表面に電子線を前記基板面に対する視斜角がI
O″以下となるように入射させ、被膜から励起される特
性X線を前記成膜の全反射臨界角度の5倍以下の角度で
検出し、その特性X線に基づいて前記多層膜の組成変調
構造を分析し、該分析値により前記基板温度及び蒸着材
料の蒸発速度を制御することを特徴とする多層膜の形成
方法である。
The second invention of the present application is to heat the substrate while heating the substrate.
When forming a multilayer film by depositing more than one layer, an electron beam is applied to the surface of the film being formed at an oblique angle of I with respect to the substrate surface.
The characteristic X-rays excited from the coating are detected at an angle of five times or less than the critical angle of total reflection of the film, and the composition of the multilayer film is modulated based on the characteristic X-rays. This method of forming a multilayer film is characterized in that the structure is analyzed and the substrate temperature and the evaporation rate of the vapor deposition material are controlled based on the analyzed values.

本願第3の発明は、基板上の多層膜を分析するに際し、
成膜中の被膜表面にX線を前記基板面に対する視斜角が
該被膜の全反射臨界角度の5倍以下の角度となるように
入射させ、被膜から励起される特性X線を前記被膜の全
反射臨界角度の5倍以下の角度で検出し、その特性X線
に基づいて前記多層膜の組成変調+i造を測定すること
を特徴とする多層膜の分析方法である。
The third invention of the present application is that when analyzing a multilayer film on a substrate,
X-rays are incident on the surface of the film being formed so that the oblique angle with respect to the substrate surface is less than or equal to 5 times the critical angle of total reflection of the film, and the characteristic X-rays excited from the film are applied to the surface of the film. This method of analyzing a multilayer film is characterized in that detection is performed at an angle that is five times or less than the critical angle of total reflection, and compositional modulation of the multilayer film is measured based on the characteristic X-rays.

本願第4の発明は、基板を加熱しながら、該基板上に2
種以上の蒸着を成膜して多層膜を形成するに際し、成膜
中の被膜表面にX線を前記基板面に対する視斜角が10
°が該被膜の全反射臨界角度の5倍以下の角度となるよ
うに入射させ、被膜から励起される特性Xiを前記被膜
の全反射臨界角度の5倍以下の角度で検出し、その特性
X線に基づいて前記多層膜の組成変調構造を分析し、該
分析値により前記基板温度及び蒸着材料の蒸発速度を制
御することを特徴とする多層膜の形成方法である。
The fourth invention of the present application is to heat the substrate while heating the substrate.
When forming a multilayer film by depositing more than one seed, X-rays are applied to the surface of the film being formed at an oblique angle of 10 with respect to the substrate surface.
The characteristic Xi excited from the coating is detected at an angle of five times or less the total reflection critical angle of the coating, and The method for forming a multilayer film is characterized in that the composition modulation structure of the multilayer film is analyzed based on the line, and the substrate temperature and the evaporation rate of the vapor deposition material are controlled based on the analyzed values.

し作用〕 従来法において、組成変調構造を分析する上で困難であ
った理由は分析を成膜完了後に実施することに起因する
。例えば、AESによる深さ方向分析に必要なスパッタ
エツチングでは、被膜を一原子面づつ順次剥離していく
という技術が要求される。成膜時においても、−原子面
づつの積層制御は、いわゆる究極の技術であり、その逆
を行うことの困難さは十分子allできるものである。
Effect] The reason why it is difficult to analyze a compositionally modulated structure in the conventional method is that the analysis is performed after the film formation is completed. For example, sputter etching required for depth direction analysis using AES requires a technique of sequentially peeling off a film one atomic surface at a time. Even during film formation, controlling the stacking on each negative atomic plane is the so-called ultimate technology, and the difficulty of doing the opposite is understandable.

一方、他の非破壊的な分析技術においては、表面層より
遥かに深い下層における多層膜の界面構造や組成を原子
スケールの分解能で検出するという困難な技術を必要と
する。このため、現状で達成される組成変調構造分析に
おける分解能は十分なものではない。
On the other hand, other non-destructive analysis techniques require difficult techniques to detect the interfacial structure and composition of multilayer films in layers much deeper than the surface layer with atomic-scale resolution. For this reason, the resolution currently achieved in compositional modulation structure analysis is not sufficient.

