JPH08104596A - Apparatus for producing thin film - Google Patents

Apparatus for producing thin film

Info

Publication number
JPH08104596A
JPH08104596A JP6236190A JP23619094A JPH08104596A JP H08104596 A JPH08104596 A JP H08104596A JP 6236190 A JP6236190 A JP 6236190A JP 23619094 A JP23619094 A JP 23619094A JP H08104596 A JPH08104596 A JP H08104596A
Authority
JP
Japan
Prior art keywords
substrate
thin film
ions
growth
atomic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6236190A
Other languages
Japanese (ja)
Inventor
Hideomi Koinuma
秀臣 鯉沼
Mamoru Yoshimoto
護 吉本
Makoto Shinohara
真 篠原
Osamu Ishiyama
修 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6236190A priority Critical patent/JPH08104596A/en
Publication of JPH08104596A publication Critical patent/JPH08104596A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain the extreme surface atom information by each element during film formation and to epitaxially grow thin films with good controllability in atomic layer unit with a device for growing the thin films in an atomic layer unit on the substrate surface by a prescribed method by providing this device with a specific constitution. CONSTITUTION: The apparatus (e.g. a molecular beam epitaxial apparatus) 1 for growing the thin films on the substrate S surface by irradiating the substrate S surface with the evaporated particles of film growing materials in a vacuum chamber 10 is provided with an ion source 21 which irradiates the thin film growth surface of the substrate S arranged in the vacuum chamber 10 with ions, a detector 22 which is arranged coaxially with this ion source 21 and detects the intensity of the ions to scattered backward from the position to be irradiated with the ions and control means (shutters 13, 14 and a computer 4 for controlling these shutters) which take the output of this detector 22 therein during the film formation and control the growth of the thin films in accordance with the information on the scattering intensity based on the detected value thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばMBE(分子線
エピタキシャル)法を採用した薄膜製造装置に関し、さ
らに詳しくは、例えばSrTiO3 (チタン酸ストロン
チウム)薄膜などの高温超伝導薄膜や強誘電体薄膜をエ
ピタキシャル成長させるのに適した装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film manufacturing apparatus employing, for example, the MBE (Molecular Beam Epitaxial) method, and more specifically, a high temperature superconducting thin film such as a SrTiO 3 (strontium titanate) thin film or a ferroelectric substance. An apparatus suitable for epitaxially growing a thin film.

【0002】[0002]

【従来の技術】MBE成長において、薄膜を原子層単位
で制御しつつ成長させるには、その結晶成長状態の良否
をモニタする必要がある。その手法としては、RHEE
D(反射高速電子線回折)、XPS(光電子分光装置)
あるいはAFM(原子間引力顕微鏡)の3種が挙げられ
る。
2. Description of the Related Art In MBE growth, in order to grow a thin film while controlling it in atomic layer units, it is necessary to monitor the quality of the crystal growth state. As a method, RHEE
D (reflection high-energy electron diffraction), XPS (photoelectron spectrometer)
Alternatively, there are three types of AFM (atomic attraction microscope).

【0003】[0003]

【発明が解決しようとする課題】ところで、上記した3
種のモニタ方法にはそれぞれ以下の欠点がある。まず、
RHEEDは、結晶成長面の構造の規則性は知ることが
できるが、最表面原子層の元素種を判別することは不可
能である。
By the way, the above-mentioned 3
Each kind of monitoring method has the following drawbacks. First,
RHEED can know the regularity of the structure of the crystal growth surface, but cannot identify the element species of the outermost atomic layer.

【0004】一方、XPSによると、二次電子の脱出深
さが数十Åであるため、最表面原子層の情報を選別して
得ることは不可能で、また、AFMでは元素の区別がき
わめて難しい。さらに、これらのXPS及びAFMによ
れば、成膜中にリアルタイムで測定することは現実問題
としてきわめて難しく、実際には、成膜を行った試料
(基板)を成膜真空室から、これら測定装置が設備され
た分析真空室へと移送した後に表面状態を測定してお
り、その試料移動に伴う弊害がある。
On the other hand, according to XPS, since the escape depth of secondary electrons is several tens of liters, it is impossible to selectively obtain information on the outermost atomic layer, and in AFM, the distinction of elements is extremely high. difficult. Further, according to these XPS and AFM, real-time measurement during film formation is extremely difficult as a practical problem, and in practice, the sample (substrate) on which the film is formed is removed from the film formation vacuum chamber by using these measuring devices. The surface condition is measured after the sample is transferred to the analytical vacuum chamber equipped with, and there is an adverse effect due to the sample movement.

