JPH04256832A - Apparatus and method for analizing crystal growing step and evaluating apparatus thereof - Google Patents

Apparatus and method for analizing crystal growing step and evaluating apparatus thereof

Info

Publication number
JPH04256832A
JPH04256832A JP3018728A JP1872891A JPH04256832A JP H04256832 A JPH04256832 A JP H04256832A JP 3018728 A JP3018728 A JP 3018728A JP 1872891 A JP1872891 A JP 1872891A JP H04256832 A JPH04256832 A JP H04256832A
Authority
JP
Japan
Prior art keywords
crystal growth
analyzer
vacuum
energy
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3018728A
Other languages
Japanese (ja)
Inventor
Masaharu Oshima
正治 尾嶋
Fumihiko Maeda
文彦 前田
Yasushi Muramatsu
村松 康司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3018728A priority Critical patent/JPH04256832A/en
Publication of JPH04256832A publication Critical patent/JPH04256832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain the data of the atomic layer of the outermost surface of a growing crystal by attaching an electron energy analyzer which can detect photoelectrons of the surface of solid at a specified angle so that a specified vacuum degree is maintained. CONSTITUTION:Emitted light 1 whose energy can be varied is introduced into a crystal growing device and cast on the surface of a solid sample 2 whose crystal is growing. A molecular beam is applied on the surface of the sample 2 from a crystal growing vapor deposition source 5, and the crystal growing in the order of an atomic layer is performed. Photoelectrons 6 discharged from the surface of the sample 2 are detected with an electron energy analyzer 8 having the angle decomposing function at an angle which is close to the surface. The detected spectral light is accumulated in a data memory device 11 through a photoelectron-measurement control device 10. After the end of the measurement, the spectra are overlapped and displayed on a CRT display 12. At this timer an orifice and a differential exhausting system are provided in order to maintain the difference in vacuum degrees in the analyzing chamber and the analyzer 8.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体結晶成長過程を
直接観察し、より良質な結晶成長を可能にする結晶成長
過程の、分析装置と分析方法および評価装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analysis device, an analysis method, and an evaluation device for the crystal growth process, which directly observes the semiconductor crystal growth process and enables higher quality crystal growth.

【0002】0002

【従来の技術】結晶成長過程の評価には、従来、■成長
した結晶を取り出し、X線回折やホトルミネッセンスお
よびSIMS分析等を行い、結晶の成長結果から成長過
程を類推する方法、■結晶の成長室と分析室を超高真空
中で結合させ、結晶成長後の表面を超高真空中で、例え
ばオージエ電子分光法やX線光電子分光法で分析する方
法、■MBE(分子線エピタキシー法)のように超高真
空中における結晶成長表面に高速電子線を照射し、表面
からの回折電子線を検出するRHEED(反射型高速電
子回折)や、その際に表面から放出されるオージエ電子
や蛍光X線を検出する方法があった。これらのうち、■
では表面が大気にさらされるために成長過程で様子を類
推することができず、また■でも試料を結晶成長室から
分析室に運搬している途中に、表面から反応に関与して
いる分子種または原子種が脱離することが考えられ、成
長過程の観察が不可能であった。これについては、平成
2年春季応用物理学会29a−T−2/Iで渡辺らが報
告しているように、ガスソースMBE法でGaAs表面
にTMG(トリメチルガリウム)を吸着した表面が、分
析室まで運搬する途中でほとんど脱離してしまうという
例がある。また、■の方法の場合は、確かに成長中の様
子を観察することが可能であるが、電子線による回折現
象を利用しているために、結晶構造に関する情報は得ら
れるが、結合状態に関する情報は得られない。結晶表面
からのオージエ電子や蛍光X線を検出する場合も、表面
組成の情報は得られるが、結合状態の情報は困難であり
、また、電子線による吸着分子の解離のおそれもある。
[Prior Art] Conventionally, methods for evaluating the crystal growth process include: (1) extracting the grown crystal, performing X-ray diffraction, photoluminescence, SIMS analysis, etc., and inferring the growth process from the crystal growth results; MBE (Molecular Beam Epitaxy), a method in which the growth chamber and analysis chamber are combined in an ultra-high vacuum, and the surface after crystal growth is analyzed in the ultra-high vacuum using Auger electron spectroscopy or X-ray photoelectron spectroscopy, for example. RHEED (reflection high-speed electron diffraction), which irradiates a crystal growth surface in an ultra-high vacuum with a high-speed electron beam and detects the diffracted electron beam from the surface, and the Auger electrons and fluorescence emitted from the surface at that time. There was a way to detect X-rays. Of these, ■
In case 2, the surface is exposed to the atmosphere, so it is not possible to infer what happens during the growth process. Alternatively, atomic species may be desorbed, making it impossible to observe the growth process. Regarding this, as reported by Watanabe et al. at the 1990 Spring Applied Physics Conference 29a-T-2/I, the surface on which TMG (trimethyl gallium) was adsorbed on the GaAs surface using the gas source MBE method was There is an example in which most of the material comes off during transport. In addition, in the case of method (2), it is certainly possible to observe the growth process, but since it uses the diffraction phenomenon caused by electron beams, information about the crystal structure can be obtained, but information about the bonding state cannot be obtained. No information is available. Although information on the surface composition can be obtained by detecting Auger electrons or fluorescent X-rays from the crystal surface, it is difficult to obtain information on the bonding state, and there is also a risk that adsorbed molecules may be dissociated by the electron beam.

【0003】一方、堀越ら(応用物理:59巻(199
0年)27頁)は最近、レーザ光を偏光子に通しそれを
結晶成長表面で反射させることによって、成長表面がG
a面かAs面かを識別し、原子層成長のモニターに使用
できることを実証しているが、結晶成長表面での分子種
を直接観察しても、成長過程あるいは表面反応過程を明
らかにするための情報は得られない。
On the other hand, Horikoshi et al. (Applied Physics: Volume 59 (199
0 years) p. 27) has recently reported that the growth surface is G
Although it has been demonstrated that it can be used to distinguish between a-plane and As-plane and monitor atomic layer growth, direct observation of molecular species at the crystal growth surface does not reveal the growth process or surface reaction process. information cannot be obtained.