本発明においては、上記考察から組成変調構造の分析を
、成膜終了後ではなく、成膜時に実施することによって
上記技術的困難さを回避することができる。この場合、
各時期における分析はその時点における表面層の組成分
析を行うという問題に換言される。このような分析操作
を連続して実施することにより、結果として多層膜にお
ける各位置の分析値の配列として組成変調構造の分析値
が得られる。この場合の技術的な問題点の一つは、成膜
と同時に実施可能で、かつ原子層レベルの検出感度及び
分解能を有する分析手段が必要となるが、本発明ではこ
れらの要件を全て解決できるものである。以下に、本発
明の各方法について説明する。
In the present invention, based on the above considerations, the above technical difficulties can be avoided by analyzing the composition modulated structure during film formation, rather than after the film formation is completed. in this case,
Analysis at each period translates into the problem of analyzing the composition of the surface layer at that time. By continuously performing such analysis operations, analysis values of the compositional modulation structure are obtained as an array of analysis values at each position in the multilayer film. One of the technical problems in this case is that analysis means that can be performed simultaneously with film formation and that has detection sensitivity and resolution at the atomic layer level are required, but the present invention can solve all of these requirements. It is something. Each method of the present invention will be explained below.

本願第1の発明において、電子線の入射角度を10″以
下とし、かつ特性X線の検出のための取出角を被膜の全
反射臨界角の5倍以下とすることによって、次のような
効果を達成できる。その一つは、電子線源となる電子銃
及び特性X線を検出する検出器を、測定精度や検出感度
を大きく低下させることな(基板から十分に離して設置
できことである。このため、成膜を中断することなく成
膜と同時に分析を実施できること、成膜を中断した場合
にも基板の移動、搬送という操作を行うことなく直ちに
分析を実施できる。
In the first invention of the present application, by setting the incident angle of the electron beam to 10" or less and setting the extraction angle for detecting characteristic X-rays to 5 times or less of the critical angle of total reflection of the coating, the following effects can be achieved. One of these is that the electron gun that serves as the electron beam source and the detector that detects characteristic X-rays can be installed at a sufficient distance from the substrate without significantly reducing measurement accuracy or detection sensitivity. Therefore, analysis can be performed simultaneously with film formation without interrupting film formation, and even if film formation is interrupted, analysis can be performed immediately without moving or transporting the substrate.

もう一つは、信号となる特性X線の検出感度及びS/N
比の向上である。即ち、電子線の入射の視斜角を10″
以下とすることによって、電子線の浸透深さを低減でき
、X線の発生領域を表層近傍に限定し、測定の対象であ
る最表層以外におけるX線の発生を抑制し、結果的には
ノイズレベルを低減できることである。一方、特性X線
検出の取出角を特徴とする特性X線に対し被膜の全反射
臨界角の5倍以下とすることによって、最表層より下層
の最表層と同一成分による特性X線の経路長の増大に伴
う質量吸収損失、及び多層膜の膜界面における反射損失
の増大によりノイズ分を低下させ、最表層に励起された
特性X線については最表層より下層からの全反射により
信号強度が増大する。このように多層膜の膜界面におけ
る全反射臨海角の5倍以下の角度の強い反射能により、
対象とする特性X線信号のS/N比を増大できるため、
後述する実施例のように単原子層以下の膜厚の増大を検
出できる感度を、広い膜厚範囲に亘って達成できる。
The other is the detection sensitivity and S/N of the characteristic X-ray that becomes the signal.
This is an improvement in the ratio. That is, the oblique angle of incidence of the electron beam is set to 10''.
By doing the following, the penetration depth of the electron beam can be reduced, the generation area of X-rays is limited to the vicinity of the surface layer, the generation of X-rays is suppressed in areas other than the outermost layer that is the object of measurement, and as a result, noise It is possible to reduce the level. On the other hand, by setting the extraction angle for characteristic X-ray detection to 5 times or less of the critical angle of total reflection of the coating for characteristic X-rays, the path length of characteristic The noise component is reduced due to the increase in mass absorption loss due to the increase in the amount of noise, and the increase in reflection loss at the film interface of the multilayer film, and the signal intensity of the characteristic X-rays excited in the outermost layer is increased due to total reflection from the layers below the outermost layer. do. In this way, due to the strong reflection ability at an angle of less than 5 times the critical angle of total reflection at the film interface of the multilayer film,
Since the S/N ratio of the target characteristic X-ray signal can be increased,
As in the examples described later, sensitivity capable of detecting an increase in film thickness of less than a monoatomic layer can be achieved over a wide range of film thicknesses.