【0005】本発明はそのような事情に鑑みてなされた
もので、その目的とするところは、成膜中に元素別の最
表面原子情報を得ることのできる機能を備え、もって薄
膜を原子層単位で制御性良く成長させることが可能な薄
膜製造装置を提供することにある。
The present invention has been made in view of such circumstances, and an object thereof is to provide a function of obtaining atomic information of the outermost surface of each element during film formation, and thus to form a thin film into an atomic layer. An object of the present invention is to provide a thin film manufacturing apparatus capable of growing a unit with good controllability.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの構成を、実施例に対応する図1を参照しつつ説明す
ると、本発明は、真空室10内で基板Sの表面に成膜材
料の蒸発粒子を照射することによって、その基板Sの表
面に薄膜を原子層単位で成長させる装置において、真空
室10内に配置された基板Sの薄膜成長面にイオンを照
射するイオン源21と、このイオン源21と同軸上に配
置され、上記イオン照射位置から後方に散乱されるイオ
ンの強度を検出する検出器22と、成膜中に検出器22
の出力を採り込んで、その検出値に基づく散乱強度情報
に基づいて、薄膜の成長を制御する制御手段(例えばシ
ャッタ13,14及びそれらを制御するコンピュータ
4)を備えていることによって特徴づけられる。
A structure for achieving the above object will be described with reference to FIG. 1 corresponding to an embodiment. According to the present invention, a film is formed on the surface of a substrate S in a vacuum chamber 10. In an apparatus for growing a thin film on the surface of the substrate S in atomic layer units by irradiating evaporated particles of the material, an ion source 21 for irradiating the thin film growth surface of the substrate S arranged in the vacuum chamber 10 with ions. , A detector 22 arranged coaxially with the ion source 21 for detecting the intensity of ions scattered backward from the ion irradiation position, and a detector 22 during film formation.
Is characterized by including a control means (for example, the shutters 13 and 14 and the computer 4 that controls them) that controls the growth of the thin film based on the scattered intensity information based on the detected value. .

【0007】[0007]

【作用】SrTiO3 基板(以下、STO基板と称す
る)にSrTiO3 の薄膜を原子層の単位でホモエピタ
キシャル成長させる場合を例にとって説明する。
The operation will be described by taking as an example the case where a SrTiO 3 thin film is homoepitaxially grown in atomic layer units on a SrTiO 3 substrate (hereinafter referred to as STO substrate).

【0008】まず、SrTiO3 はペロブスカイト構造
をとっていることから、STO基板の表面に、図2に示
すように、He+ を〔111〕の方位から照射(入射角
α=35°)してその散乱強度を測定すると、このCA
ICISS(Coaxial ImpactCollision Ion Scattering
Spectroscopy)によるTOFスペクトルには、STO基
板の表面第1原子層が完全なTiO2 面であれば、Ti
のシャドーコーンに第2層目のSrが隠れてTiの信号
のみが現れ、逆に、表面第1原子層が完全なSrO面で
あると、Srのシャドーコーンに第2層目のTiが隠れ
てSrの信号のみが現れる。一方、TiO2 面とSrO
面が混在した状態であると、CAICISSのTOFス
ペクトルはSrとTiの両方のピークが出現した状態と
なる(図3のTOFスペクトルSP3)。従って、このよ
うなCAICISSによるTOFスペクトル測定を薄膜
成長面の分析に適用することにより、成長しつつある薄
膜の最表面層の元素種を判別できる。
First, since SrTiO 3 has a perovskite structure, the surface of the STO substrate is irradiated with He + from the [111] direction (incident angle α = 35 °) as shown in FIG. When the scattering intensity is measured, this CA
ICISS (Coaxial Impact Collision Ion Scattering
If the first atomic layer on the surface of the STO substrate is a perfect TiO 2 surface, the TOF spectrum by
The second layer of Sr is hidden in the shadow cone of and only the signal of Ti appears. On the contrary, when the surface first atomic layer is a complete SrO surface, the second layer of Ti is hidden in the shadow cone of Sr. Only the Sr signal appears. On the other hand, TiO 2 surface and SrO
When the surfaces are mixed, the TOF spectrum of CAICISS has a state in which both peaks of Sr and Ti appear (TOF spectrum SP3 in FIG. 3). Therefore, by applying the TOF spectrum measurement by such CAICISS to the analysis of the thin film growth surface, the element species of the outermost surface layer of the growing thin film can be determined.

