JPH03103393A - Vacuum film-forming device - Google Patents

Vacuum film-forming device

Info

Publication number
JPH03103393A
JPH03103393A JP24094489A JP24094489A JPH03103393A JP H03103393 A JPH03103393 A JP H03103393A JP 24094489 A JP24094489 A JP 24094489A JP 24094489 A JP24094489 A JP 24094489A JP H03103393 A JPH03103393 A JP H03103393A
Authority
JP
Japan
Prior art keywords
substrate
film
molecular beam
rays
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24094489A
Other languages
Japanese (ja)
Other versions
JP2779525B2 (en
Inventor
Saburo Shimizu
三郎 清水
Hiroyuki Yamakawa
洋幸 山川
Shozo Ino
井野 正三
Hiroshi Yanagida
柳田 博司
Ko Fuwa
耕 不破
Junichi Shigetomi
重富 潤一
Kazuhiro Yamamuro
和弘 山室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP1240944A priority Critical patent/JP2779525B2/en
Publication of JPH03103393A publication Critical patent/JPH03103393A/en
Application granted granted Critical
Publication of JP2779525B2 publication Critical patent/JP2779525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To control element composition of film during film forming by irradiating the surface of substrate with electron rays from an electron gun at an acute angle, analyzing detected signal of emitted X ray by a control means and operating a shutter and a molecular beam evaporating source. CONSTITUTION:In a vacuum tank 11 made in an ultrahigh vacuum, molecular weight beam from a molecular beam evaporating source 15 is stuck to the surface of a substrate 12 to form a film. During growth of the film, when the surface of the substrate 12 is irradiated with electron rays from an electron gun 17, the electron beam is diffracted in the growing film on the surface of the substrate 12, bound electrons of atoms in the film are excited and X-rays are irradiated during relaxing. In the operation, when a slit 19 is transferred to a total reflection angle of X-rays and fixed, X-rays only from the surface adsorption layer of the growing film is passed through the slit 19 and detected by an X-ray detector 20. The detected signal is sent to a computer 21, element composition of the surface adsorption layer is analyzed and a signal to open and close a shutter 16 and a signal to control temperature of the evaporation source 15 are sent out.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、成膜中の膜の元素組成を制御することの出
来る真空成膜装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a vacuum film forming apparatus capable of controlling the elemental composition of a film being formed.

(従来の技術) 従来の真空戒膜装置、例えば第2図に示されるような分
子線エビタキシャル装置では、真空槽l内において、分
子線蒸発源2の上方に基板3が配設されている。真空槽
lの左側の壁には反射高速電子回折用電子銃4が取付け
られ、この反射高速電子回折用電子銃4より放出された
電子線が基板3方向に進行するようになっている。真空
槽lの右側の壁には蛍光スクリーン5が取付けられ、こ
の蛍光スクリーン5上には電子線の基板3表面での回折
によって観察できる回折模様等が投影されるようになっ
ている。真空槽1の上側の壁には分子線束モニター6が
取付けられ、この分子線束モニター6によって各分子線
強度が測定されるようになっている。真空槽1の左側の
壁にはオージ工電子分光器7のエネルギアナライザーが
基板3の近傍にまで位置するように取付けられている。
(Prior Art) In a conventional vacuum membrane apparatus, for example, a molecular beam epitaxial apparatus as shown in FIG. 2, a substrate 3 is disposed above a molecular beam evaporation source 2 in a vacuum chamber l. . An electron gun 4 for reflection high-speed electron diffraction is attached to the left wall of the vacuum chamber 1, and an electron beam emitted from this electron gun 4 for reflection high-speed electron diffraction travels toward the substrate 3. A fluorescent screen 5 is attached to the right wall of the vacuum chamber 1, and a diffraction pattern etc. that can be observed by diffraction of electron beams on the surface of the substrate 3 is projected onto the fluorescent screen 5. A molecular beam flux monitor 6 is attached to the upper wall of the vacuum chamber 1, and each molecular beam intensity is measured by this molecular beam flux monitor 6. An energy analyzer of an electronic spectrometer 7 is mounted on the left wall of the vacuum chamber 1 so as to be located close to the substrate 3.

なお、図において、8は質量分析器、9はロードロック
室である。
In the figure, 8 is a mass spectrometer, and 9 is a load lock chamber.