本願節2の発明において、成膜中の被膜表面に電子線を
前記基板面に対する視斜角が10°以下となるように入
射させ、被膜から励起される特性X線を被膜の全反射臨
界角度の5倍以下の角度で検出し、その特性X線に基づ
いて多層膜の組成変調構造を分析し、該分析値により前
記基板温度及び蒸着材料の蒸発速度を制御することによ
って、所定の組成変調構造を有する多層膜を形成できる
In the invention of Section 2 of the present application, an electron beam is incident on the surface of the film being formed so that the oblique angle with respect to the substrate surface is 10 degrees or less, and the characteristic X-rays excited from the film are reflected at the total reflection critical angle of the film. The composition modulation structure of the multilayer film is analyzed based on the characteristic X-rays, and the substrate temperature and the evaporation rate of the evaporation material are controlled based on the analyzed values, thereby achieving a predetermined composition modulation. A multilayer film having a structure can be formed.

この方法に適用できる多層膜は、単結晶に限らず、非晶
質であってもよく、また成膜条件に対する限定も殆どな
い。
The multilayer film that can be applied to this method is not limited to single crystal, but may be amorphous, and there are almost no limitations on film formation conditions.

本願節3の発明において、成膜中の被膜表面にX線を前
記基板面に対する視斜角が該被膜の全反射臨界角度の5
倍以下の角度となるように入射させ、被膜から励起され
る特性X線を前記被膜の全反射臨界角度の5倍以下の角
度で検出し、その特性X線に基づいて前記多層膜の組成
変調構造を測定することによって、前述した本願節1の
発明と同様、成膜を中断することな(成膜と同時に分析
を実施できること、成膜を中断した場合にも基板の移動
、搬送という操作を行うことなく直ちに分析を実施でき
、かつ特性X線の検出感度及びS/N比の向上を達成で
きる。しかも、電子線を用いた場合のように多層膜の成
膜を高真空中で行わない、スパッタリングやCVD法を
適用できる。また、電子線の場合と異なり、ノイズとな
る連続スペクトルの発生を殆ど零にできる。なお、かか
る方法での励起用X線源としては、分析に最も適した波
長または波長域の通常のX線発生装置を用いればよいが
、X線強度の高いシンクロトロン放射光が最適である。
In the invention of Section 3 of the present application, X-rays are applied to the surface of the film being formed so that the oblique angle with respect to the substrate surface is 55% of the total reflection critical angle of the film.
The characteristic X-rays excited from the coating are detected at an angle of five times or less than the total reflection critical angle of the coating, and the composition of the multilayer film is modulated based on the characteristic X-rays. By measuring the structure, similar to the invention in Section 1 of the present application described above, it is possible to perform analysis at the same time as film formation without interrupting film formation, and even if film formation is interrupted, operations such as moving and transporting the substrate can be performed. Analysis can be carried out immediately without the need for any additional tests, and the detection sensitivity and S/N ratio of characteristic X-rays can be improved.Furthermore, multilayer films are not deposited in a high vacuum as is the case when electron beams are used. , sputtering, and CVD methods can be applied.Also, unlike the case of electron beams, the generation of continuous spectra that become noise can be almost eliminated.In addition, as an excitation X-ray source for such a method, the most suitable for analysis Although a normal X-ray generator with a wavelength or wavelength range may be used, synchrotron radiation with high X-ray intensity is optimal.

本願節4の発明において、成膜中の被膜表面にX線を前
記基板面に対する視斜角が10″が該被膜の全反射臨界
角度の5倍以下の角度となるように入射させ、被膜から
励起される特性X線を前記被膜の全反射臨界角度の5倍
以下の角度で検出し、その特性X線に基づいて前記多層
膜の組成変調構造を分析し、該分析値により前記基板温
度及び蒸着材料の蒸発速度を制御することによって、前
述した本願節2の発明と同様、所定の組成変調構造を有
する多層膜を形成できる。
In the invention of Section 4 of the present application, X-rays are incident on the surface of the film being formed such that the oblique angle with respect to the substrate surface is 10" or less than 5 times the critical angle of total reflection of the film, and Excited characteristic X-rays are detected at an angle less than or equal to five times the total reflection critical angle of the coating, the compositional modulation structure of the multilayer film is analyzed based on the characteristic X-rays, and the substrate temperature and By controlling the evaporation rate of the evaporation material, a multilayer film having a predetermined compositional modulation structure can be formed, similar to the invention of Section 2 of the present application described above.

