JPS63142633A - Processing method for mask information signal in charged beam lithography - Google Patents
Processing method for mask information signal in charged beam lithographyInfo
- Publication number
- JPS63142633A JPS63142633A JP28966186A JP28966186A JPS63142633A JP S63142633 A JPS63142633 A JP S63142633A JP 28966186 A JP28966186 A JP 28966186A JP 28966186 A JP28966186 A JP 28966186A JP S63142633 A JPS63142633 A JP S63142633A
- Authority
- JP
- Japan
- Prior art keywords
- value
- amplifier
- gain
- mark
- information signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003672 processing method Methods 0.000 title claims description 6
- 238000001459 lithography Methods 0.000 title abstract description 5
- 239000000463 material Substances 0.000 claims description 15
- 238000005259 measurement Methods 0.000 abstract description 11
- 238000001514 detection method Methods 0.000 abstract description 5
- 230000003287 optical effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Landscapes
- Electron Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は荷電ご一ムでマーク上を走査した時に1qられ
る該マークからの情報信号強度が基準値になる様にした
荷電ビーム描画におけるマーク情報信号処理方法に関す
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a mark in charged beam drawing in which the information signal intensity from the mark, which is 1q when the mark is scanned with a charged beam, becomes a reference value. The present invention relates to an information signal processing method.
[従来技術]
電子ビーム描画方法の如き荷電ビーム描画方法においで
、パターン描画前及び1ffi画中に、材料や移動台等
に付されたマーク上をビームにて走査し、該走査により
該マークから得られたマーク情報信号から得られたマー
ク位置データに基づいて、材料の位置合せ、移動台の傾
きの測定、ビーム偏向歪みの補正、重ね合せ精度の測定
等を行なうのは今では極く一般的となっている。[Prior Art] In a charged beam drawing method such as an electron beam drawing method, a mark attached to a material, a moving table, etc. is scanned with a beam before pattern drawing and during 1ffi drawing, and by the scanning, marks are removed from the mark. It is now extremely common to align materials, measure the tilt of the moving table, correct beam deflection distortion, measure overlay accuracy, etc. based on mark position data obtained from the mark information signal obtained. It has become a target.
さて、この様なマーク情報信号の情報信号処理において
、通常、該情報信号処理されるマーク情報信号は非常に
微弱な為、検出器で検出したマーク情報信号の強度をア
ンプにより増幅している。Now, in such information signal processing of a mark information signal, since the mark information signal subjected to the information signal processing is usually very weak, the intensity of the mark information signal detected by the detector is amplified by an amplifier.
実際には、パターン描画前に1度だけ、検出器で検出し
たマーク情報信号の強度が上記の様な測定に使用可能な
強度(基準強度値)に迄増幅される様にアンプの利得を
調整している。In reality, the gain of the amplifier is adjusted just once before pattern drawing so that the intensity of the mark information signal detected by the detector is amplified to the intensity (reference intensity value) that can be used for the above measurements. are doing.
[発明が解決しようとする問題点]
所で、例えば、スポット状のご一ムで複雑なパターンを
描画する場合、多大な描画時間を要するが、この様にパ
ターン描画に多大な時間を要する様な場合、ビーム電流
の変動が無視出来なくなり、ビーム電流の変動により、
パターン描画前に調整したアンプの利得に基づく増幅で
は、上記各測定が出来る強度のマーク情報信号が得られ
ない時がある。[Problems to be Solved by the Invention] By the way, for example, when drawing a complex pattern in the form of spots, it takes a lot of drawing time. In this case, the fluctuation of the beam current cannot be ignored, and due to the fluctuation of the beam current,
With amplification based on the gain of the amplifier adjusted before pattern writing, it may not be possible to obtain a mark information signal strong enough to perform each of the above measurements.
本発明はこの様な問題を解決する事を目的としたもので
ある。The present invention is aimed at solving such problems.