このような分子線エビタキシャル装置では、分子線蒸発
源2より蒸発した分子線が基板3の表面に付着し、そこ
に成長膜が形成されるようになるが、このときの各分子
線強度は分子線東モニター6で測定されている。
In such a molecular beam epitaxial apparatus, the molecular beams evaporated from the molecular beam evaporation source 2 adhere to the surface of the substrate 3, and a grown film is formed thereon, but the intensity of each molecular beam at this time is Measured by Molecular Beam East Monitor 6.

成膜中および成膜後に、反射高速電子回折用電子銃4よ
り放出された電子線を基板3に照射すると、電子線は基
板3の表面で反射、回折し、回折模様が蛍光スクリーン
5上に投影されるようになる。そのため、蛍光スクリー
ン5上に投影された回折模様およびその強度より、成膜
中および戒膜後における、戎長膜の膜表面もしくは膜表
面近傍の原子配列に関する情報が得られるようになる。
During and after film formation, when the substrate 3 is irradiated with an electron beam emitted from the reflection high-speed electron diffraction electron gun 4, the electron beam is reflected and diffracted on the surface of the substrate 3, and a diffraction pattern appears on the fluorescent screen 5. Becomes projected. Therefore, from the diffraction pattern projected on the fluorescent screen 5 and its intensity, information regarding the atomic arrangement on the film surface or near the film surface of the long film can be obtained during and after film formation.

一方、成膜後だけに、反射高速電子回折用電子銃4より
放出された電子線を基板3に照射すると、この照射によ
り励起された原子から放出されるオージェ電子がオージ
ェ電子分光器7でエネルギ分折れるようになる。そのた
め、戒膜後における、基板3の表面に形成された成長膜
の組成を測定することができるようになる。
On the other hand, if the substrate 3 is irradiated with an electron beam emitted from the reflection high-speed electron diffraction electron gun 4 only after film formation, the Auger electrons emitted from the atoms excited by this irradiation will be energized by the Auger electron spectrometer 7. It starts to break apart. Therefore, it becomes possible to measure the composition of the grown film formed on the surface of the substrate 3 after the deposition.

しかし、上記装置における成膜中の成長膜の元素組成を
制御は、成膜前に、予め分子線東モニター6で測定した
分子線の分圧もしくは全圧に基づいて、分子線蒸発源2
より蒸発する各元素ごとの分子線の強度を決めておくこ
とによってなされている。
However, the elemental composition of the growing film during film formation in the above apparatus is controlled based on the partial pressure or total pressure of the molecular beam measured in advance by the molecular beam east monitor 6 before film formation.
This is done by determining the intensity of the molecular beam for each element that evaporates more.

(発明が解決しようとする課題) 従来の真空成膜装置は、上記のように成膜前に決めた各
元素ごとの分子線の強度によって、成膜中の成長膜の元
素組戒を制御しているため、成膜中に、分子線蒸発源2
より蒸発する分子線の強度が増加もしくは減少して変動
したときには、この変動に応じた元素組成の制御ができ
なくなる問題が起きた。更に、成膜前に、蒸発する各元
素ごとの分子線の強度を決める際、分子線束モニター6
で測定した分子線の分圧もしくは全圧と、実際に基板1
に付着する元素の量とが、付着確率によっては、必ずし
も1対lで対応しなくなるため、元素組成の制御のため
に分子線東モニター6を用いるこどは好ましくない問題
が起きた。
(Problems to be Solved by the Invention) Conventional vacuum film deposition equipment controls the elemental composition of the growing film during film formation by the intensity of the molecular beam for each element determined before film formation as described above. Therefore, during film formation, the molecular beam evaporation source 2
When the intensity of the molecular beam that evaporates more fluctuates by increasing or decreasing, a problem arises in that the elemental composition cannot be controlled in response to this fluctuation. Furthermore, when determining the molecular beam intensity for each element to be evaporated before film formation, a molecular beam monitor 6 is used.
The partial pressure or total pressure of the molecular beam measured in
Since the amount of elements attached to the element does not necessarily correspond in a 1:1 ratio depending on the probability of attachment, a problem arises in which it is not desirable to use the molecular beam east monitor 6 to control the elemental composition.