[実施例コ 以下、本発明の実施例を詳細に説明する。[Example code] Examples of the present invention will be described in detail below.

実施例1 基板上に、真空蒸着法により(Fe25人/ A u2
5人)×40層の多層膜を形成する成膜中に電子線を被
膜に対して約1’の視斜角、特性X線の取出角0″〜4
6の全反射臨界角の5倍以下に相当する範囲に設定し、
Fc又はAu−層当たりの特性X線のピーク強度を測定
した。かかるピーク強度と各層の膜厚との関係を第1図
に示す。
Example 1 On a substrate, by vacuum evaporation method (Fe25 people/A u2
During film formation to form a multilayer film of 5 people) x 40 layers, the electron beam was applied to the film at an oblique angle of about 1' and an extraction angle of characteristic X-rays from 0" to 4.
Set to a range equivalent to 5 times or less of the total reflection critical angle of 6,
The peak intensity of characteristic X-rays per Fc or Au layer was measured. The relationship between such peak intensity and the film thickness of each layer is shown in FIG.

第1図の結果から、最表層−層当たりのX線強度は全体
の膜厚が2000人程度程度きくなっても余り減衰せず
に維持されていることを示している。
The results shown in FIG. 1 show that the X-ray intensity per outermost layer is maintained without much attenuation even when the total film thickness increases to about 2,000 layers.

また、単層膜の場合では膜厚の増大と共にX線検出感度
が著しく低下している。一方、膜厚の薄い場合には単原
子層以下の高い検出感度が得られることが判明した。結
局、多層膜の場合、全膜厚に亘って単原子層程度の高い
検出感度が得られることが実験的に確認された。
Furthermore, in the case of a single layer film, the X-ray detection sensitivity decreases significantly as the film thickness increases. On the other hand, it was found that when the film thickness is thin, a high detection sensitivity of less than a monoatomic layer can be obtained. In the end, it was experimentally confirmed that in the case of a multilayer film, a detection sensitivity as high as that of a monoatomic layer can be obtained over the entire film thickness.

実施例2 基板上に、真空蒸着法により(Fc25人/ A u2
5人)×40層の多層膜を形成する際、膜厚950人を
成膜した最上層がAu層である状態の20層目以降の成
膜中に電子線を被膜に対して約[°の視斜角、特性X線
の取出角0°〜4°の全反射臨界角の5倍以下に相当す
る範囲に設定し、Au層以降の特性X線のピーク強度を
測定した。この場合、950人〜975人の層間ではF
eを蒸着し、975人〜1000人の層間ではAuを蒸
着した。かかる950人以降の多層膜の膜厚と特性X線
強度との関係を第2図に示す。
Example 2 On the substrate, by vacuum evaporation method (Fc25 people/Au2
When forming a multilayer film of 5 layers) x 40 layers, an electron beam is applied to the film at approximately [° The peak intensity of the characteristic X-rays after the Au layer was measured by setting the oblique angle to a range corresponding to 5 times or less of the total reflection critical angle of the characteristic X-ray extraction angle of 0° to 4°. In this case, between 950 and 975 people, F
E was vapor-deposited, and Au was vapor-deposited between the layers of 975 to 1000 layers. FIG. 2 shows the relationship between the thickness of the multilayer film and the characteristic X-ray intensity after 950 people.

特性X線を検出する分析の場合、検出深さが実効的に見
ても数10人であるため、特性X線強度はその検出深さ
の範囲で発生する前記特性X線の積分値となっている。
In the case of analysis that detects characteristic X-rays, since the effective detection depth is several tens of people, the characteristic X-ray intensity is the integral value of the characteristic X-rays generated within the detection depth range. ing.