【0004】0004

【発明が解決しようとする課題】上記のように従来技術
では、結晶成長過程における観察や類推ができず、ある
いは結晶成長中の様子が観察可能であり、結晶構造の情
報が得られても、結合状態の情報は得ることができなか
った。
[Problems to be Solved by the Invention] As described above, with the conventional techniques, it is not possible to observe or make analogies during the crystal growth process, or even if the state during crystal growth can be observed and information on the crystal structure can be obtained, It was not possible to obtain information on the binding status.

【0005】本発明の目的は、成長中の結晶の最表面原
子層の情報を高速に得て、結晶成長過程のガス種の結合
状態や組成比を求め、また、10 ̄5Torrの低真空
中でも光電子分光測定ができるようにするものである。
The purpose of the present invention is to obtain information on the outermost atomic layer of a growing crystal at high speed, to determine the bonding state and composition ratio of gas species during the crystal growth process, and to This enables photoelectron spectroscopy measurements.

【0006】[0006]

【課題を解決するための手段】上記目的は、固体表面を
熱または光により加熱する装置と、結晶成長用蒸着源と
、測定対象元素によってエネルギーを適当に選定した放
射光の照射装置とを備え、上記放射光のビームラインと
分析室と結晶室との真空度をそれぞれ所定の値に維持し
た結晶成長過程分析装置において、上記固体表面の特定
角度の光電子を検出できる電子エネルギー分析器を、所
定の真空度に保つように取付け、また、上記放射光照射
装置と分析室との間の真空度差を維持するオリフィスと
差動排気装置、および上記分析室と電子エネルギー分析
器との間の真空度差を維持するオリフィスと差動排気装
置を備えることによって達成される。
[Means for Solving the Problems] The above object is equipped with a device for heating a solid surface with heat or light, a vapor deposition source for crystal growth, and a synchrotron radiation irradiation device with energy appropriately selected depending on the element to be measured. In the crystal growth process analyzer in which the degree of vacuum of the synchrotron radiation beam line, the analysis chamber, and the crystal chamber are maintained at predetermined values, an electron energy analyzer capable of detecting photoelectrons at a specific angle on the solid surface is installed at a predetermined value. An orifice and a differential pump are installed to maintain the degree of vacuum between the synchrotron radiation irradiation device and the analysis chamber, and a vacuum between the analysis chamber and the electron energy analyzer. This is achieved by providing an orifice and a differential pump to maintain the degree difference.

【0007】[0007]

【作用】本発明の結晶成長過程分析装置では、結晶成長
中の固体表面に放射光を照射するために、放射光ビーム
ラインと分析室と結晶成長室および電子エネルギー分析
室をそれぞれ所要の真空度に保ち、放射光ビームライン
が必要とする超高真空に支障を来たさないようにする。 なお、結晶成長過程評価装置においては、上記真空度を
維持するためにそれぞれオリフィスと差動排気装置とを
用いる。その後、光電子の運動エネルギーが10eVに
なるように、適当なエネルギーの放射光を固体試料表面
に照射し、その光電子の脱出深さを約5Åとし、さらに
、固体試料表面からの光電子取り出し角度を浅く、かつ
、特定結晶方向に取り出すことによって、最表面の原子
層だけの情報を得るようにする。さらにまた、結晶成長
過程をリアルタイムに高速測定するために、角度分解光
電子エネルギー分析器の検出部に2次元検出器を設置し
、エネルギー掃引を行うことなく光電子スペクトルを繰
り返し測定する。
[Operation] In the crystal growth process analyzer of the present invention, in order to irradiate the solid surface undergoing crystal growth with synchrotron radiation, the synchrotron radiation beam line, the analysis chamber, the crystal growth chamber, and the electron energy analysis chamber are each operated at the required degree of vacuum. to avoid interfering with the ultra-high vacuum required by the synchrotron radiation beam line. In addition, in the crystal growth process evaluation apparatus, an orifice and a differential pumping device are used to maintain the above-mentioned degree of vacuum. After that, the surface of the solid sample is irradiated with synchrotron radiation of appropriate energy so that the kinetic energy of the photoelectrons becomes 10 eV, the escape depth of the photoelectrons is set to about 5 Å, and the angle at which the photoelectrons are extracted from the surface of the solid sample is made shallow. , and by extracting in a specific crystal direction, information on only the outermost atomic layer can be obtained. Furthermore, in order to measure the crystal growth process at high speed in real time, a two-dimensional detector is installed in the detection section of the angle-resolved photoelectron energy analyzer, and the photoelectron spectrum is repeatedly measured without performing an energy sweep.

【0008】[0008]

【実施例】つぎに本発明の実施例を図面とともに説明す
る。図1は本発明による結晶成長過程分析装置の一実施
例を示す図で、(a)は放射光入射軸に対して垂直方向
から見た要部側面図、(b)は放射光入射方向から見た
図、図2は結晶の最表面から光電子を検出する方法を示
す図で、(a)は固体中の光電子脱出深さの運動エネル
ギー依存性を示す図、(b)は表面近傍情報を得るため
の光電子取り出し説明図、(c)は結晶最表面の原子配
列に対し最適な放射光入射角度と光電子取り出し角度の
関係を示す図、図3は本発明で実現したGaAs表面の
As3d光電子スペクトル測定図、図4は本発明の結晶
成長過程評価装置の一実施例を示す図、図5は本発明に
より実現したGaAs表面のGa3d光電子スペクトル
測定図である。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a crystal growth process analyzer according to the present invention, in which (a) is a side view of the main part viewed from a direction perpendicular to the synchrotron radiation incident axis, and (b) is a view from the synchrotron radiation incident direction. Figure 2 shows a method for detecting photoelectrons from the outermost surface of a crystal. (a) shows the kinetic energy dependence of the photoelectron escape depth in a solid, and (b) shows near-surface information. (c) is a diagram showing the relationship between the optimal synchrotron radiation incident angle and photoelectron extraction angle for the atomic arrangement on the outermost surface of the crystal, and FIG. 3 is the As3d photoelectron spectrum of the GaAs surface realized by the present invention. FIG. 4 is a diagram showing an embodiment of the crystal growth process evaluation apparatus of the present invention, and FIG. 5 is a measurement diagram of the Ga3d photoelectron spectrum of the GaAs surface realized by the present invention.