【0009】また、TOFスペクトルに現れるピークの
強度は、最表面に存在する原子の数に相関して変化する
ので、例えばSrO薄膜をエピタキシャル成長する場
合、TOFスペクトルに現れるSrピークの強度は薄膜
成長が進むにつれ大きくなる。従って、TOFスペクト
ルのピーク強度の変化を観測すれば、最表面層の原子の
被覆状態を知ることができる。
Further, since the intensity of the peak appearing in the TOF spectrum changes in correlation with the number of atoms existing on the outermost surface, for example, when an SrO thin film is epitaxially grown, the intensity of the Sr peak appearing in the TOF spectrum depends on the thin film growth. It gets bigger as you go. Therefore, by observing the change in the peak intensity of the TOF spectrum, it is possible to know the coating state of the atoms of the outermost surface layer.

【0010】そこで、本発明装置では、成膜中に基板S
の表面にイオン(CAICISSビーム)を照射し、そ
の散乱イオンのTOFスペクトルを測定することで、そ
のスペクトルから、基板表面に成長しつつある薄膜の最
表面層の元素種及び原子の被覆状態に関する情報を得
て、これらの情報に基づいて、例えばシャッタ13,1
4の開閉制御する等の制御を行うことにより、薄膜を原
子層単位で制御性良く成長させる。
Therefore, in the apparatus of the present invention, the substrate S
By irradiating the surface of the substrate with ions (CAICISS beam) and measuring the TOF spectrum of the scattered ions, from the spectrum, information on the element species of the outermost surface layer of the thin film growing on the substrate surface and the covering state of atoms Based on these information, for example, the shutters 13, 1
By performing control such as opening / closing control of No. 4, the thin film is grown with good controllability in atomic layer units.

【0011】[0011]

【実施例】図1は本発明実施例の構成を示すブロック図
である。まず、MBE装置1は、成膜真空室10の内部
に、分子発生源であるSr-Kセル(ヌーセンセル)11
及びTi-Kセル12が配設されており、この各Kセル1
1及び12からの分子線(Sr及びTi)は、ともに同
一の基板Sの表面に到達する。これらのKセル11,1
2には、それぞれ、シャッタ13,14が配設されてお
り、この各シャッタ13,14の開閉により、各Kセル
11,12からの分子線の基板Sへの進行・遮断を選択
できる。
1 is a block diagram showing the configuration of an embodiment of the present invention. First, the MBE apparatus 1 includes an Sr-K cell (Neusen cell) 11 that is a molecule generation source inside a film forming vacuum chamber 10.
, And Ti-K cells 12 are arranged, and each K cell 1
The molecular beams (Sr and Ti) from 1 and 12 both reach the surface of the same substrate S. These K cells 11,1
2, shutters 13 and 14 are provided respectively, and opening / closing of each of the shutters 13 and 14 makes it possible to select advancing / blocking of the molecular beam from each K cell 11, 12 to the substrate S.

【0012】また、成膜真空室10内には、基板Sを保
持するためのホルダ15が配置されており、このホルダ
15にはヒータ16が内蔵されている。そして、Kセル
電源11a,12a、シャッタ電源13a,14a並び
にヒータ電源16aはコンピュータ4によって駆動制御
され、これにより、各Kセル11,12の温度制御、シ
ャッタ13,14の開閉制御並びにヒータ16の温度制
御が行われる。
A holder 15 for holding the substrate S is arranged in the film forming vacuum chamber 10, and a heater 16 is built in the holder 15. The K cell power supplies 11a and 12a, the shutter power supplies 13a and 14a, and the heater power supply 16a are driven and controlled by the computer 4, whereby the temperature control of the K cells 11 and 12, the opening and closing control of the shutters 13 and 14, and the heater 16 are performed. Temperature control is performed.

【0013】さて、本発明実施例で注目すべきところ
は、成膜真空室10にCAICISS装置2が取り付け
られている点にある。CAICISS装置2は、例えば
He+ などのイオンを基板Sの表面に照射するイオン源
21と、このイオン源21と同軸上に置かれ、イオン照
射位置から後方に散乱されるイオン強度を検出する検出
器(MCP)22を備え、その散乱強度の検出出力から
TOFスペクトルを得る装置である。このCAICIS
S装置2は、CAICISSビームが、ホルダ15に保
持されたSTO〔001〕基板Sに対し、〔111〕の
方位から入射角α=35°で入射するように位置決めさ
れている。
What should be noted in the embodiment of the present invention is that the CAICISS device 2 is attached to the film forming vacuum chamber 10. The CAICISS device 2 is, for example, an ion source 21 that irradiates the surface of the substrate S with ions such as He +, and a detection that is placed coaxially with the ion source 21 and that detects the intensity of ions scattered backward from the ion irradiation position. It is an apparatus that includes a container (MCP) 22 and obtains a TOF spectrum from the detection output of the scattered intensity. This CAICIS
The S device 2 is positioned so that the CAICISS beam is incident on the STO [001] substrate S held by the holder 15 from the [111] direction at an incident angle α = 35 °.

【0014】また、成膜真空室10には、電子銃31,
蛍光板32及びカメラ(光電子増倍管)33等によって
構成されるRHEED装置3が取り付けられており、そ
の電子銃31から出た電子ビームEBは、基板Sの表面に
1度程度の浅い角度で斜入射し、この入射位置で回折も
しくは反射された回折反射電子ビームが蛍光板32に入
射する。これにより蛍光板32に現れるRHEED像
(ストリーク)が後方のカメラ33で撮像され、その出
力画像信号が画像処理系(図示せず)を経てコンピュー
タ4内に採り込まれる。
In the film forming vacuum chamber 10, an electron gun 31,
An RHEED device 3 including a fluorescent plate 32, a camera (photomultiplier tube) 33, and the like is attached, and an electron beam EB emitted from the electron gun 31 is oblique to the surface of the substrate S at a shallow angle of about 1 degree. The diffracted / reflected electron beam that is incident and diffracted or reflected at this incident position is incident on the fluorescent plate 32. As a result, the RHEED image (streak) appearing on the fluorescent screen 32 is picked up by the rear camera 33, and the output image signal is taken into the computer 4 through an image processing system (not shown).

【0015】そして、この実施例では、CAICISS
装置2が成膜中において所定の周期(例えば10s 〜3
0s )で散乱強度の検出を行い、その検出値が検出器ア
ンプ22aを介してコンピュータ4内に順次に採り込ま
れる。コンピュータ4は、採取した散乱強度の検出値に
基づくTOFスペクトルと、RHEED装置3のカメラ
33からの画像信号に基づいて、後述する動作でKセル
11,12の温度、シャッタ13,14の開閉のタイミ
ング並びにヒータ16の温度をそれぞれ制御するように
構成されている。
In this embodiment, CAICISS
A predetermined period (for example, 10 s to 3
The scattering intensity is detected at 0 s), and the detected value is sequentially taken into the computer 4 via the detector amplifier 22a. Based on the TOF spectrum based on the detected detection value of the scattered intensity and the image signal from the camera 33 of the RHEED device 3, the computer 4 performs the operation described later to determine the temperature of the K cells 11 and 12, the opening and closing of the shutters 13 and 14. It is configured to control the timing and the temperature of the heater 16 respectively.

【0016】次に、本発明実施例の作用を、STO〔0
01〕基板にSrTiO3 の薄膜を原子層の単位でホモ
エピタキシャル成長させる場合を例にとって述べる。ま
ず、薄膜成長を開始する前に、コンピュータ4に、基板
Sの最表面及び成膜面の最表面が完全なTiO2 面であ
る場合と、完全なSr面である場合のそれぞれのTOF
スペクトルに関するデータを設定しておく。
Next, the operation of the embodiment of the present invention will be described with reference to STO [0
01] A case where a thin film of SrTiO 3 is homoepitaxially grown in atomic layer units on a substrate will be described as an example. First, before starting thin film growth, the computer 4 is provided with TOFs when the outermost surface of the substrate S and the outermost surface of the film formation surface are perfect TiO 2 surfaces and perfect Sr surfaces, respectively.
Set the spectrum data.