従って、一般的には膜厚の関数として表される測定値か
らデコンボリューション計算を行って特性X線発生源の
分布、つまり組成分布を逆算する必要がある。しかしな
がら、第2図に示す測定結果は膜厚に対するFe特性X
線強度の増大の仕方及びAu下地層の特性X線強度の減
衰の仕方が、Au下地層上にFeが層状成長する場合と
ほぼ同一であり、この層間で各層が層状に成長している
ことを示している。従って、第2図から導き出される第
20層目の組成変調構造は第3図の階段状分布によって
表される。第3図では、層状成長識別の分解能を2.3
原子層と見做して対応する界面層を設定している。実際
には、この区間における構造は不明である。
Therefore, it is generally necessary to perform deconvolution calculations from measured values expressed as a function of film thickness to back calculate the distribution of characteristic X-ray sources, that is, the composition distribution. However, the measurement results shown in Figure 2 show that the Fe characteristics
The way the line intensity increases and the characteristic X-ray intensity of the Au base layer attenuates is almost the same as when Fe grows in layers on the Au base layer, and each layer grows in layers between these layers. It shows. Therefore, the compositional modulation structure of the 20th layer derived from FIG. 2 is represented by the stepwise distribution shown in FIG. In Figure 3, the resolution of layered growth identification is 2.3.
A corresponding interface layer is set considering it to be an atomic layer. In reality, the structure in this section is unknown.

実施例3 第4図は示すように真空槽13内において電子ビーム蒸
着源12a 、 12bよりFe及びAuを蒸発させ、
膜厚センサ9as 9bと連動してシャッタlla 。
Example 3 As shown in FIG. 4, Fe and Au were evaporated from electron beam evaporation sources 12a and 12b in a vacuum chamber 13, and
The shutter is operated in conjunction with the film thickness sensors 9as and 9b.

11bを開閉することにより、基板2上にFe、AUを
交互に蒸着して多層膜を形成する。この成膜と同時に、
前記真空槽13内に設置した電子銃lから電子線を発生
させ、基板2上に成膜した被膜に対して1@の視斜角で
入射し、特性X線を励起させる。発生した特性X線を前
記真空槽13内に設置した半導体検出器3により検出し
、増幅器4にて増幅後、波高分析器5により特性X線に
よる積分係数を分離し、更にデータ処理装置0に取込む
By opening and closing 11b, Fe and AU are alternately deposited on the substrate 2 to form a multilayer film. At the same time as this film formation,
An electron beam is generated from an electron gun l installed in the vacuum chamber 13, and is incident on the film formed on the substrate 2 at an oblique angle of 1@, thereby exciting characteristic X-rays. The generated characteristic X-rays are detected by a semiconductor detector 3 installed in the vacuum chamber 13, and after amplification by an amplifier 4, an integral coefficient due to the characteristic X-rays is separated by a pulse height analyzer 5, and then sent to a data processing device 0. Take in.

同時に、前記膜厚センサ9a、 9bの出力も膜厚コン
トローラIOによって増幅し、前記データ処理装置6に
取り込み、特性X線強度を膜厚の関数として表示解析す
る。一方、データ処理装置6には予めプログラム設定機
能により膜厚の関数としてFe及びAuの特性X線強度
の基準値を設定してあり、この基準値との偏差を最小と
するように温度調節計7により基板加熱電源8の出力を
調節し、基板加熱ヒータ14で基板2の温度を制御する
。基板温度が低すぎる場合には、表面拡散が抑制されて
層状成長が起こらず、また基板温度が高くし過ぎると体
積拡散が生じる結果島状成長が生じるためやはり層状成
長とならない。特性X線強度の基準値を層状成長に対応
するように設定することにより、適正基板温度が保たれ
、層状成長を促進し、その結果として界面急峻性の優れ
た多層膜を形成できた。
At the same time, the outputs of the film thickness sensors 9a and 9b are also amplified by the film thickness controller IO and input into the data processing device 6, where the characteristic X-ray intensity is displayed and analyzed as a function of film thickness. On the other hand, in the data processing device 6, a reference value for the characteristic X-ray intensity of Fe and Au is set in advance as a function of film thickness by a program setting function, and the temperature controller is set so as to minimize the deviation from this reference value. 7 adjusts the output of the substrate heating power source 8, and the substrate heater 14 controls the temperature of the substrate 2. If the substrate temperature is too low, surface diffusion will be suppressed and layered growth will not occur, and if the substrate temperature is too high, volume diffusion will occur, resulting in island-like growth, so layered growth will not occur either. By setting the standard value of characteristic X-ray intensity to correspond to layered growth, an appropriate substrate temperature was maintained, layered growth was promoted, and as a result, a multilayer film with excellent interface steepness was formed.