[問題点を解決するための手段]
そこで本発明は、パターン描画前に、荷電ビーム電流の
初期値(Ic)を測定し、且、材料上に設けられたマー
ク上を荷電ビームで走査し、該走査により得られたマー
ク情報信号の強度が基準値になる様にマーク情報信号を
増幅する為のアンプの初期利得(Go )を設定してお
ぎ、パターン描画中の適宜時期に、荷電ビーム電流値(
I)を測定し、鎖端(I)と前記初期値(■0)の比(
■/I0)と前記アンプの初期利得(G0)の積に対応
した値に該アンプの利得を設定する事により、荷電ビー
ムで走査によるマーク情報信号の強度が基準値になる様
にした。[Means for solving the problem] Therefore, the present invention measures the initial value (Ic) of the charged beam current before pattern drawing, and scans the mark provided on the material with the charged beam, The initial gain (Go) of the amplifier for amplifying the mark information signal is set so that the intensity of the mark information signal obtained by the scanning becomes the reference value, and the charged beam current is adjusted at appropriate times during pattern drawing. value(
I) and the ratio of the chain end (I) to the initial value (■0) (
(2) By setting the gain of the amplifier to a value corresponding to the product of /I0) and the initial gain (G0) of the amplifier, the intensity of the mark information signal obtained by scanning with the charged beam becomes the reference value.
[実施例]
第1図は本発明の荷電ビーム描画におけるマーり情報信
号処理方法の一実施例として示したマーク情報信号処理
機構の概略図である。[Embodiment] FIG. 1 is a schematic diagram of a mark information signal processing mechanism shown as an embodiment of the mark information signal processing method in charged beam lithography of the present invention.
図中1は電子銃、2は該電子銃からの電子ビームを材料
3上に集束させる為のレンズ、4は該ビームで材料上を
走査させる為の偏向器、5は該材料を載置したステージ
、6は該ステージの一部分に取付けられたファラデイー
カップ、7はアナログ電流値をデジタル電流値に変換す
る機能を持つ電流計、8は電子計算機の如き制御装置、
9は該制御装置の指令により作動を開始し、DA変換器
10及びアンプ11を介して前記偏向器4に走査信号を
供給する走査クロック発生回路である。12A、12B
は反射電子検出器、13A、13Bは電流値を電圧値に
変換する電流電圧変換器、14は加算回路、15は前記
制御装置8からの指令により利1ワが制御されるアンプ
、16はDA変換器、17はAD変換器、18は波形メ
モリである。In the figure, 1 is an electron gun, 2 is a lens for focusing the electron beam from the electron gun onto the material 3, 4 is a deflector for scanning the material with the beam, and 5 is the material placed on it. A stage, 6 a Faraday cup attached to a part of the stage, 7 an ammeter with a function of converting an analog current value into a digital current value, 8 a control device such as an electronic computer,
Reference numeral 9 denotes a scanning clock generation circuit which starts operating in response to a command from the control device and supplies a scanning signal to the deflector 4 via a DA converter 10 and an amplifier 11. 12A, 12B
1 is a backscattered electron detector; 13A and 13B are current-voltage converters that convert current values into voltage values; 14 is an addition circuit; 15 is an amplifier whose gain is controlled by a command from the control device 8; and 16 is a DA. Converter, 17 is an AD converter, and 18 is a waveform memory.
先ず、パターン描画前に、制御装置8の指令でステージ
駆動機構(図示せず)によりファラデイーカップ6が光
軸上に来る様にステージ5を移動させ、レンズ2により
集束されたビームを該ファラデイーカップで捕える。該
カップで捕えられたビームの電流値(I0)は電流計7
によりデジタル電流値に変換され制御装置8に送られる
。該制m+装置8は該電流値(I0)をビーム電流の初
期値として記憶する。次に、該制御装置8の指令でステ
ージ駆動機構(図示せず)により材料上に付された成る
1つのマークMが光軸上に来る様ステージ5を移動させ
る。そして、該制御装置の指令で走査クロック発生回路
9を作動させ、該走査クロック発生回路9からの走査信
号を偏向器4に供給し、マーク上をビームで走査させる
。該走査により、マークMから発生した反射電子は反射
電子検出器12A、12Bにより検出される。第2図(
a)、(b)は夫々該反射電子検出器の出力波形である
。該各検出器の出力(電流値)は夫々電流電圧変換器1
3A、13Bにより電圧値に変換され、加算回路14に
送られ、ここで加算される。First, before pattern writing, the stage 5 is moved by a stage drive mechanism (not shown) in accordance with a command from the control device 8 so that the Faraday cup 6 is on the optical axis, and the beam focused by the lens 2 is directed to the Faraday cup. Catch it in a day cup. The current value (I0) of the beam captured by the cup is measured by the ammeter 7.
The current value is converted into a digital current value and sent to the control device 8. The control m+ device 8 stores the current value (I0) as the initial value of the beam current. Next, in response to a command from the control device 8, the stage 5 is moved by a stage drive mechanism (not shown) so that one mark M made on the material is on the optical axis. Then, the scanning clock generating circuit 9 is operated according to a command from the control device, and the scanning signal from the scanning clock generating circuit 9 is supplied to the deflector 4, so that the mark is scanned with a beam. Through this scanning, reflected electrons generated from the mark M are detected by the reflected electron detectors 12A and 12B. Figure 2 (
a) and (b) are the output waveforms of the backscattered electron detector, respectively. The output (current value) of each detector is converted to a current voltage converter 1.
3A and 13B are converted into voltage values, sent to the adder circuit 14, and added there.
第2図(C)は該加算回路の出力波形である。該加算回
路の出力はアンプ15により増幅され、更にAD変換器
17を介して波形メモリ18に送られる。前記制御装置
8には予め、マークからの反射電子の強度が、材料の位
置合せ、移動台の傾ぎの測定、ビーム偏向歪みの補正の
為の測定、重ね合せ精度の測定等の測定を充分に行ない
得る程度の強度値が基準値として設定されており、該制
御装置8は該波形メモリが記憶した加算信号のピーク値
(第2図(C)のPに対応)が基準値になる様に前記ア
ンプ15の利得を設定する為の信号をDA変換器16を
介して該アンプ15に送る。そして、該アンプ15の利
得をこの状態に維持して、パターン描画等が行なわれる
。又、この様に設定した利得の初期値(Go )を表す
信号は制御装置8の内部メモリに記憶される。FIG. 2(C) shows the output waveform of the adder circuit. The output of the adder circuit is amplified by an amplifier 15 and further sent to a waveform memory 18 via an AD converter 17. The control device 8 is programmed in advance to ensure that the intensity of the reflected electrons from the mark is sufficient for measurements such as alignment of materials, measurement of tilt of the moving table, measurement for correction of beam deflection distortion, and measurement of overlay accuracy. An intensity value as high as possible is set as a reference value, and the control device 8 sets the peak value of the added signal stored in the waveform memory (corresponding to P in FIG. 2(C)) as the reference value. A signal for setting the gain of the amplifier 15 is sent to the amplifier 15 via a DA converter 16. Then, pattern drawing and the like are performed while maintaining the gain of the amplifier 15 in this state. Further, a signal representing the initial value (Go) of the gain set in this way is stored in the internal memory of the control device 8.
さて、予め決めたフィールド数或いはチップ数の描画毎
、又は予め決めた時間毎に、制御装置8の指令でステー
ジ駆動l!m<図示せず)によりファラデイーカップ6
が光軸上に来る様にステージ5を移動させ、レンズ2に
より集束されたビームを該ファラデイーカップで捕える
。該カップで捕えられたビームの電流値(I)は電流計
7によりデジタル電流値に変換され制御装置8に送られ
る。Now, every time a predetermined number of fields or chips are drawn, or every predetermined time, the stage is driven by a command from the control device 8! Faraday cup 6 by m<not shown)
The stage 5 is moved so that the beam is on the optical axis, and the beam focused by the lens 2 is captured by the Faraday cup. The current value (I) of the beam captured by the cup is converted into a digital current value by an ammeter 7 and sent to a control device 8.
該制御装置8は該電流値(Nとパターン描画前に記憶し
たビーム電流の初期値(I0)の比(■/[0)を求め
、該求められた比と前記アンプの利得の初期値<Go
)との積を算出する。そして、該算出された積値(f/
I0)・Goを表す信号を新たな利得を設定する為の信
号としてDA変換器16を介して該アンプ15に送る。The control device 8 calculates the ratio (■/[0) of the current value (N) and the initial value (I0) of the beam current stored before pattern writing, and calculates the ratio between the calculated ratio and the initial value of the gain of the amplifier < Go
). Then, the calculated product value (f/
A signal representing I0).Go is sent to the amplifier 15 via the DA converter 16 as a signal for setting a new gain.
該新たな利得設定信号の供給により、ビーム電流値の変
動分を補正すべく前記した分アンプ15の利(7が変え
られる事になる。而して、該再設定後、マーク検出によ
る成る測定が行なわれた場合、電子ビーム走査により反
射電子検出器12A、12Bで検出され、電流電圧変換
器13A、13Bを介して加算回路で加算されたマーク
からの情報信号は、該アンプ15により基準の強度にな
る様に増幅され、波形メモリ18に記憶されるので、マ
ーク検出による材料の位置合せ、重ね合せ精度の測定等
の測定が充分に行ない得る。この様な測定は、制御装置
8が該波形メモリ18に記憶されたマーク情報信号(第
3図(C)に対応した波形の信号)の例えばエツジ部(
第3図(C)の11.12の強度値となる部分に対応)
の位置データを選択し、該位置データに基づいて決定さ
れるマーク位置に基づいて行なわれる。By supplying the new gain setting signal, the gain (7) of the amplifier 15 is changed by the amount described above in order to correct the variation in the beam current value.Thus, after the resetting, the measurement by mark detection is performed. When this is performed, the information signals from the marks detected by the backscattered electron detectors 12A and 12B by electron beam scanning and added by the adder circuit via the current-voltage converters 13A and 13B are converted to the reference signal by the amplifier 15. Since the waveform is amplified to a high intensity and stored in the waveform memory 18, it is possible to perform measurements such as material alignment by mark detection and overlay accuracy measurement. For example, the edge portion (
Corresponds to the part with the intensity value of 11.12 in Figure 3 (C))
position data is selected, and the mark position is determined based on the position data.
所で、前記パターン描画前にアンプ15の利得の初期設
定について以下に付言する。By the way, an additional comment will be made below regarding the initial setting of the gain of the amplifier 15 before the pattern drawing.
即ち、該アンプの利得はビーム電流とマークの性質に依
存する。そこで、前記制御装置8は、IOを荷電ビーム
電流の初期値、Csをマークの種類、即ち、マークが凸
状マークか段差マークかによる補正係数、C2をマーク
の形状による補正係数、Go’−を利得設定値とした時
に、該利得設定値Go′を以下の式に基づいて演算し、
該値に従ってアンプの利得を初M設定する。That is, the gain of the amplifier depends on the beam current and the nature of the mark. Therefore, the control device 8 sets IO to the initial value of the charged beam current, Cs to a correction coefficient depending on the type of mark, that is, whether the mark is a convex mark or a step mark, C2 to a correction coefficient depending on the shape of the mark, and Go'- When the gain setting value is set as the gain setting value, the gain setting value Go' is calculated based on the following formula,
The gain of the amplifier is initially set M according to the value.
Go −= (C+ ・Cz / (Io ・10
’ ))/H。Go −= (C+ ・Cz / (Io ・10
'))/H.
3 1.13
[但し、N=Cl−C2/(3・IO・10G)尚、マ
ークが白土マークの時には該マーク自身の材質が材料の
材質とは異なっているので、マークの材質による補正係
数C3が前記式に加わる。3 1.13 [However, N = Cl-C2/(3・IO・10G) When the mark is a white clay mark, the material of the mark itself is different from the material of the material, so the correction coefficient depending on the material of the mark C3 is added to the above equation.
即ち、上記式のC1・C2の部分が全てC0・C2・C
3となる。That is, the C1 and C2 parts of the above formula are all C0, C2, and C.
It becomes 3.
尚、本発明のマーク検出方法はイオンビームを使用した
イオンビーム描画装置等においてマーク検出する場合に
も使用出来る。Note that the mark detection method of the present invention can also be used to detect marks in an ion beam writing apparatus using an ion beam.
又、前記実施例の様に、凸状マークの場合は2つの反射
電子検出器の和を取っているが、第3図の様に段差マー
クの場合には、2つの反射電子検出器の差を取る。Also, as in the above embodiment, in the case of a convex mark, the sum of the two backscattered electron detectors is calculated, but in the case of a step mark as shown in Fig. 3, the difference between the two backscattered electron detectors is calculated. I take the.
[発明の効果]
本発明では適宜時間毎にマーク情報信号を増幅するアン
プの利得を、マーク情報信号の強度が基準値になる様に
再設定しているので、経時的にビーム電流値が変動して
も、基準強度のマーク情報信号が得られ、その為、マー
ク検出に基づく各種測定が正確に出来る。[Effects of the Invention] In the present invention, the gain of the amplifier that amplifies the mark information signal is reset at appropriate time intervals so that the strength of the mark information signal becomes the reference value, so the beam current value does not fluctuate over time. Even if the mark information signal has a reference intensity, a mark information signal with a reference intensity can be obtained, and therefore various measurements based on mark detection can be performed accurately.
第1図は本発明の荷電ビーム描画におけるマーク情報信
号処理方法の一実施例を示す為のマーク情報信号処理機
構の概略図、第2図は信号波形図、第3図は段差マーク
を示したものである。
1:電子銃 2:レンズ 3:材料4:偏向器
5ニスデージ 6:ファラデイーカップ 7:電流
計 8:制御装置9:走査クロック発生回路 10
:DA変換器11:アンプ 12A、12B:反射電
子検出器 13A、138:電流電圧変換器14:
加算回路 15:アンプ 16:DA変換器
17:AD変換器 18:波形メモリ M:マークFig. 1 is a schematic diagram of a mark information signal processing mechanism to show an embodiment of the mark information signal processing method in charged beam lithography of the present invention, Fig. 2 is a signal waveform diagram, and Fig. 3 shows a step mark. It is something. 1: Electron gun 2: Lens 3: Material 4: Deflector
5 varnish stage 6: Faraday cup 7: ammeter 8: control device 9: scanning clock generation circuit 10
: DA converter 11: Amplifier 12A, 12B: Backscattered electron detector 13A, 138: Current voltage converter 14:
Adder circuit 15: Amplifier 16: DA converter
17: AD converter 18: Waveform memory M: Mark
Claims (1)
0)を測定し、且つ材料上に設けられたマーク上を荷電
ビームで走査し、該走査により得られたマーク情報信号
の強度が基準値になる様にマーク情報信号を増幅する為
のアンプの初期利得(G_0)を設定しておき、パター
ン描画中の適宜時期に、荷電ビーム電流値(I)を測定
し、該値(I)と前記初期値(I_0)の比(I/I_
0)と前記アンプの初期利得(G_0)の積に対応した
値に該アンプの利得を設定する事により、荷電ビーム走
査によるマーク情報信号の強度が基準値になる様にした
荷電ビーム描画におけるマーク情報信号処理方法。 2、前記パターン描画前にアンプの初期利得を設定する
際、I_0を荷電ビーム電流の初期値、C_1をマーク
の種類による補正係数、C_2をマークの形状による補
正係数、G_0′を初期利得設定値とした時に、該初期
利得設定値G_0′を以下の式に基づいて演算し、該値
に従つてアンプの初期利得を設定した前記特許請求の範
囲第1項記載の荷電ビーム描画におけるマーク情報信号
処理方法。 G_0′={C_1・C_2/(I_0・10^6)}
/(3^N・1.13) [但し、N=C_1・C_2/(3・I_0・10^6
)][Claims] 1. Before pattern writing, the initial value of the charged beam current (I_
0), scans the mark provided on the material with a charged beam, and amplifies the mark information signal so that the intensity of the mark information signal obtained by the scanning becomes the reference value. The initial gain (G_0) is set, the charged beam current value (I) is measured at an appropriate time during pattern writing, and the ratio (I/I_0) of this value (I) and the initial value (I_0) is determined.
0) and the initial gain (G_0) of the amplifier so that the intensity of the mark information signal by charged beam scanning becomes the reference value. Information signal processing method. 2. When setting the initial gain of the amplifier before drawing the pattern, I_0 is the initial value of the charged beam current, C_1 is a correction coefficient depending on the type of mark, C_2 is a correction coefficient depending on the shape of the mark, and G_0' is the initial gain setting value. , the initial gain setting value G_0' is calculated based on the following formula, and the initial gain of the amplifier is set according to the calculated value. Processing method. G_0'={C_1・C_2/(I_0・10^6)}
/(3^N・1.13) [However, N=C_1・C_2/(3・I_0・10^6
)]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28966186A JPS63142633A (en) | 1986-12-04 | 1986-12-04 | Processing method for mask information signal in charged beam lithography |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28966186A JPS63142633A (en) | 1986-12-04 | 1986-12-04 | Processing method for mask information signal in charged beam lithography |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63142633A true JPS63142633A (en) | 1988-06-15 |
Family
ID=17746117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28966186A Pending JPS63142633A (en) | 1986-12-04 | 1986-12-04 | Processing method for mask information signal in charged beam lithography |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63142633A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018113371A (en) * | 2017-01-12 | 2018-07-19 | 株式会社ニューフレアテクノロジー | Charged particle beam lithography apparatus and charged particle beam lithography method |
-
1986
- 1986-12-04 JP JP28966186A patent/JPS63142633A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018113371A (en) * | 2017-01-12 | 2018-07-19 | 株式会社ニューフレアテクノロジー | Charged particle beam lithography apparatus and charged particle beam lithography method |
CN108305825A (en) * | 2017-01-12 | 2018-07-20 | 纽富来科技股份有限公司 | Charged particle beam drawing apparatus and charged particle beam plotting method |
CN108305825B (en) * | 2017-01-12 | 2020-07-10 | 纽富来科技股份有限公司 | Charged particle beam lithography apparatus and charged particle beam lithography method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0225969B1 (en) | Apparatus and method for controlling irradiation of electron beam at fixed position in electron beam tester system | |
JPS59163506A (en) | Electronic beam measuring device | |
JPH03108312A (en) | Correction of astigmatism of charged particle beam | |
JPH0513037A (en) | Charged particle beam device and control thereof | |
JPS5621321A (en) | Automatically setting method of focus and exposure coefficient of electron beam exposure apparatus | |
JPS63142633A (en) | Processing method for mask information signal in charged beam lithography | |
JPH03138842A (en) | Electron beam drawing device with beam shape correcting device | |
JP2891515B2 (en) | Electron beam length measurement method | |
JPS62183514A (en) | Ion beam lithography equipment | |
JPS63187627A (en) | Automatic focusing method for charged particle beam aligner | |
JPS5891638A (en) | Method for electron beam exposure | |
JPS6320015B2 (en) | ||
JPH0417250A (en) | Electron beam device | |
JPH1050244A (en) | Beam detection signal processing circuit | |
JPH02189848A (en) | Charged particle beam device and method of acquiring image signal therewith | |
JPH07272994A (en) | Signal detection method for charged particle beam lithography equipment | |
JPH02215120A (en) | Distortion correction in charged particle beam lithography | |
JPS63100362A (en) | Material inspecting method | |
JPH02158045A (en) | Electron beam control device | |
JPS60178625A (en) | Charged-particle beam on detection of mark in charged- particle beam drawing device | |
JPH0212379B2 (en) | ||
JPH07249556A (en) | Mark detecting method in charged particle beam drawing device | |
JPS63247602A (en) | Position detector | |
JPS62137978A (en) | Automatic beam alignment adjustment in television image pickup tube | |
JPS62162328A (en) | Charged particle beam exposure equipment |