この問題の解決には、従来の装置の状態のままで可能か
否かについて検討してみる。
In order to solve this problem, we will examine whether it is possible to solve this problem using the conventional equipment as it is.

まず、蛍光スクリーン5の場合には、成長膜の原子配列
に関する情報が得られるだけで、膜の元素組成に関する
情報は一切得られないから、膜の元素組成の制御には用
いる・ことができない。
First, in the case of the fluorescent screen 5, only information about the atomic arrangement of the grown film can be obtained, but no information about the elemental composition of the film can be obtained, so it cannot be used to control the elemental composition of the film.

次に、オージェ電子分光器の場合には、戒膜後における
膜の元素組成の測定が可能であるため、これを成膜中に
も使用して、膜の元素組成を測定しようとすると、これ
が基板3の近傍に配置されているために、分子線蒸発源
2より蒸発した分子線の付着による汚染が起こり、故障
し易くなる。
Next, in the case of an Auger electron spectrometer, it is possible to measure the elemental composition of a film after deposition, so if you try to use it during film formation to measure the elemental composition of the film, Since it is disposed near the substrate 3, contamination due to adhesion of molecular beams evaporated from the molecular beam evaporation source 2 occurs, making it more likely to malfunction.

また、成膜中に使用しようとすると、オージエ電子分光
器7のエネルギアナライザーを分子線蒸発源2と基板3
と配置しなくてはならないために、エネルギアナライザ
ーが分子線をさえぎるようになり、成膜できなくなる。
In addition, if you try to use it during film formation, the energy analyzer of the Auger electron spectrometer 7 will be connected to the molecular beam evaporation source 2 and the substrate 3.
As a result, the energy analyzer blocks the molecular beam, making it impossible to form a film.

そのため、オージエ電子分光器7は、成膜中に、使用で
きないから、膜の元素組成の制御には用いることができ
ない。
Therefore, the Auger electron spectrometer 7 cannot be used during film formation, and therefore cannot be used to control the elemental composition of the film.

このことから、従来の装置のままでは問題を解決するこ
とができない。
For this reason, the problem cannot be solved using conventional equipment.

そこで、この発明の目的は、従来の問題を解決して、成
膜中に、膜の元素組成に関する情報を得ることにより膜
の元素組成の制御を可能にする真空或膜装置を提供する
ことにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a vacuum film apparatus that solves the conventional problems and makes it possible to control the elemental composition of a film by obtaining information about the elemental composition of the film during film formation. be.

(課題を解決するための手段) 上記目的を達成するために、この発明の真空成膜装置は
、真空槽内の基板保持台に保持された基板と、この基板
の方向に分子線を飛ばせる少なくとも1個以上の分子線
蒸発源と、この分子線蒸発源より飛び出した分子線を、
基板に付着する途中で遮蔽するシャッターと、基板の表
面に対して鋭角で電子線を照射する電子銃と、この電子
銃からの電子線を基板表面の成長中の膜に照射したとき
に発生するX線を検出するX線検出器と、このX線検出
器からの入力信号に基づいて、シャッターを開閉させる
出力信号や分子線蒸発源の温度を調整する出力信号を出
す制御手段とを備えたことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the vacuum film forming apparatus of the present invention has a substrate held on a substrate holding stand in a vacuum chamber, and a molecular beam that can be ejected in the direction of this substrate. At least one molecular beam evaporation source and the molecular beam emitted from this molecular beam evaporation source,
This occurs when the electron beam from this electron gun is irradiated onto the growing film on the substrate surface. It is equipped with an X-ray detector that detects X-rays, and a control means that outputs an output signal that opens and closes a shutter or adjusts the temperature of a molecular beam evaporation source based on an input signal from the X-ray detector. It is characterized by this.