【0017】また、薄膜成長を開始する直前に、STO
基板の最表面が完全なTiO2 面あるいはSrO面のい
ずれかの面になっていることを確認する。これは、Sr
TiO3 の薄膜をSTO基板上に原子層単位で制御性良
く成長させるためには、基板の最表面の構造は完全なT
iO2 面またはSrO面とするのが良いと言われている
ことによる。その確認は先に述べたようにCAICIS
SによるTOFスペクトル評価により行う。
Immediately before starting the thin film growth, the STO
Confirm that the outermost surface of the substrate is either a perfect TiO 2 surface or a SrO surface. This is Sr
In order to grow a thin film of TiO 3 on an STO substrate in atomic layer units with good controllability, the structure of the outermost surface of the substrate is a perfect T layer.
This is because it is said that it is preferable to use the iO 2 surface or the SrO surface. The confirmation is performed by CAICIS as described above.
The TOF spectrum is evaluated by S.

【0018】なお、市販のSTO基板は表面無処理の状
態で、図4の模式図に示すように、最表面にTiO2
とSrO面とが混在していることから、基板表面の清浄
化を行うことが必要で、その表面処理法としては、例え
ばSTO基板を酸素雰囲気下で高温アニールすることに
よりTiO2 面で終端された最表面構造を得る、といっ
た方法が挙げられる。また、このような表面処理を行う
ことにより、図3のTOFスペクトルSP1に示すよう
に、STO基板の最表面がほぼ100%TiO2面とな
ることが確認できている。
It should be noted that the commercially available STO substrate has no surface treated and the TiO 2 surface and the SrO surface are mixed on the outermost surface as shown in the schematic view of FIG. The surface treatment method includes, for example, a method of obtaining an outermost surface structure terminated with a TiO 2 surface by annealing a STO substrate at a high temperature in an oxygen atmosphere. It has also been confirmed that, by performing such surface treatment, the outermost surface of the STO substrate becomes almost 100% TiO 2 surface as shown in TOF spectrum SP1 of FIG.

【0019】さて、成膜動作を開始すると、コンピュー
タ4は、ヒータ16を制御して基板Sの温度を成膜に適
した温度に設定し、さらに各Kセル11,12の温度を
所定温度にまで上昇させた状態で、Sr-Kセル11のシ
ャッタ13だけを開いてSrO薄膜の成長を開始する。
この成膜開始と同時に、コンピュータ4はCAICIS
S装置2によるTOFスペクトルのモニタを開始し、そ
のTOFスペクトルにおけるSrのピークと予め設定さ
れたスペクトルデータとの比較から薄膜成長の状態を判
断する。また、同時にRHEED像をモニタして、その
ストリークにぼけが生じているか否かを判断する。
When the film formation operation is started, the computer 4 controls the heater 16 to set the temperature of the substrate S to a temperature suitable for film formation, and further sets the temperature of each K cell 11, 12 to a predetermined temperature. Then, only the shutter 13 of the Sr-K cell 11 is opened and the growth of the SrO thin film is started.
Simultaneously with the start of the film formation, the computer 4 causes the CAICIS
The monitoring of the TOF spectrum by the S device 2 is started, and the state of thin film growth is judged from the comparison between the peak of Sr in the TOF spectrum and preset spectrum data. At the same time, the RHEED image is monitored to determine whether or not the streak is blurred.

【0020】ここで、RHEED像のストリークにぼけ
が生じている時には、薄膜成長が原子層単位で順調に進
行していない状態であり、この現象が生じたときには、
コンピュータ4は、Sr-Kセル11のシャッタ13を所
定時間だけ閉じてマイグレーション効果を待つといった
動作、あるいはシャッタ13は開放したままの状態でS
r-Kセル11の温度を下げて基板SへのSrのビーム量
を低くしたり、また基板Sの温度を上げる、等の動作を
RHEED像のストリークが元の鮮明な状態に戻るまで
試行錯誤的に繰り返す。その結果、良好な薄膜成長が維
持される。
Here, when the streak of the RHEED image is blurred, it means that the thin film growth is not proceeding smoothly in atomic layer units. When this phenomenon occurs,
The computer 4 closes the shutter 13 of the Sr-K cell 11 for a predetermined time and waits for the migration effect, or performs the S operation while leaving the shutter 13 open.
The temperature of the r-K cell 11 is lowered to reduce the beam amount of Sr to the substrate S, the temperature of the substrate S is raised, and the like, until the streak of the RHEED image returns to the original clear state. Repeat. As a result, good thin film growth is maintained.