実施例4 第5図は示すように連続X線源21から入射したX線を
モノクロメータ22によってエネルギー12kev1波
長1.033人に単色化し、シャッタ兼用スリット23
を経てベリリウム窓24を透過してチャンバ3B内に導
く。チャンバ36内では、Arガスの圧力が5 X 1
0−’torrに維持されている。入射X線は、Sl基
板25に視斜角0.1 ’で入射される。この角度は、
前記X線のSl基板25に対する全反射臨界角0.15
”より小さいため、入射X線は全反射し、この時の浸透
深さは数lO人程度となる。Sl基板25にスパッタガ
ン28a 、 26bから交互に被膜材料を蒸着し、被
膜から発生した特性xlを、該特性X線のSl基板及び
下層部の被膜に対する全反射臨界角を含む低い取出角で
X線検出器(SSD)27により分析後、データ処理装
置用パーソナルコンピュータ31に送り、同時に膜厚検
出器28a 、 28bの信号を増幅器29a 、29
bにより増幅後前記パーソナルコンピュータ31に送り
、演算処理後に特性X線強度と膜厚の関係としてプリン
タ34及びフロッピディスク装置35に出力する。この
出力は、実験後解析し、膜厚と組成の関係、即ち組成変
調構造に変換される。一方、特性X線強度と膜厚の関係
に基づいて、同一膜厚において特性X線強度が最大とな
るように予めプログラムされた演算結果によりスパッタ
ガン26a 、 26bの出力を出力制御器32及びス
パッタ電源33a 、 33bを介して制御した。この
ような制御により界面急峻性に優れた多層膜を形成でき
た。
Embodiment 4 As shown in FIG. 5, the X-rays incident from the continuous X-ray source 21 are monochromated into energy 12 ke/wavelength 1.033 by the monochromator 22, and the slit 23 also serves as a shutter.
It passes through the beryllium window 24 and is guided into the chamber 3B. Inside the chamber 36, the pressure of Ar gas is 5×1
It is maintained at 0-'torr. The incident X-rays are incident on the Sl substrate 25 at an oblique angle of 0.1'. This angle is
The critical angle of total reflection of the X-rays on the Sl substrate 25 is 0.15.
Since the X-rays are smaller than the above, the incident X-rays are totally reflected, and the penetration depth at this time is on the order of several 10 liters.Coating materials are alternately deposited on the Sl substrate 25 from the sputter guns 28a and 26b, and the characteristics generated from the coating are xl is analyzed by an X-ray detector (SSD) 27 at a low extraction angle including the critical angle of total reflection of the characteristic The signals from the thickness detectors 28a and 28b are transmitted to amplifiers 29a and 29.
b, after amplification, it is sent to the personal computer 31, and after arithmetic processing, it is outputted to the printer 34 and floppy disk device 35 as a relationship between characteristic X-ray intensity and film thickness. This output is analyzed after the experiment and converted into a relationship between film thickness and composition, that is, a composition modulation structure. On the other hand, based on the relationship between the characteristic X-ray intensity and the film thickness, the output of the sputter guns 26a and 26b is controlled by the output controller 32 and the sputter gun according to a calculation result programmed in advance so that the characteristic X-ray intensity becomes maximum at the same film thickness. It was controlled via power supplies 33a and 33b. Through such control, we were able to form a multilayer film with excellent interface steepness.