(作用) この発明において、分子線蒸発源より飛び出した分子線
は基板の表面に付着して、そこに膜を形成するようにな
るが、膜の成長中に、電子銃からの電子線を基板の表面
に対して鋭角に照射すると、電子線は基板表面の成長中
の膜で回折されると共に、膜中原子の束縛電子が励起さ
れ、緩和の際にX線が放射されるようになる。そして、
成長中の表面吸着層からのX線だけが、その全反射角に
位置するX線検出器で検出される。X線検出器で検出さ
れた信号は制御手段に送られて、表面吸着層の元素組成
が分析されるようになると共に、シャッターを開閉させ
る信号や、分子線蒸発源の温度を調整する信号が送り出
されるようになる。そして、送り出されたこれらの信号
に基づいてシャッタが開閉したり、あるいは分子線蒸発
源の温度が調整されたりして、膜の元素組成の制御がな
されるようになる。
(Function) In this invention, the molecular beam ejected from the molecular beam evaporation source attaches to the surface of the substrate and forms a film there. When irradiated at an acute angle with respect to the surface of the substrate, the electron beam is diffracted by the growing film on the surface of the substrate, and bound electrons of atoms in the film are excited, and upon relaxation, X-rays are emitted. and,
Only the X-rays from the growing surface adsorption layer are detected by the X-ray detector located at its total internal reflection angle. The signal detected by the X-ray detector is sent to a control means to analyze the elemental composition of the surface adsorption layer, and also sends a signal to open and close the shutter and a signal to adjust the temperature of the molecular beam evaporation source. will be sent out. The elemental composition of the film can then be controlled by opening and closing a shutter or adjusting the temperature of the molecular beam evaporation source based on these sent out signals.

(実施例) 以下、この発明の実施例について図面を参照しながら説
明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図はこの発明の実施例を示しており、同図において
、真空槽11内には基板12が基板保持台13によって
保持されている。基板保持台l3はマニビュレータ14
によって3次元方向に移動できると共に回転軸を中心と
して回転もでき、更には電子線の入射方向にたいする傾
斜角を調整できるようになっている。真空槽11の壁に
は4個の分子線蒸発源!5が取付けられ、分子線蒸発源
15より分子線が基板l2の方向に飛び出し、それが基
板l2の表面に付着して、膜が成長するようになってい
る。だが、分子線が基板12に付着する途中には、分子
線を遮蔽するシャッター16が設けられている。真空槽
11の壁には電子銃■7が取付けられ、電子銃17より
放出された電子線が基板l2の表面に対して鋭角で照射
されるようになっている。また、真空槽l1の壁には蛍
光スクリーンl8も取付けられ、電子銃17からの電子
線を基板12表面の戒長中の膜で回折したときに発生す
る回折模様がそこに投影されるようになる。更に、真空
槽11の壁の近傍にはX線を通す移動自在なスリットl
9が設けられている。更にその上、スリット19の後方
にはX線検出器2o IJ<配設されている。そのため
、電子銃l7からの電子線を基板12の表面に照射した
ときに発生したX線は、移動自在なスリット19を通っ
て、X線検出器20で検出されるようになる。xi検出
器20で検出されたX線の信号は制御手段であるコンピ
ューター21に送られ、そこで、表面吸着層における元
素組成の分析がなされると共に、シャッター16を開閉
させる信号や、分子線蒸発源15の温度を調整する信号
が送り出されるようになる。そして、これらの信号に基
づいてシャッタl6が開閉されたり、あるいは分子線蒸
発源15の温度が調整されたりして、膜の元素組成の制
御がなされるようになる。
FIG. 1 shows an embodiment of the present invention, in which a substrate 12 is held in a vacuum chamber 11 by a substrate holder 13. As shown in FIG. The substrate holding table l3 is a manibulator 14
In addition to being able to move in three-dimensional directions, it is also possible to rotate around a rotation axis, and furthermore, the inclination angle with respect to the incident direction of the electron beam can be adjusted. There are four molecular beam evaporation sources on the wall of vacuum chamber 11! 5 is attached, molecular beams are emitted from the molecular beam evaporation source 15 in the direction of the substrate 12, and are attached to the surface of the substrate 12 to grow a film. However, a shutter 16 for blocking the molecular beam is provided in the middle of the molecular beam adhering to the substrate 12. An electron gun (7) is attached to the wall of the vacuum chamber (11) so that the electron beam emitted from the electron gun (17) is irradiated onto the surface of the substrate (12) at an acute angle. A fluorescent screen l8 is also attached to the wall of the vacuum chamber l1 so that the diffraction pattern generated when the electron beam from the electron gun 17 is diffracted by the film on the surface of the substrate 12 is projected thereon. Become. Furthermore, near the wall of the vacuum chamber 11, there is a movable slit l that allows X-rays to pass through.
9 is provided. Furthermore, an X-ray detector 2oIJ< is disposed behind the slit 19. Therefore, X-rays generated when the surface of the substrate 12 is irradiated with an electron beam from the electron gun l7 pass through the movable slit 19 and are detected by the X-ray detector 20. The X-ray signal detected by the xi detector 20 is sent to the computer 21, which is a control means, where the elemental composition in the surface adsorption layer is analyzed, and the signal to open and close the shutter 16 and the molecular beam evaporation source are sent. A signal is now sent out to adjust the temperature of 15. Based on these signals, the shutter l6 is opened and closed, or the temperature of the molecular beam evaporation source 15 is adjusted, thereby controlling the elemental composition of the film.