【0021】そして、このような制御により薄膜成長が
順調に進行してゆくと、CAICISSのTOFスペク
トルに現れるSrピークの強度が徐々に大きくなり、そ
のピーク強度が、予め設定されたスペクトルデータ(1
00%SrO面)のピーク強度に達した時点、すなわ
ち、測定スペクトルが図3に示すようなTOFスペクト
ルS2 となった時点でコンピュータ4はシャッタ13を
閉じる。この時点で、1原子層分の薄膜成長が完了し、
以後、コンピュータ4は、Ti-Kセル12のシャッタ1
4またはSr-Kセル11のシャッタ13を開いて、先と
同様な成膜制御を順次に繰り返してゆく。これにより、
基板2の表面上にSrO層及びTiO2 層が原子層単位
で正確に積層されてゆく。
When the thin film growth progresses satisfactorily under such control, the intensity of the Sr peak appearing in the TOF spectrum of CAICISS gradually increases, and the peak intensity is set to the preset spectrum data (1
The computer 4 closes the shutter 13 when the peak intensity of the (00% SrO plane) is reached, that is, when the measured spectrum becomes the TOF spectrum S2 as shown in FIG. At this point, the thin film growth for one atomic layer is completed,
After that, the computer 4 uses the shutter 1 of the Ti-K cell 12
4 or the shutter 13 of the Sr-K cell 11 is opened, and the film formation control similar to the above is sequentially repeated. This allows
The SrO layer and the TiO 2 layer are accurately laminated in atomic layer units on the surface of the substrate 2.

【0022】なお、本発明装置は、SrTiO3 薄膜の
ホモエピタキシャル成長のほか、例えばBi2Sr2CuO
6 等の他の高温超伝導薄膜あるいは強誘電体薄膜のエピ
タキシャル成長にも適している。
In addition to the homoepitaxial growth of the SrTiO 3 thin film, the device of the present invention can be used, for example, for Bi 2 Sr 2 CuO.
It is also suitable for epitaxial growth of other high temperature superconducting thin films such as 6 or ferroelectric thin films.

【0023】ここで、本発明は、真空室内で基板表面に
成膜材料の蒸発粒子を照射することによって、その基板
表面に薄膜を原子層単位で成長させる装置において、上
記真空室内に配置された基板の薄膜成長面にイオンを照
射するイオン源と、このイオン源と同軸上に配置され、
上記イオン照射位置から後方に散乱されるイオンの強度
を検出するイオン検出器と、基板の薄膜成長面に所定の
方向から電子線を照射する電子線源と、その照射位置で
回折・反射される回折反射電子ビームの強度を検出する
ビーム強度検出器と、演算処理手段を備え、その演算処
理手段には、成膜中に上記イオン検出器及びビーム強度
検出器の出力を順次に採り込んで、それらの検出値に基
づく散乱強度及び回折反射電子ビーム強度に基づいて薄
膜成長面の最表面層の原子の元素種及び原子の被覆状態
を判断する判断部と、この判断結果に基づいて薄膜の成
長を制御する制御部が設けられていることを特徴とする
ものであってもよく、この場合、原子層単位でのエピタ
キシャル成長を、さらに精密に制御でき、しかも、その
成長制御の確実性が向上するという効果を達成できる。
Here, the present invention is an apparatus for growing a thin film on the surface of a substrate in atomic layer units by irradiating the surface of the substrate with vaporized particles of a film-forming material in the vacuum chamber. An ion source that irradiates the thin film growth surface of the substrate with ions, and is arranged coaxially with this ion source,
An ion detector that detects the intensity of the ions scattered backward from the ion irradiation position, an electron beam source that irradiates the thin film growth surface of the substrate with an electron beam from a predetermined direction, and is diffracted and reflected at the irradiation position. A beam intensity detector for detecting the intensity of the diffracted and reflected electron beam, and an arithmetic processing means, and the arithmetic processing means sequentially incorporates the outputs of the ion detector and the beam intensity detector during film formation, A judgment unit that judges the element species of atoms and the state of atomic coverage of the outermost surface layer of the thin film growth surface based on the scattering intensity and the diffracted reflection electron beam intensity based on those detected values, and the thin film growth based on this determination result It may be characterized in that it is provided with a control unit for controlling the epitaxial growth. In this case, the epitaxial growth in atomic layer units can be controlled more precisely and the growth control must be reliable. The effect of improvement can be achieved.

【0024】[0024]

【発明の効果】以上説明したように、本発明の薄膜製造
装置によれば、基板の薄膜成長面にイオンを照射するイ
オン源と、このイオン源と同軸上に配置され、上記イオ
ン照射位置から後方に散乱されるイオンの強度を検出す
る検出器を備えたCAICISS装置を成膜真空室に取
り付け、この装置により薄膜の最表面原子層の元素種及
び原子層の被覆状態に関する情報を得て、これらの情報
に基づいて薄膜の成長を制御するので、原子層単位での
エピタキシャル成長を精密に制御できる。その結果、S
rTiO3 等の薄膜の高品質化が進み、ひいては種々の
高性能電子デバイスの開発等の実現が可能となる。しか
も、成膜過程で薄膜成長状態の良否をモニタできるの
で、成膜中に基板を動かす必要もない。
As described above, according to the thin film manufacturing apparatus of the present invention, the ion source for irradiating the thin film growth surface of the substrate with ions, the ion source arranged coaxially with the ion source, and the ion irradiation position A CAICISS device equipped with a detector for detecting the intensity of backscattered ions was attached to the deposition vacuum chamber, and this device was used to obtain information on the element species of the outermost atomic layer of the thin film and the coating state of the atomic layer, Since the growth of the thin film is controlled based on these information, the epitaxial growth in atomic layer units can be controlled precisely. As a result, S
As the quality of thin films such as rTiO 3 is improved, it is possible to develop various high performance electronic devices. Moreover, since the quality of the thin film growth state can be monitored during the film formation process, it is not necessary to move the substrate during the film formation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の構成を示すブロック図FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【図2】本発明の作用説明図で、CAICISSビーム
の散乱状態を模式的に示す図
FIG. 2 is an explanatory view of the operation of the present invention, schematically showing the scattering state of a CAICISS beam.

【図3】CAICISSによりSTO基板の最表面の終
端構造を評価した結果を示すTOFスペクトル
FIG. 3 is a TOF spectrum showing the result of evaluation of the termination structure on the outermost surface of the STO substrate by CAICISS.

【図4】STO基板の最表面にTiO2 面とSrO面と
が混在している状態を模式的に示す図
FIG. 4 is a diagram schematically showing a state where the TiO 2 surface and the SrO surface are mixed on the outermost surface of the STO substrate.

【符号の説明】[Explanation of symbols]

1 MBE装置 10 成膜真空室 11 Sr-Kセル 12 Ti-Kセル 13,14 シャッタ 15 ホルダ 16 ヒータ 2 CAICISS装置 21 イオン源 22 検出器 3 RHEED装置 31 電子銃 32 蛍光板 33 カメラ 4 コンピュータ S 基板 1 MBE Device 10 Deposition Vacuum Chamber 11 Sr-K Cell 12 Ti-K Cell 13, 14 Shutter 15 Holder 16 Heater 2 CAICISS Device 21 Ion Source 22 Detector 3 RHEED Device 31 Electron Gun 32 Fluorescent Plate 33 Camera 4 Computer S Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 真 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所三条工場内 (72)発明者 石山 修 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所三条工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Shin Shinohara Makoto Shinohara Kuwabara-cho, Nakagyo-ku, Kyoto Prefecture Kyoto Prefecture Sanjo Factory Sanjo Factory (72) Inventor Osamu Ishiyama 1 Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto Prefecture Kyoto Prefecture Shimadzu Sanjo Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空室内で基板表面に成膜材料の蒸発粒
子を照射することによって、その基板表面に薄膜を原子
層単位で成長させる装置において、上記真空室内に配置
された基板の薄膜成長面にイオンを照射するイオン源
と、このイオン源と同軸上に配置され、上記イオン照射
位置から後方に散乱されるイオンの強度を検出する検出
器と、成膜中に上記検出器の出力を採り込んで、その検
出値に基づく散乱強度情報に基づいて薄膜の成長を制御
する制御手段が設けられていることを特徴とする薄膜製
造装置。
1. An apparatus for growing a thin film on the surface of a substrate in atomic layer units by irradiating the surface of the substrate with evaporated particles of a film forming material in the vacuum chamber, wherein the thin film growth surface of the substrate placed in the vacuum chamber. An ion source for irradiating the ions, a detector arranged coaxially with the ion source for detecting the intensity of the ions scattered backward from the ion irradiation position, and an output of the detector during film formation. A thin film manufacturing apparatus, characterized in that a control means for controlling the growth of the thin film based on the scattered intensity information based on the detected value is provided.
JP6236190A 1994-09-30 1994-09-30 Apparatus for producing thin film Pending JPH08104596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6236190A JPH08104596A (en) 1994-09-30 1994-09-30 Apparatus for producing thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6236190A JPH08104596A (en) 1994-09-30 1994-09-30 Apparatus for producing thin film

Publications (1)

Publication Number Publication Date
JPH08104596A true JPH08104596A (en) 1996-04-23

Family

ID=16997115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6236190A Pending JPH08104596A (en) 1994-09-30 1994-09-30 Apparatus for producing thin film

Country Status (1)

Country Link
JP (1) JPH08104596A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280306A (en) * 2001-03-21 2002-09-27 Japan Science & Technology Corp Substrate-rotating and heating device and film growth device using the same, and analyzer
WO2007035983A1 (en) * 2005-09-30 2007-04-05 Saintech Pty Ltd Ion detector
CN102492984A (en) * 2011-12-28 2012-06-13 中国科学院物理研究所 Apparatus and method of MBE isoepitaxial growth SrTiO3 film
CN102492985A (en) * 2011-12-28 2012-06-13 中国科学院物理研究所 Method for isoepitaxial growth of SrTiO3 film by using MBE

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280306A (en) * 2001-03-21 2002-09-27 Japan Science & Technology Corp Substrate-rotating and heating device and film growth device using the same, and analyzer
WO2007035983A1 (en) * 2005-09-30 2007-04-05 Saintech Pty Ltd Ion detector
CN102492984A (en) * 2011-12-28 2012-06-13 中国科学院物理研究所 Apparatus and method of MBE isoepitaxial growth SrTiO3 film
CN102492985A (en) * 2011-12-28 2012-06-13 中国科学院物理研究所 Method for isoepitaxial growth of SrTiO3 film by using MBE
CN102492985B (en) * 2011-12-28 2014-11-05 中国科学院物理研究所 Method for isoepitaxial growth of SrTiO3 film by using MBE
CN102492984B (en) * 2011-12-28 2015-04-01 中国科学院物理研究所 Apparatus and method of MBE isoepitaxial growth SrTiO3 film

Similar Documents

Publication Publication Date Title
Fox et al. Pt/ti/sio2/si substrates
JP2621036B2 (en) Method and apparatus for treating substrate surface
US5588995A (en) System for monitoring the growth of crystalline films on stationary substrates
DE3526888A1 (en) SEMICONDUCTOR CRYSTAL GROWING DEVICE
US6306668B1 (en) Control method and system for use when growing thin-films on semiconductor-based materials
Spreitzer et al. Growth mechanism of epitaxial SrTiO 3 on a (1× 2)+(2× 1) reconstructed Sr (1/2 ML)/Si (001) surface
JPH08104596A (en) Apparatus for producing thin film
Savage et al. Reflection high‐energy electron diffraction study of the growth of In on GaAs (110) at different temperatures
CN112857270B (en) Method for in-situ real-time quantitative detection of film roughness by using RHEED
Argile et al. Preparation and properties of binary metal monolayers: I. Pb and Bi on Cu (100)
US5238525A (en) Analysis of Rheed data from rotating substrates
Köymen et al. Investigation of surface defects on Ni (110) with a low-energy positron beam
US5094974A (en) Growth of III-V films by control of MBE growth front stoichiometry
US5122222A (en) Frequency-domain analysis of RHEED data
Faschinger et al. Observation of different reflected high-energy electron diffraction patterns during atomic layer epitaxy growth of CdTe epilayers
EP0646786A1 (en) Improved ion scattering spectroscopy and apparatus for the same
Trilhe et al. X‐ray rocking curves for silicon‐on‐sapphire characterization
JPS60229331A (en) Thin film forming device
JPH10182281A (en) Thin film forming device capable of controlling film formation at atomic layer level
Lee et al. Surface morphology of sputtered Ta2O5 thin films on Si substrates from X-ray reflectivity at a fixed angle
JPH01122556A (en) Sample analyzer
JPH06191995A (en) Method for production oxide superconductive thin film
JPH03103393A (en) Vacuum film-forming device
Abraham et al. Spectroellipsometric study of the growth and phase transitions of a two-dimensional metal: Pb on Ge (111)
JP2002116159A (en) X-ray structure analyzer for thin-film process