[発明の効果] 以上詳述した如く、本発明によれば基板上に形成される
多層膜の組成変調構造を各層毎に必要な分解能を失うこ
となく、かつ生産性よく簡便に分析し得る方法、並びに
その分析値に基づいて成膜条件を制御して目的とする組
成等を有する多層膜を形成し得る方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, there is provided a method for easily analyzing the compositional modulation structure of a multilayer film formed on a substrate without losing the necessary resolution for each layer and with high productivity. It is possible to provide a method in which a multilayer film having a desired composition can be formed by controlling the film forming conditions based on the analysis values.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1における単層膜及び多層膜と
特性X線のピーク強度との関係を示す特性図、第2図及
び第3図は実施例2における多層膜の形成時での膜厚と
特性X線強度との関係を示す特性図、第4図、第5図は
それぞれ実施例3.4に用いた多層膜の形成装置を示す
概略図である。 ■・・・電子銃、2・・・基板、3・・・半導体検出器
、6・・・データ処理装置、7・・・温度調節計、9a
、 9b・・・膜厚センサ、lla 、 1lb−・・
シャッタ、12a 、 12b −・・電子ビーム蒸着
源、14・・・基板加熱ヒータ、21・・・連続波長X
線源、25・・・81基板、26a 、 28b・・・
スパッタガン、27・・・X線検出器、28a 、 2
8b・・・膜厚検出器、31・・・パーソナルコンピュ
ータ、32・・・出力調整器、33a % 33b・・
・スパッタ電源。
FIG. 1 is a characteristic diagram showing the relationship between a single layer film and a multilayer film in Example 1 of the present invention and the peak intensity of characteristic X-rays, and FIGS. 4 and 5 are schematic diagrams showing the multilayer film forming apparatus used in Example 3.4, respectively. ■...Electron gun, 2...Substrate, 3...Semiconductor detector, 6...Data processing device, 7...Temperature controller, 9a
, 9b...film thickness sensor, lla, 1lb-...
Shutter, 12a, 12b - Electron beam evaporation source, 14... Substrate heater, 21... Continuous wavelength X
Radiation source, 25...81 Substrate, 26a, 28b...
Sputter gun, 27...X-ray detector, 28a, 2
8b... Film thickness detector, 31... Personal computer, 32... Output regulator, 33a % 33b...
・Sputter power supply.

Claims (4)

【特許請求の範囲】[Claims] (1)基板上の多層膜を分析するに際し、成膜中の被膜
表面に電子線を前記基板面に対する視斜角が10゜以下
となるように入射させ、被膜から励起される特性X線を
前記被膜の全反射臨界角度の5倍以下の角度で検出し、
その特性X線に基づいて前記多層膜の組成変調構造を測
定することを特徴とする多層膜の分析方法。
(1) When analyzing a multilayer film on a substrate, an electron beam is incident on the surface of the film being formed so that the oblique angle to the substrate surface is 10° or less, and characteristic X-rays excited from the film are collected. Detected at an angle less than or equal to 5 times the total reflection critical angle of the coating,
A method for analyzing a multilayer film, comprising measuring the compositional modulation structure of the multilayer film based on the characteristic X-rays.
(2)基板を加熱しながら、該基板上に2種以上の蒸着
を成膜して多層膜を形成するに際し、成膜中の被膜表面
に電子線を前記基板面に対する視斜角が10゜以下とな
るように入射させ、被膜から励起される特性X線を前記
被膜の全反射臨界角度の5倍以下の角度で検出し、その
特性X線に基づいて前記多層膜の組成変調構造を分析し
、該分析値により前記基板温度及び蒸着材料の蒸発速度
を制御することを特徴とする多層膜の形成方法。
(2) When forming a multilayer film by depositing two or more types of films on the substrate while heating the substrate, an electron beam is applied to the surface of the film being formed at an oblique angle of 10° with respect to the substrate surface. The characteristic X-rays excited from the coating are detected at an angle of five times or less than the critical angle of total reflection of the coating, and the compositional modulation structure of the multilayer film is analyzed based on the characteristic X-rays. A method for forming a multilayer film, characterized in that the substrate temperature and the evaporation rate of the vapor deposition material are controlled based on the analysis value.
(3)基板上の多層膜を分析するに際し、成膜中の被膜
表面にX線を前記基板面に対する視斜角が該被膜の全反
射臨界角度の5倍以下の角度となるように入射させ、被
膜から励起される特性X線を前記被膜の全反射臨界角度
の5倍以下の角度で検出し、その特性X線に基づいて前
記多層膜の組成変調構造を測定することを特徴とする多
層膜の分析方法。
(3) When analyzing a multilayer film on a substrate, X-rays are incident on the surface of the film being formed so that the oblique angle with respect to the substrate surface is 5 times or less the critical angle of total reflection of the film. , a multilayer characterized in that characteristic X-rays excited from the coating are detected at an angle that is five times or less than the critical angle of total reflection of the coating, and the compositional modulation structure of the multilayer film is measured based on the characteristic X-rays. Membrane analysis method.
(4)基板を加熱しながら、該基板上に2種以上の蒸着
を成膜して多層膜を形成するに際し、成膜中の被膜表面
にX線を前記基板面に対する視斜角が10゜が該被膜の
全反射臨界角度の5倍以下の角度となるように入射させ
、被膜から励起される特性X線を前記被膜の全反射臨界
角度の5倍以下の角度で検出し、その特性X線に基づい
て前記多層膜の組成変調構造を分析し、該分析値により
前記基板温度及び蒸着材料の蒸発速度を制御することを
特徴とする多層膜の形成方法。
(4) When forming a multilayer film by depositing two or more types of films on the substrate while heating the substrate, X-rays are applied to the surface of the film being formed at a viewing angle of 10° with respect to the substrate surface. The characteristic X-rays excited from the coating are detected at an angle of five times or less the total reflection critical angle of the coating, and A method for forming a multilayer film, characterized in that the compositional modulation structure of the multilayer film is analyzed based on the line, and the substrate temperature and the evaporation rate of the vapor deposition material are controlled based on the analyzed values.
JP1068056A 1989-03-20 1989-03-20 Analysis of multilayered film and formation of multilayered film Pending JPH02247549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1068056A JPH02247549A (en) 1989-03-20 1989-03-20 Analysis of multilayered film and formation of multilayered film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1068056A JPH02247549A (en) 1989-03-20 1989-03-20 Analysis of multilayered film and formation of multilayered film