なお、図において、22は液体窒素シュラウド、23は
基板交換用エアロック室、24は真空槽1と基板交換用
エア口ツタ室23とを仕切るゲート弁、25は基板交換
用エアロック室23で交換した基板12を真空槽1lに
挿入するためのロツドである。マニピュレータ14の先
端部には分子線束モニターが取付けられ、マニピュレー
タl4の回転を通して分子線蒸発源15に向け、分子線
圧を測定することも可能になっている。同様に図示して
いないが、基板l2は加熱器によって約800℃以下の
温度で安定に加熱できるようになっている。
In the figure, 22 is a liquid nitrogen shroud, 23 is an airlock chamber for substrate exchange, 24 is a gate valve that partitions the vacuum chamber 1 and the air opening vine chamber 23 for substrate exchange, and 25 is an airlock chamber 23 for substrate exchange. This is a rod for inserting the replaced substrate 12 into the vacuum chamber 1l. A molecular beam flux monitor is attached to the tip of the manipulator 14, and it is also possible to measure the molecular beam pressure by directing it toward the molecular beam evaporation source 15 through rotation of the manipulator 14. Similarly, although not shown, the substrate 12 can be stably heated at a temperature of about 800° C. or lower using a heater.

次に、作用について説明する。Next, the effect will be explained.

上記実施例では、10−”Torr以下の超高真空に排
気された真空槽11において、分子線蒸発源15より飛
び出した分子線は基板12の表面に付着して、そこに膜
を形戊するようになるが、膜の成長中に、電子銃l7か
らの電子線を基板l2の表面に対して照射すると、電子
線は基板l2の表面の成長中の膜で回折され、回折模様
が蛍光スクリーン18に投影されると共に、膜中原子の
束縛電子が励起され、緩和の際にX線が放射されるよう
になる。このとき、スリットl9をX線の全反射角に移
動させて、そこで固定すると、成長中の膜の表面吸着層
からのX線だけがスリットl9を通って、X線検出器2
0で検出される。X線検出器20で検出された信号はコ
ンピューター21に送られ、そこで表面吸着層の元素組
成が分析されるようになると共に、シャッター16を開
閉させる信号や、分子線蒸発源l5の温度を調整する信
号が送り出されるようになる。そして、これらの信号に
基づいてシャッタl6が開閉されたりあるいは分子線蒸
発源l5の温度が調整されたりすることによって、膜の
元素組戒の制御がなされるようになる。なお、スリット
l9はX線検出器20への分子線の飛散を遮蔽する役割
を果している。
In the above embodiment, the molecular beams emitted from the molecular beam evaporation source 15 adhere to the surface of the substrate 12 in the vacuum chamber 11 evacuated to an ultra-high vacuum of 10-'' Torr or less, forming a film thereon. However, when the surface of the substrate 12 is irradiated with an electron beam from the electron gun 17 during film growth, the electron beam is diffracted by the growing film on the surface of the substrate 12, and the diffraction pattern appears on the fluorescent screen. At the same time, the bound electrons of atoms in the film are excited and emit X-rays during relaxation.At this time, the slit 19 is moved to the angle of total reflection of the X-rays and fixed there. Then, only the X-rays from the surface adsorption layer of the growing film pass through the slit l9 and reach the X-ray detector 2.
Detected at 0. The signal detected by the X-ray detector 20 is sent to the computer 21, where the elemental composition of the surface adsorption layer is analyzed, and the signal to open and close the shutter 16 and the temperature of the molecular beam evaporation source 15 are adjusted. A signal will now be sent out. Based on these signals, the shutter l6 is opened and closed or the temperature of the molecular beam evaporation source l5 is adjusted, thereby controlling the element composition of the film. Note that the slit l9 serves to shield the molecular beam from scattering toward the X-ray detector 20.