【0009】本発明の結晶成長過程分析装置では、エネ
ルギーを可変できる放射光1を結晶成長装置に導入し、
結晶成長中の固体試料2の表面に照射するが、上記放射
光1のビームラインは超高真空に維持する必要があるた
め、上記結晶成長装置はそれぞれ所要の真空度に保持さ
れねばならない。上記固体試料2は加熱装置3により熱
的または光的に加熱され、結晶成長用蒸着源5から原子
線あるいは分子線が照射されることにより、原子層オー
ダの結晶成長が行われている。上記固体試料2の表面か
らは上記放射光1で励起された光電子が放出されるが、
通常、放射光1の方向に対して直角方向に光電子が多く
放出される。したがって、固体試料表面からすれすれの
角度に放出される光電子だけを、放射光1の入射方向に
対して直角方向から検出できるように、角度分解機能を
もつ電子エネルギー分析器を取付けポート4に設置する
。この場合の角度分解能はバンド構造解析に用いられる
2度以下の取り出し角分解能にする必要はなく、10度
程度でも本分析の用途には十分適用可能であるので、図
1(b)に示す入射スリット7を広げて検出感度を上げ
ることができる。ただし、円筒鏡分析器(CMA)のよ
うに角度積分型のアナライザでは不適当であるが、角度
分解機能をもたせるスリットを用いれば、上記分析方法
にも適用することができる。本実施例では半球型電子エ
ネルギー分析器8を用いており、その検出部にはチャン
ネル・プレートなどの2次元検出器9を使用し、エネル
ギー掃引せずに所定のコアレベル、例えばGaAs表面
からのGa3d光電子スペクトルを、約10eV幅の領
域測定によって数100msで測定することが可能であ
る。上記スペクトルを光電子測定制御装置10を経由し
てデータ記憶装置11に転送し蓄積する。測定終了後に
これらのスペクトルを重ね合わせて、数100msの時
間分解能で結晶成長表面における反応の様子を解明する
ことができる。本構成の高速化をはかるには、データ転
送・蓄積に要する時間を短縮することと、測定時間を短
縮化することの2つが必要で、後者については放射光ビ
ーム1の高輝度化と電子エネルギー分析器8の高感度化
とが鍵となる。
In the crystal growth process analyzer of the present invention, synchrotron radiation 1 whose energy can be varied is introduced into the crystal growth apparatus,
Although the surface of the solid sample 2 undergoing crystal growth is irradiated, the beam line of the synchrotron radiation 1 needs to be maintained at an ultra-high vacuum, so each of the crystal growth apparatuses must be maintained at a required degree of vacuum. The solid sample 2 is thermally or optically heated by a heating device 3 and irradiated with atomic beams or molecular beams from a crystal growth vapor deposition source 5, thereby performing crystal growth on the order of atomic layers. Photoelectrons excited by the synchrotron radiation 1 are emitted from the surface of the solid sample 2;
Usually, many photoelectrons are emitted in a direction perpendicular to the direction of the radiation 1. Therefore, an electron energy analyzer with an angular resolution function is installed in the mounting port 4 so that only the photoelectrons emitted at a grazing angle from the surface of the solid sample can be detected from a direction perpendicular to the incident direction of the synchrotron radiation 1. . The angular resolution in this case does not need to be the extraction angular resolution of 2 degrees or less, which is used for band structure analysis, and even around 10 degrees is sufficiently applicable for the purpose of this analysis. The detection sensitivity can be increased by widening the slit 7. However, although it is not suitable for an angle-integrating type analyzer such as a cylindrical mirror analyzer (CMA), it can be applied to the above-mentioned analysis method if a slit having an angle-resolving function is used. In this example, a hemispherical electron energy analyzer 8 is used, and a two-dimensional detector 9 such as a channel plate is used as the detection part, and a predetermined core level, for example, from a GaAs surface is detected without energy sweeping. It is possible to measure the Ga3d photoelectron spectrum in a few 100 ms by measuring a region approximately 10 eV wide. The above spectrum is transferred to the data storage device 11 via the photoelectronic measurement control device 10 and stored therein. After the measurement is completed, these spectra are superimposed to elucidate the reaction state on the crystal growth surface with a time resolution of several 100 ms. In order to increase the speed of this configuration, it is necessary to shorten the time required for data transfer and storage, and to shorten the measurement time.The latter requires increasing the brightness of the synchrotron radiation beam 1 and increasing the electron energy. The key is to increase the sensitivity of the analyzer 8.

【0010】本発明において結晶成長表面の最表面層か
らだけ情報を得る方法を図2に示した。すなわち、固体
中を運動する電子は固体原子(中の電子)と相互作用す
ることによって運動エネルギーを失う。一般に運動エネ
ルギーが高くなると相互作用しにくくなる。すなわち、
非弾性散乱断面積が小さくなるため、固体内部で発生し
た光電子も表面まで到達して検出されるようになる。一
方、運動エネルギーが40eV以下になると相互作用が
少なくなり、やはり内部からの光電子が表面にまで到達
するようになる。したがって、図2(a)に示すように
数10eV(約60eV)あたりで相互作用が最大にな
り、光電子の脱出深さが4〜5Åと極小になる領域を持
つ。この性質を利用してGaAs中のGa3dコアレベ
ルの場合には結合エネルギーが約19eVであるため、
光電子の運動エネルギーを約60eVにするために約8
0eVのエネルギーをもつ放射光単色光を固体試料の表
面に照射すれば、GaAs表面約5Åの情報が得られる
ことになる。しかし、これは信号強度が1/eになる深
さであるため表面から数原子層までの平均情報に過ぎず
、結晶成長表面での反応過程を解明するにはノイズが多
すぎる。そこで、図2(b)に示すように光電子の取り
出し角度を10度以下にすることによって、検出深さを
sin10°以下にすることができる。なお、上記のよ
うに表面敏感な測定になると、最表面の原子配列にも信
号のシグナル/ノイズ比が依存するようになる。そのた
め、図2(c)に示すように例えばGaAs(100)
表面への結晶成長を考えると、最表面の原子が連なって
いる方向、すなわち、<110>方向に角度分解光電子
エネルギー分析器を設置し、<1 ̄ 10>方向に放射
光を入射させると最も結晶表面に敏感な測定が可能にな
る。
FIG. 2 shows a method of obtaining information only from the outermost layer of the crystal growth surface in the present invention. In other words, electrons moving in a solid lose kinetic energy by interacting with solid atoms (electrons inside). In general, the higher the kinetic energy, the more difficult it is to interact. That is,
Since the inelastic scattering cross section becomes smaller, photoelectrons generated inside the solid also reach the surface and are detected. On the other hand, when the kinetic energy becomes 40 eV or less, the interaction decreases, and photoelectrons from the inside still reach the surface. Therefore, as shown in FIG. 2(a), there is a region where the interaction is maximum around several tens of eV (approximately 60 eV) and the escape depth of photoelectrons is minimal at 4 to 5 Å. Utilizing this property, in the case of Ga3d core level in GaAs, the binding energy is about 19 eV, so
About 8 to make the kinetic energy of photoelectrons about 60 eV
If the surface of a solid sample is irradiated with monochromatic synchrotron radiation having an energy of 0 eV, information about about 5 Å on the GaAs surface can be obtained. However, since this is the depth at which the signal intensity is 1/e, it is only average information from the surface to several atomic layers, and there is too much noise to elucidate the reaction process at the crystal growth surface. Therefore, by setting the photoelectron extraction angle to 10 degrees or less as shown in FIG. 2(b), the detection depth can be made to be sin 10 degrees or less. Note that when surface-sensitive measurements are performed as described above, the signal/noise ratio of the signal also depends on the atomic arrangement on the outermost surface. Therefore, as shown in FIG. 2(c), for example, GaAs(100)
Considering crystal growth on the surface, the angle-resolved photoelectron energy analyzer is installed in the direction in which the atoms on the outermost surface are connected, that is, the <110> direction, and the synchrotron radiation is incident in the <1 ̄10> direction. This enables measurements that are sensitive to crystal surfaces.

【0011】図3に本分析装置を用いて測定したGaA
s結晶成長過程中におけるAs3d(結合エネルギー=
41eV)の光電子分光スペクトルを示す。本実施例で
は2秒で1原子層、すなわちGa層とAs層を1層ずつ
成長しており、測定は0.2秒ごとに1スペクトルを測
定した。Asで終端されたGaAs表面から実験を開始
したところ、最初にはGa3dはほとんど見られず、G
aAs状態のAsが結合エネルギー約41eVに出現し
ているだけであったが、Gaをその表面に蒸着していく
につれてその強度が減少し、約1秒でAs3dが見えな
くなりGa層成長の終了が判断された。そこで、つぎに
Gaソースのシャッターを閉じてAs4の蒸着ソースを
開くと、徐々にAs3dの信号強度が回復する。しかし
、As3dピークのうちAs元素状態のショルダーピー
ク(約0.6eV高結合エネルギー側)も明瞭に検出さ
れ、反応の過程の直接観察が可能であることが判る。約
2秒で1原子層の成長が終了したのちに、さらにAs蒸
着を続けると、元素状As状態のショルダーピークが増
加することが判る。本実施例の結果は、■放射光のエネ
ルギー選択の誤り、あるいは通常のX線源使用、■角度
分解電子エネルギー分析器を使用しない、■光電子取り
出し角度の設定を深くする、■結晶方位の設定誤り、等
のいずれかがあっても得ることができないものである。
FIG. 3 shows GaA measured using this analyzer.
As3d (bonding energy =
41 eV) is shown. In this example, one atomic layer, that is, one Ga layer and one As layer, was grown in 2 seconds, and one spectrum was measured every 0.2 seconds. When we started the experiment from the As-terminated GaAs surface, very little Ga3d was seen at first, and G
As in the aAs state only appeared with a binding energy of about 41 eV, its intensity decreased as Ga was deposited on its surface, and As3d disappeared in about 1 second, indicating the end of the Ga layer growth. It was judged. Therefore, when the shutter of the Ga source is then closed and the vapor deposition source of As4 is opened, the signal strength of As3d gradually recovers. However, among the As3d peaks, a shoulder peak in the As elemental state (approximately 0.6 eV high binding energy side) is also clearly detected, indicating that direct observation of the reaction process is possible. It can be seen that when As vapor deposition is continued after the growth of one atomic layer is completed in about 2 seconds, the shoulder peak of the elemental As state increases. The results of this example are: ■ incorrect energy selection of synchrotron radiation or use of a normal X-ray source, ■ not using an angle-resolved electron energy analyzer, ■ setting a deep photoelectron extraction angle, and ■ setting the crystal orientation. Even if there is a mistake, etc., it cannot be obtained.

【0012】図4は本発明の結晶成長過程評価装置の一
実施例を示す図で、特に結晶成長中の観察を可能にする
ための排気システムを示している。放射光ビームライン
の10 ̄9Torr以下の真空度と結晶成長中の例えば
10 ̄5Torr台の真空度を共存させて、放射光を成
長中の試料表面に照射するためには、図に示すようなオ
リフィスと差動排気系を設置する必要がある。ここでは
ガスソースMBE法でTMG(トリメチルガリウム)ガ
スを用いて、GaAsの結晶成長を行う場合についての
実施例を示す。結晶成長室の真空度22は10 ̄5To
rr台であるため、図4に示すように2段階の差動排気
系を構築している。すなわち、放射光ビームラインの真
空度20を10 ̄9Torr(P1)、分析室の真空度
21を10 ̄7Torr(P2)とし、両者の真空度差
をオリフィス14(コンダクタンス;C1)と差動排気
系13(実効排気速度;S1)で維持する。また、分析
室の真空度21の10 ̄7Torrと結晶成長室の真空
度22である10 ̄5Torr(P3)の差をオリフィ
ス16(コンダクタンス;C2)と差動排気系15(実
効排気速度;S2)で維持する。結晶成長室の真空度2
2を10 ̄5Torrに保つためには、結晶成長用蒸着
源5を考慮し、この場合はTMGなどのガスソースから
結晶成長室に導入されるガス流量(Q)に見合った排気
系(S3)が必要である。一方、分析室に接続された電
子エネルギー分析器8の真空度23である(P4)を1
0 ̄9Torr台に保つために、オリフィス19(コン
ダクタンス;C3)と差動排気系18(実効排気速度;
S4)を設ける。これらの間にはつぎに示すような関係
がある。すなわち、 S1×P1=C1×(P2−P1) S2×P2=C2×(P3−P2) S3×P3=Q S4×P4=C3×(P2−P4) の4式で表わされる。この式にしたがってオリフィスの
コンダクタンスC1、C2、C3、真空ポンプの実効排
気速度S1、S2、S3、S4およびガス流量Qを最適
化して決定すれば、ビームラインの真空度20が10 ̄
9Torrを維持した状態で、10 ̄5Torrの結晶
成長過程を観察することが可能になり、また、電子エネ
ルギー分析器8への成長用ガスによる汚染も少なくなる
FIG. 4 is a diagram showing an embodiment of the crystal growth process evaluation apparatus of the present invention, and particularly shows an exhaust system to enable observation during crystal growth. In order to irradiate the surface of the growing sample with synchrotron radiation while coexisting the vacuum level of 10 ̄9 Torr or less in the synchrotron radiation beam line and the vacuum level of, for example, 10 ̄5 Torr during crystal growth, the following steps are required: It is necessary to install an orifice and a differential pumping system. Here, an example will be described in which GaAs crystal growth is performed using TMG (trimethyl gallium) gas by the gas source MBE method. The vacuum level 22 of the crystal growth chamber is 10 ̄5To
Since it is an RR unit, a two-stage differential exhaust system is constructed as shown in Figure 4. That is, the vacuum degree 20 of the synchrotron radiation beam line is 10 ̄9 Torr (P1), the vacuum degree 21 of the analysis chamber is 10 ̄7 Torr (P2), and the difference between the two vacuum degrees is determined by the orifice 14 (conductance; C1) and differential pumping. Maintain system 13 (effective pumping speed; S1). In addition, the difference between the vacuum degree 21 of the analysis chamber, 10 ̄7 Torr, and the vacuum degree 22, 10 ̄5 Torr (P3) of the crystal growth chamber, is determined between the orifice 16 (conductance; C2) and the differential pumping system 15 (effective pumping speed; S2). ). Vacuum degree of crystal growth chamber 2
2 to 10 ̄5 Torr, consider the vapor deposition source 5 for crystal growth, and in this case, an exhaust system (S3) that is suitable for the gas flow rate (Q) introduced into the crystal growth chamber from a gas source such as TMG. is necessary. On the other hand, the degree of vacuum (P4) of the electron energy analyzer 8 connected to the analysis room is 1.
In order to maintain the level at 0 ̄9 Torr, the orifice 19 (conductance; C3) and the differential pumping system 18 (effective pumping speed;
S4) is provided. There is a relationship between these as shown below. That is, it is expressed by the following four equations: S1×P1=C1×(P2-P1) S2×P2=C2×(P3-P2) S3×P3=Q S4×P4=C3×(P2-P4). If the orifice conductances C1, C2, C3, the effective pumping speeds S1, S2, S3, S4 of the vacuum pump, and the gas flow rate Q are optimized and determined according to this formula, the vacuum degree 20 of the beam line will be 10 ̄
It becomes possible to observe the crystal growth process at 10-5 Torr while maintaining 9 Torr, and contamination of the electron energy analyzer 8 by the growth gas is also reduced.

【0013】つぎに、本発明により結晶成長中の表面状
態を観察した例を示す。エネルギーを可変できる放射光
1を結晶成長装置に導入し結晶成長中の固体試料2の表
面に照射する。固体試料2の表面に結晶成長用蒸着源5
から分子線を照射し、原子層オーダの結晶成長を行う。 放射光を照射した上記固体試料2の表面から放出される
光電子6を、角度分解機能をもつ電子エネルギー分析器
8によって表面からすれすれの角度で検出する。本実施
例では半球型電子エネルギー分析器を用いており、その
検出部にはチャンネル・プレートなどの2次元検出器9
を使用し、エネルギー掃引せずに所定のコアレベル、例
えばGaAs表面からのGa3d光電子スペクトルを、
約10eV幅の領域測定によって数100msで測定す
ることが可能である。このスペクトルを光電子測定制御
装置10を経由してデータ記憶装置11に転送し蓄積す
る。測定終了後に上記スペクトルを重ね合わせてCRT
ディスプレイ12に表示し、数100msの時間分解能
で結晶成長表面における反応の様子を解明することがで
きる。本システムの高速化を図るには、データ転送・蓄
積に要する時間を短縮することと、測定時間の短縮化と
の2つが必要で、後者については、放射光ビームの高輝
度化と電子エネルギー分析器の高感度化が鍵である。本
発明において、結晶成長表面の最表面層からだけ情報を
得るためには、■光電子の運動エネルギーを約60eV
にするために、Ga3dコアレベルでは約80eVのエ
ネルギーを持つ放射光単色光を固体表面に照射すること
、■光電子の取り出し角度を10度以下にすることによ
って、検出深さをsin10°以下にすること、■最表
面の原子が連なっている方向、すなわちGaAs(10
0)面では、例えば<110>方向に角度分解光電子エ
ネルギー分析器を設置することが重要である。
Next, an example in which the surface state during crystal growth was observed according to the present invention will be shown. Synchrotron radiation 1 whose energy can be varied is introduced into a crystal growth apparatus and irradiated onto the surface of a solid sample 2 during crystal growth. A vapor deposition source 5 for crystal growth is placed on the surface of the solid sample 2.
irradiates with molecular beams to grow crystals on the order of atomic layers. Photoelectrons 6 emitted from the surface of the solid sample 2 irradiated with synchrotron radiation are detected at an angle just below the surface by an electron energy analyzer 8 having an angular resolution function. In this example, a hemispherical electron energy analyzer is used, and the detection section includes a two-dimensional detector 9 such as a channel plate.
to obtain the Ga3d photoelectron spectrum from a given core level, e.g., a GaAs surface, without energy sweeping.
It is possible to measure in several 100 ms by measuring an area with a width of about 10 eV. This spectrum is transferred to the data storage device 11 via the photoelectronic measurement control device 10 and stored therein. After the measurement is completed, the above spectra are superimposed and displayed on a CRT.
By displaying the information on the display 12, it is possible to elucidate the state of the reaction on the crystal growth surface with a time resolution of several hundred milliseconds. In order to increase the speed of this system, two things are necessary: shortening the time required for data transfer and storage, and shortening measurement time.The latter requires increasing the brightness of the synchrotron radiation beam and analyzing electron energy. The key is to increase the sensitivity of the instrument. In the present invention, in order to obtain information only from the outermost layer of the crystal growth surface, the kinetic energy of photoelectrons must be set to approximately 60 eV.
In order to achieve this, at the Ga3d core level, the solid surface is irradiated with synchrotron monochromatic light with an energy of about 80 eV, and the detection depth is made less than sin 10 degrees by making the photoelectron extraction angle less than 10 degrees. ■The direction in which the atoms on the outermost surface are connected, that is, GaAs (10
0), it is important to install the angle-resolved photoelectron energy analyzer in the <110> direction, for example.

【0014】本評価装置を用いて測定したGaAs結晶
成長過程中の、固体試料表面からのGa3d(結合エネ
ルギー=19eV)の光電子分光スペクトルを、図5に
示す。本実験では2秒で1原子層、すなわちGa層とA
s層とを1層ずつ成長しており、測定は0.2秒ごとに
1スペクトルを測定した。Asで終端されたGaAs表
面から実験を開始したところ、最初はGa3dがほとん
どみられず、表面第1層の分析が実現していることが判
る。その表面にTMGを付着させていくにつれてGa3
dの光電子強度が増加していくが、成長初期においてA
s原子上に堆積していたTMGは直ちに分解して、Ga
As結合状態のGaになっているのに対して、0.5原
子層程度の成長になるにつれてTMG状態を表わすGa
3dスペクトル位置のショルダー・ピークが顕著になり
始める。 GaAs状態とTMG状態との比は成長中の基板温度に
依存する。さらに付着を進めて、1原子層以上になると
TMG状態が優勢になり、Ga上に付着したTMGは分
解しにくいことが判る。上記のように、本発明の差動排
気システム、高速測定系、および極表面の分析を可能に
する放射光エネルギー、電子エネルギー分析器、結晶方
位の最適設定、の3点を組み合わせることによって、結
晶成長中の表面状態をリアルタイムで評価することが可
能である。
FIG. 5 shows the photoelectron spectra of Ga3d (binding energy=19 eV) from the surface of a solid sample during the GaAs crystal growth process measured using this evaluation apparatus. In this experiment, one atomic layer was formed in 2 seconds, that is, a Ga layer and an A layer.
The s-layer was grown one layer at a time, and one spectrum was measured every 0.2 seconds. When the experiment started from the As-terminated GaAs surface, almost no Ga3d was observed at first, indicating that the analysis of the first layer on the surface was achieved. As TMG is attached to the surface, Ga3
The photoelectron intensity of d increases, but at the early stage of growth
TMG deposited on s atoms immediately decomposes and becomes Ga.
While Ga is in an As-bonded state, as it grows to about 0.5 atomic layer, Ga becomes in a TMG state.
Shoulder peaks at 3d spectral positions start to become noticeable. The ratio of GaAs and TMG states depends on the substrate temperature during growth. It can be seen that as the deposition progresses further and becomes one atomic layer or more, the TMG state becomes predominant, and TMG deposited on Ga is difficult to decompose. As mentioned above, by combining the differential pumping system of the present invention, high-speed measurement system, synchrotron radiation energy, electron energy analyzer, and optimal setting of crystal orientation, which enable analysis of the extreme surface, It is possible to evaluate the surface condition during growth in real time.

【0015】[0015]

【発明の効果】上記のように本発明による結晶成長過程
分析装置は、固体表面を熱または光により加熱する装置
と、結晶成長用蒸着源と、測定対象元素によってエネル
ギーを適当に選定した放射光の照射装置とを備え、上記
放射光のビームラインと分析室と結晶室との真空度をそ
れぞれ所定の値に維持した結晶成長過程分析装置におい
て、上記固体表面の特定角度の光電子を検出できる電子
エネルギー分析器を、所定の真空度に保つように取り付
けたことにより、結晶成長中の固体表面における最表面
の原子層だけの情報をリアルタイムに、かつ高速に得る
ことが可能になり、結晶成長過程におけるガス種の結合
状態や組成比を決定することによって、結晶成長のメカ
ニズムや良質膜形成を実現するためのキーポイントを見
出すことができる。さらに、放射光照射装置と分析室お
よび電子エネルギー分析器間の真空度差を維持するため
に、オリフィスと差動排気装置を備えた結晶成長過程評
価装置では、10 ̄5Torrという低真空度の結晶成
長雰囲気でも、表面結合状態の測定ができる光電子分光
測定が可能になり、良質な結晶成長を実現するためのキ
ーポイントを見出すことができる。
Effects of the Invention As described above, the crystal growth process analyzer according to the present invention includes a device that heats a solid surface with heat or light, a vapor deposition source for crystal growth, and a synchrotron radiation beam whose energy is appropriately selected depending on the element to be measured. irradiation device, and maintains the degree of vacuum of the synchrotron radiation beam line, the analysis chamber, and the crystallization chamber at predetermined values. By installing the energy analyzer to maintain a predetermined degree of vacuum, it is possible to obtain information on only the outermost atomic layer on the solid surface during crystal growth in real time and at high speed, and to analyze the crystal growth process. By determining the bonding state and composition ratio of gas species in the process, it is possible to discover the mechanism of crystal growth and the key points for realizing high-quality film formation. Furthermore, in order to maintain the vacuum difference between the synchrotron radiation irradiation device, the analysis chamber, and the electron energy analyzer, the crystal growth process evaluation device equipped with an orifice and differential pumping device uses a low vacuum of 10 ̄5 Torr. Photoelectron spectroscopy can be used to measure the surface bonding state even in the growth atmosphere, making it possible to discover key points for achieving high-quality crystal growth.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による結晶成長過程分析装置の一実施例
を示す図で、(a)は放射光入射軸に対して垂直方向か
ら見た要部側面図、(b)は放射光入射方向から見た図
である。
FIG. 1 is a diagram showing an embodiment of a crystal growth process analyzer according to the present invention, in which (a) is a side view of the main part viewed from a direction perpendicular to the synchrotron radiation incident axis, and (b) is a synchrotron radiation incident direction. This is a diagram seen from.

【図2】結晶の最表面から光電子を検出する方法を示す
図で、(a)は固体中の光電子脱出深さの運動エネルギ
ー依存性を示す図、(b)は表面近傍情報を得るための
光電子取り出し説明図、(c)は結晶最表面の原子配列
に対し、最適な放射光入射角度と光電子取り出し角度の
関係を示す図である。
[Fig. 2] Diagrams showing a method for detecting photoelectrons from the outermost surface of a crystal. (a) is a diagram showing the kinetic energy dependence of the photoelectron escape depth in a solid, and (b) is a diagram showing a method for obtaining near-surface information. Photoelectron extraction explanatory diagram (c) is a diagram showing the relationship between the optimal synchrotron radiation incident angle and the photoelectron extraction angle with respect to the atomic arrangement on the outermost surface of the crystal.

【図3】本発明で実現したGaAs表面のAs3d光電
子スペクトル測定図である。
FIG. 3 is an As3d photoelectron spectrum measurement diagram of a GaAs surface realized by the present invention.

【図4】本発明の結晶成長過程評価装置の一実施例を示
す図である。
FIG. 4 is a diagram showing an embodiment of the crystal growth process evaluation device of the present invention.

【図5】上記実施例により実現したGaAs表面のGa
3d光電子スペクトル測定図である。
[Figure 5] Ga on the GaAs surface realized by the above example
It is a 3D photoelectron spectrum measurement diagram.

【符号の説明】[Explanation of symbols]

1    放射光 2    固体試料 3    加熱装置 5    結晶成長用蒸着源 6    光電子 8    電子エネルギー分析器 9    2次元検出器 13、15、18    差動排気装置14、16、1
9    オリフィス 20    ビームラインの真空度 21    分析室の真空度 22    結晶室の真空度
1 Synchrotron radiation 2 Solid sample 3 Heating device 5 Vapor deposition source for crystal growth 6 Photoelectron 8 Electron energy analyzer 9 Two-dimensional detectors 13, 15, 18 Differential pumping device 14, 16, 1
9 Orifice 20 Beamline vacuum level 21 Analysis chamber vacuum level 22 Crystallization chamber vacuum level

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】固体表面を熱または光により加熱する装置
と、結晶成長用蒸着源と、測定対象元素によってエネル
ギーを適当に選定した放射光の照射装置とを備え、上記
放射光のビームラインと分析室と結晶室との真空度をそ
れぞれ所定の値に維持した結晶成長過程分析装置におい
て、上記固体表面の特定角度の光電子を検出できる電子
エネルギー分析器を、所定の真空度に保つように取り付
けたことを特徴とする結晶成長過程分析装置。
Claim 1: A system comprising: a device for heating a solid surface with heat or light; a vapor deposition source for crystal growth; and a synchrotron radiation irradiation device with energy appropriately selected depending on the element to be measured; In a crystal growth process analyzer that maintains the degree of vacuum in the analysis chamber and the crystallization chamber at a predetermined value, an electron energy analyzer capable of detecting photoelectrons at a specific angle on the solid surface is installed to maintain the predetermined degree of vacuum. A crystal growth process analyzer characterized by:
【請求項2】固体表面を熱または光により加熱する装置
と、結晶成長用蒸着源と、測定対象元素によってエネル
ギーを適当に選定した放射光の照射装置とを備え、上記
放射光のビームラインと分析室と結晶室との真空度をそ
れぞれ所定の値に維持した結晶成長過程分析方法におい
て、測定対象元素から放出される光電子の運動エネルギ
ーが数10eVになるように設定した放射光を、結晶成
長中の固体表面に照射して、上記固体表面からの光電子
脱出深さを約2原子層程度にし、かつ、放出光電子を極
めて浅い角度で取り出し、結晶面の方位について表面原
子密度が最大になる方向に、角分解性能をもつ電子エネ
ルギー分析器を所定の真空度を保つように取り付け、最
表面層からの情報だけを集め、原子層オーダで成長する
表面状態を解析することを特徴とする結晶成長過程分析
方法。
2. A system comprising: a device for heating a solid surface with heat or light; a vapor deposition source for crystal growth; and a synchrotron radiation irradiation device with energy appropriately selected depending on the element to be measured; In a crystal growth process analysis method in which the degree of vacuum in the analysis chamber and the crystallization chamber are maintained at predetermined values, synchrotron radiation set so that the kinetic energy of photoelectrons emitted from the element to be measured is several tens of eV is used to analyze the crystal growth process. The photoelectrons are irradiated onto the solid surface inside the solid surface, so that the photoelectron escape depth from the solid surface is about 2 atomic layers, and the emitted photoelectrons are extracted at an extremely shallow angle, and the surface atomic density is maximized with respect to the orientation of the crystal plane. Crystal growth is characterized by attaching an electron energy analyzer with angular resolution performance to maintain a predetermined degree of vacuum, collecting information only from the outermost surface layer, and analyzing the surface state of growth on the order of atomic layers. Process analysis method.
【請求項3】上記電子エネルギー分析器は、2次元検出
器を取り付け、上記エネルギー分析器のエネルギーを掃
引することなく光電子スペクトルを測定し、その測定デ
ータを高速記憶装置に転送・蓄積することにより、結晶
成長表面における反応過程を高速に分析することを特徴
とする請求項2記載の結晶成長過程分析方法。
3. The electron energy analyzer is equipped with a two-dimensional detector, measures a photoelectron spectrum without sweeping the energy of the energy analyzer, and transfers and stores the measurement data in a high-speed storage device. 3. The crystal growth process analysis method according to claim 2, wherein the reaction process on the crystal growth surface is analyzed at high speed.
【請求項4】固体表面を熱または光により加熱する装置
と、結晶成長用蒸着源と、測定対象元素によってエネル
ギーを適当に選定した放射光の照射装置と、上記固体表
面の特定角度の光電子検出機能を有する電子エネルギー
分析器とを備えた、分析室を有する結晶成長過程評価装
置において、上記放射光照射装置と分析室との間の真空
度差を維持するためのオリフィスと差動排気装置、およ
び上記分析室と電子エネルギー分析器との間の真空度差
を維持するためのオリフィスと差動排気装置を備えたこ
とを特徴とする結晶成長過程評価装置。
4. A device for heating a solid surface with heat or light, a vapor deposition source for crystal growth, a synchrotron radiation irradiation device with energy appropriately selected depending on the element to be measured, and photoelectron detection at a specific angle on the solid surface. In a crystal growth process evaluation device having an analysis chamber and equipped with an electron energy analyzer having a function, an orifice and a differential pumping device for maintaining a degree of vacuum difference between the synchrotron radiation irradiation device and the analysis chamber; and a crystal growth process evaluation apparatus, comprising an orifice and a differential pumping device for maintaining a difference in degree of vacuum between the analysis chamber and the electron energy analyzer.
【請求項5】上記電子エネルギー分析器は、2次元検出
器を取り付け、上記エネルギー分析器のエネルギーを掃
引することなく光電子スペクトルを測定し、その測定デ
ータを高速記憶装置に転送・蓄積することにより、結晶
成長表面における反応過程を高速に分析することを特徴
とする請求項4記載の結晶成長過程評価装置。
5. The electron energy analyzer is equipped with a two-dimensional detector, measures a photoelectron spectrum without sweeping the energy of the energy analyzer, and transfers and stores the measurement data in a high-speed storage device. 5. The crystal growth process evaluation apparatus according to claim 4, wherein a reaction process on a crystal growth surface is analyzed at high speed.
JP3018728A 1991-02-12 1991-02-12 Apparatus and method for analizing crystal growing step and evaluating apparatus thereof Pending JPH04256832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3018728A JPH04256832A (en) 1991-02-12 1991-02-12 Apparatus and method for analizing crystal growing step and evaluating apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3018728A JPH04256832A (en) 1991-02-12 1991-02-12 Apparatus and method for analizing crystal growing step and evaluating apparatus thereof

Publications (1)

Publication Number Publication Date
JPH04256832A true JPH04256832A (en) 1992-09-11

Family

ID=11979731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3018728A Pending JPH04256832A (en) 1991-02-12 1991-02-12 Apparatus and method for analizing crystal growing step and evaluating apparatus thereof

Country Status (1)

Country Link
JP (1) JPH04256832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072785A (en) * 2011-09-28 2013-04-22 Hitachi Ltd Low vacuum soft x-ray experiment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072785A (en) * 2011-09-28 2013-04-22 Hitachi Ltd Low vacuum soft x-ray experiment device

Similar Documents

Publication Publication Date Title
US5588995A (en) System for monitoring the growth of crystalline films on stationary substrates
Robins et al. Cathodoluminescence of defects in diamond films and particles grown by hot-filament chemical-vapor deposition
Fraser et al. Surface sensitivity and angular dependence of X-ray photoelectron spectra
Murray et al. The calibration of the strength of the localized vibrational modes of silicon impurities in epitaxial GaAs revealed by infrared absorption and Raman scattering
JP2987379B2 (en) Method for epitaxial growth of semiconductor crystal
Donnelly et al. Products of thermal decomposition of triethylgallium and trimethylgallium adsorbed on Ga-stabilized GaAs (100)
CN112016676B (en) Semiconductor film process parameter optimization system predicted by neural network model
Held et al. N-Limited Versus Ga-Limited Growth on by MBE Using NH 3
EP0431415A2 (en) Method and apparatus for epitaxially growing chemical-compound crystal
US5305366A (en) Thin film forming apparatus
JPH07153692A (en) Method and equipment for making thin film grow on semiconductor substrate
JPH04256832A (en) Apparatus and method for analizing crystal growing step and evaluating apparatus thereof
Barinov et al. Au/GaN interface: Initial stages of formation and temperature-induced effects
Chambers et al. Auger electron spectroscopy as a real‐time compositional probe in molecular beam epitaxy
Gallego et al. The growth and characterization of iron silicides on Si (100)
US6744501B2 (en) Method of analyzing silicon-germanium alloys and apparatus for manufacturing semiconductor layer structures with silicon-germanium alloy layers
Waters et al. In-situ doping and composition monitoring for molecular beam epitaxy using mass spectroscopy of recoiled ions (MSRI)
Barthes et al. Substrate and instrumental effects in quantitative Auger electron spectroscopy: The system lead on gold
Esser et al. Optical characterization of surface electronic and vibrational properties of epitaxial antimony monolayers on III–V (110) surfaces
Hockett A review of standardization issues for total reflection X-ray fluorescence and vapor phase decomposition/total reflection X-ray fluorescence
Wolsky et al. The sputtering of compounds
Myers et al. Point defect modification in wide band gap semiconductors through interaction with high-energy electrons: Is reflection high-energy electron diffraction truly benign?
Holt et al. The cathodoluminescence mode of the scanning electron microscope: A powerful microcharacterization technique
JPH0712763A (en) Surface analysis method and surface analysis device
Roberts et al. Spatial distribution of donors in MOCVD ZnSe