Publications (1)

Publication Number Publication Date
JPH02247549A true JPH02247549A (en) 1990-10-03

Family

ID=13362742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1068056A Pending JPH02247549A (en) 1989-03-20 1989-03-20 Analysis of multilayered film and formation of multilayered film

Country Status (1)

Country Link
JP (1) JPH02247549A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844961A (en) * 1981-09-09 1983-03-16 Mitsubishi Electric Corp Assembling method by brazing
JPS6082840A (en) * 1983-10-13 1985-05-11 Shozo Ino Method and apparatus for analyzing element
JPS63142811A (en) * 1986-12-05 1988-06-15 Nec Corp Manufacture of boundary superstructure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844961A (en) * 1981-09-09 1983-03-16 Mitsubishi Electric Corp Assembling method by brazing
JPS6082840A (en) * 1983-10-13 1985-05-11 Shozo Ino Method and apparatus for analyzing element
JPS63142811A (en) * 1986-12-05 1988-06-15 Nec Corp Manufacture of boundary superstructure

Similar Documents

Publication Publication Date Title
US20010043668A1 (en) Method and apparatus for measuring thin film, and thin film deposition system
Buzea et al. State of the art in thin film thickness and deposition rate monitoring sensors
US8513603B1 (en) In-situ determination of thin film and multilayer structure and chemical composition using x-ray fluorescence induced by grazing incidence electron beams during thin film growth
JPH03173770A (en) Method and apparatus for forming multiple thin film with ion beam sputter
US20050195941A1 (en) Diffractometer
Gómez et al. Residual stresses in titanium nitride thin films obtained with step variation of substrate bias voltage during deposition
Ellmer et al. In situ energy-dispersive x-ray diffraction system for time-resolved thin-film growth studies
Njeh et al. Reflectometry studies of the oxidation kinetics of thin copper films
Manova et al. In situ XRD measurements to explore phase formation in the near surface region
JPH02247549A (en) Analysis of multilayered film and formation of multilayered film
JPH0341399A (en) Manufacture of multilayered film reflecting mirror
US5148025A (en) In situ composition analysis during growth vapor deposition
Chauvineau Soft X-ray reflectometry applied to the evaluation of surface roughness variation during the deposition of thin films
Bauer et al. Combined in situ XRD and ex situ TEM studies of thin Ba0. 5Sr0. 5TiO3 films grown by PLD on MgO
JPH0547631B2 (en)
Gibson Grazing Incidence X‐Ray Methods for Near‐Surface Structural Studies
Kim et al. In situ compositional mapping of combinatorial materials libraries by scanning low-angle x-ray spectroscopy
Lützenkirchen-Hecht et al. Quick-Scanning QEXAFS in grazing incidence: Surface science in sub-seconds
Vonk et al. Pulsed laser deposition chamber for in situ X-ray diffraction
JP2002031523A (en) Thin film measuring apparatus and method and thin film formation system
Ghigna et al. Do we have a probe for the initial stages of solid state reactions?
JPH08104596A (en) Apparatus for producing thin film
US20040159283A1 (en) Method for forming multilayer thin film and apparatus thereof
Gasse et al. Yoneda-XAFS with Area X-Ray Detectors
JP2002116159A (en) X-ray structure analyzer for thin-film process