次に、X線の全反射角という用語について説明する。Next, the term "total reflection angle of X-rays" will be explained.

電子線を試料表面に対して鋭角に照射すると、試料表面
原子が励起され、緩和の際にX線が放射されるが、この
時、放射されるX線と試料表面とのなす角度θを変える
と、ある角度θCにおいて、表面吸着層からのX1la
検出感度が飛躍的に増大する。この角度θCをX線の全
反射角といい、その値は吸着種に依存する。
When an electron beam is irradiated at an acute angle to the sample surface, atoms on the sample surface are excited and emit X-rays during relaxation, but at this time, the angle θ between the emitted X-rays and the sample surface is changed. And at a certain angle θC, X1la from the surface adsorption layer
Detection sensitivity increases dramatically. This angle θC is called the total reflection angle of X-rays, and its value depends on the adsorbed species.

ところで、上記実施例は分子線蒸発源l5を4個使用し
ているが、その数は1個以上であれば、いかなる数であ
ってもよい。また、上記実施例では、吸着層から放射さ
れるX線の全反射角の位置に、スリットだけを移動させ
るようにしているが、スリットとX線検出器の双方を移
動してもよい。
By the way, although the above embodiment uses four molecular beam evaporation sources 15, the number may be any number as long as it is one or more. Further, in the above embodiment, only the slit is moved to the position of the total reflection angle of the X-rays emitted from the adsorption layer, but both the slit and the X-ray detector may be moved.

更に、上記実施例では制御手段としてコンピューターを
使用しているが、この代わりにシーケンサー等の制御手
段を使用してもよい。
Furthermore, although a computer is used as the control means in the above embodiment, a control means such as a sequencer may be used instead.

(発明の効果) この発明は、電子銃からの電子線を基板の表面に対して
鋭角に照射した際に発生するX線をX線検出器で検出し
、検出された信号を制御手段で分析し、そして、その制
御手段からシャッターを開閉させる信号や、分子線蒸発
源の温度を調整する信号を送り出し、これらの信号に基
づいてシャッタを開閉したり、あるいは分子蒸発源の温
度を調整するするようにしているので、膜の成長の中に
おける表面吸着層の元素組成に関する情報に基づいて一
原子層レベルでの膜の元素組或の制御が可能になる。
(Effect of the invention) This invention detects the X-rays generated when the electron beam from the electron gun irradiates the surface of the substrate at an acute angle with an X-ray detector, and analyzes the detected signal with a control means. Then, the control means sends a signal to open and close the shutter and a signal to adjust the temperature of the molecular beam evaporation source, and based on these signals, the shutter is opened and closed or the temperature of the molecular beam evaporation source is adjusted. This makes it possible to control the elemental composition of the film at the level of a single atomic layer based on information regarding the elemental composition of the surface adsorption layer during film growth.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す説明図、第2図は従来
の装置を示す説明図である。 図中、 11・・・・・真空槽 l2・・・・・基板 l3・・・・・基板保持台 15・・・・・分子線蒸発源 l6●・・−・シャッター l7・・・・・電子銃 l9・・・・・スリット 20・・・・・Xva検出器 21・・・・・コンピューター
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing a conventional device. In the figure, 11...Vacuum chamber l2...Substrate l3...Substrate holding stand 15...Molecular beam evaporation source l6●...Shutter l7... Electron gun l9...Slit 20...Xva detector 21...Computer

Claims (1)

【特許請求の範囲】[Claims] 1.真空槽内の基板保持台に保持された基板と、この基
板の方向に分子線を飛ばせる少なくとも1個以上の分子
線蒸発源と、この分子線蒸発源より飛び出した分子線を
、基板に付着する途中で遮蔽するシャッターと、基板の
表面に対して鋭角で電子線を照射する電子銃と、この電
子銃からの電子線を基板表面の成長中の膜に照射したと
きに発生するX線を検出するX線検出器と、このX線検
出器からの入力信号に基づいてシャッターを開閉させる
出力信号や分子線蒸発源の温度を調整する出力信号を出
す制御手段とを備えたことを特徴とする真空成膜装置。
1. A substrate held on a substrate holding table in a vacuum chamber, at least one molecular beam evaporation source that can emit molecular beams in the direction of the substrate, and the molecular beams emitted from this molecular beam evaporation source attached to the substrate. There is a shutter that shields the surface of the substrate during the process, an electron gun that irradiates the electron beam at an acute angle to the surface of the substrate, and an X-ray that is generated when the electron beam from this electron gun is irradiated onto the growing film on the surface of the substrate. It is characterized by comprising an X-ray detector for detecting X-rays, and a control means for outputting an output signal for opening and closing a shutter and an output signal for adjusting the temperature of a molecular beam evaporation source based on an input signal from the X-ray detector. Vacuum film forming equipment.
JP1240944A 1989-09-18 1989-09-18 Method for analyzing elemental composition of film surface during vacuum film formation and vacuum film formation method Expired - Fee Related JP2779525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240944A JP2779525B2 (en) 1989-09-18 1989-09-18 Method for analyzing elemental composition of film surface during vacuum film formation and vacuum film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240944A JP2779525B2 (en) 1989-09-18 1989-09-18 Method for analyzing elemental composition of film surface during vacuum film formation and vacuum film formation method

Publications (2)

Publication Number Publication Date
JPH03103393A true JPH03103393A (en) 1991-04-30
JP2779525B2 JP2779525B2 (en) 1998-07-23

Family

ID=17066974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240944A Expired - Fee Related JP2779525B2 (en) 1989-09-18 1989-09-18 Method for analyzing elemental composition of film surface during vacuum film formation and vacuum film formation method

Country Status (1)

Country Link
JP (1) JP2779525B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118976A (en) * 1974-03-01 1975-09-18
JPS59190297A (en) * 1983-04-12 1984-10-29 Agency Of Ind Science & Technol Crystal growth in vapor of organometallic compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118976A (en) * 1974-03-01 1975-09-18
JPS59190297A (en) * 1983-04-12 1984-10-29 Agency Of Ind Science & Technol Crystal growth in vapor of organometallic compound

Also Published As

Publication number Publication date
JP2779525B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
US5456205A (en) System for monitoring the growth of crystalline films on stationary substrates
JP3135920B2 (en) Surface analysis method and device
Takahasi et al. X-ray diffractometer for studies on molecular-beam-epitaxy growth of III–V semiconductors
US20010051399A1 (en) Control system for use when growing thin-films on semiconductor-based materials
JPH04270953A (en) Method and apparatus for analyzing element and thin film forming apparatus
Naudon et al. Grazing small-angle scattering of X-rays for the study of thin surface layers
JPH03103393A (en) Vacuum film-forming device
Sartwell Influence of ion beam activation on the mode of growth of Cu on Si (100)
JP3230834B2 (en) Film forming method and apparatus
JP3684106B2 (en) Deposition equipment
JP3525674B2 (en) Apparatus and method for measuring work function or ionization potential
JP2728627B2 (en) Wavelength dispersive X-ray spectrometer
CA2133288A1 (en) Ion scattering spectroscopy and apparatus for the same
JPH04132991A (en) Protection device for x-ray detector in vacuum processing device
JPH0633230B2 (en) Crystal growth method and crystal growth apparatus
SU1497533A1 (en) Method of inspecting structural perfection of crystals
Ivan et al. Influence of deposition parameters on the reflectivity of multilayer hard x-ray mirrors
JPS60229331A (en) Thin film forming device
JPS63201551A (en) Surface contamination observing instrument
JPH0361840A (en) Measuring apparatus for x-ray absorption spectrum
JP2676682B2 (en) Radical beam generator
JPH06242198A (en) Detecting device for surface magnetized structure
JPS63215591A (en) Crystal surface evaluating device by electron beam diffraction in molecular beam epitaxial device
JP2002116159A (en) X-ray structure analyzer for thin-film process
JPH04256832A (en) Apparatus and method for analizing crystal growing step and evaluating apparatus thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees