JPS63142109A - Antifouling apparatus for structure in contact with sea water - Google Patents

Antifouling apparatus for structure in contact with sea water

Info

Publication number
JPS63142109A
JPS63142109A JP28929286A JP28929286A JPS63142109A JP S63142109 A JPS63142109 A JP S63142109A JP 28929286 A JP28929286 A JP 28929286A JP 28929286 A JP28929286 A JP 28929286A JP S63142109 A JPS63142109 A JP S63142109A
Authority
JP
Japan
Prior art keywords
antifouling
metal
seawater
anode
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28929286A
Other languages
Japanese (ja)
Inventor
Kenji Ueda
健二 植田
Terumi Hibi
日比 輝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28929286A priority Critical patent/JPS63142109A/en
Publication of JPS63142109A publication Critical patent/JPS63142109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To obtain an antifouling effect for long periods by application of electric current to an antifouling metal and electrode by a power source. CONSTITUTION:An antifouling metal 3 composed of Cu or Cu alloy is fit on the surface of a structure in contact with sea water, and an anode 4 is immersed in sea water. DC current is intermittently supplied between the metal 3 and the anode 4 by a control mechanism provided for a power source device 7. Antifouling effects can thus be obtained for long periods.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は船舶、海洋構造物、海中構造物、火力発電所取
水口、岸壁等の海水に接する構造物への海生物付着に対
する防汚装置の改良に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides an antifouling device for preventing marine organisms from adhering to structures in contact with seawater, such as ships, marine structures, underwater structures, thermal power plant water intakes, and quay walls. Regarding improvements.

〔従来の技術〕[Conventional technology]

従来、海水に接する構造物への海生物付着に対する防汚
手段としては、例えば、構造物の接木部分に銅系防汚塗
料を塗装する技術や、構造物の接木部分に銅又は銅合金
からなる防汚金属を被覆する技術が知られている。これ
らはいずれも、防汚塗料や防汚金属から、海生物の付着
を防止する有効成分、すなわち銅イオン等を溶出させる
ものである。
Conventionally, antifouling means for preventing marine organisms from adhering to structures that come into contact with seawater include, for example, the technique of painting the grafted parts of structures with copper-based antifouling paint, and the technique of painting the grafted parts of structures with copper or copper alloy. Techniques for coating antifouling metals are known. All of these elute active ingredients that prevent marine organisms from adhering, such as copper ions, from antifouling paints and antifouling metals.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、防汚塗料を用いる技術では、銅イオン等の溶出
速度が経時的に低下するため、1〜2年程度で防汚塗料
の塗り替えが必要となる。このため、特にメンテナンス
の国難な海洋構造物、海中構造物の防汚手段として有効
であるとはいえない。
However, in the technique using an antifouling paint, the elution rate of copper ions and the like decreases over time, so the antifouling paint needs to be repainted every 1 to 2 years. For this reason, it cannot be said that it is particularly effective as an antifouling means for marine structures and underwater structures, which are a national problem to maintain.

一方、防汚金属を用いる技術でも、防汚金属の表面に徐
々に酸化物被膜が形成され、銅イオン等の溶出が阻害さ
れるため、防汚有効期間は1年程度であり、前者の技術
と同様な問題がある。
On the other hand, even with the technology that uses antifouling metal, an oxide film is gradually formed on the surface of the antifouling metal, which inhibits the elution of copper ions, etc., so the antifouling effective period is about one year. There is a similar problem.

このうち防汚金属を用いた場合にその表面に酸化物被膜
が形成されるのは1例えば以下の■〜14)式に示すよ
うな機構によるものと考えられる。
Among these, when an antifouling metal is used, the formation of an oxide film on its surface is thought to be due to mechanisms such as those shown in equations (1) to (14) below, for example.

2Cu →2Cu” +2e           −
・−■2Cu” +4C1″″−2CuC12−”’■
2CuCJL2−+H20Cu2O+4C4−+2H÷
 ・・・(10〜0式をまとめると、全反応は、 2Cu+H20→Cu2O+2H”+2e     −
・・■となる。
2Cu →2Cu” +2e −
・-■2Cu"+4C1""-2CuC12-"'■
2CuCJL2-+H20Cu2O+4C4-+2H÷
...(Summarizing equations 10-0, the total reaction is 2Cu+H20→Cu2O+2H"+2e -
... becomes ■.

このように防汚金属表面にCu2Oが生成し。In this way, Cu2O is generated on the antifouling metal surface.

これが蓄積すると、Cuイオンの溶出速度が低下する。When this accumulates, the elution rate of Cu ions decreases.

このため、構造体表面での海生物の付着を許容するよう
になる。そして、海生物が付着すると、より一層Cuイ
オンの溶出を阻害するため。
This allows marine organisms to adhere to the surface of the structure. Moreover, when marine organisms adhere, the elution of Cu ions is further inhibited.

加速度的に海生物の付着を抑制する機能が低下する。The ability to suppress the adhesion of marine organisms is decreasing at an accelerating rate.

更に、Cu2Oが不均一な厚みで形成されると、位置に
よってCuイオンの溶出速度に差が生じる。また、Cu
2Oが全く形成されないところでは局所溶出等が生じる
ようになる。このような現象が生じると、防汚金属の破
孔が促進され、#久性を損なうので好ましくない。
Furthermore, when Cu2O is formed with a non-uniform thickness, the elution rate of Cu ions varies depending on the position. Also, Cu
Local elution and the like will occur where 2O is not formed at all. If such a phenomenon occurs, pores in the antifouling metal will be promoted and the durability will be impaired, which is undesirable.

本発明は上記問題点を解決するためになされたものであ
り、海生物の付着を長期間にわたって抑制することがで
き、しかも防汚金属の破孔を防止することもできる海氷
に接する構造物の防汚装置を提供することを目的とする
The present invention has been made to solve the above problems, and provides a structure in contact with sea ice that can suppress the adhesion of marine organisms over a long period of time and can also prevent holes in antifouling metal. The purpose is to provide an antifouling device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の海水に接する構造物の防汚装置は、海水に接す
る構造物の表面に被覆された銅又は銅合金からなる防汚
金属と、この防汚金属と対向して海水に浸漬された陽極
と、上記防汚金属と陽極との間の直流電流の通電を間欠
的に行なう制御機構を有する電源装置とを具備したこと
を特徴とするものである。
The antifouling device for structures in contact with seawater of the present invention includes an antifouling metal made of copper or copper alloy coated on the surface of the structure in contact with seawater, and an anode immersed in seawater facing the antifouling metal. and a power supply device having a control mechanism for intermittently passing a direct current between the antifouling metal and the anode.

本発明において、陽極としては、チタン若しくはタンタ
ル等の基体表面に白金等の貴金属を被覆したもの、又は
不溶性の鉛銀合金若しくは高珪素鋳鉄等からなるものを
挙げることができる。
In the present invention, examples of the anode include those in which the surface of a substrate such as titanium or tantalum is coated with a noble metal such as platinum, or those made of insoluble lead-silver alloy or high-silicon cast iron.

〔作用〕[Effect]

このような防汚装置によれば、防汚金属と陽極との間に
直流電流を通電していない時には、防汚金属から銅イオ
ンが溶出して海生物の付着を抑制する。ただし、この間
に防汚金属表面には酸化物(Cu 20)が生成する。
According to such an antifouling device, when a direct current is not flowing between the antifouling metal and the anode, copper ions are eluted from the antifouling metal to suppress the adhesion of marine life. However, during this time, oxide (Cu 20) is generated on the antifouling metal surface.

一方、防汚金属と陽極との間に直流電流を通電している
時には、下記0式に従ってCu2Oが還元され、防汚金
属表面が再生される。
On the other hand, when direct current is flowing between the antifouling metal and the anode, Cu2O is reduced according to the following equation 0, and the antifouling metal surface is regenerated.

Cu2O+2H” +2e →2Cu+H20・−・■
そして、直流電流の通電を停止すると、初期のように銅
イオンが溶出する。したがって、長期間にわたって海生
物の付着を抑制することができ、しかも防汚金属の破孔
を防止することができる。
Cu2O+2H” +2e →2Cu+H20・−・■
Then, when the direct current is stopped, copper ions are eluted as in the initial stage. Therefore, it is possible to suppress the adhesion of marine organisms over a long period of time, and it is also possible to prevent holes in the antifouling metal.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る防汚装置の概略構成図である。第
1図において、海水lには海洋構造物の外板を構成する
鋼材2が、その接水面に銅又は銅合金からなる防汚金属
3がクラッドされた状態で浸漬されている。また、海水
2には上記防汚金属3に対向するように、チタン基材上
に白金をコーティングした陽極4が浸漬されている。上
記鋼材2と陽極4との間には、直流電源5及びスイッチ
6からなる電源装置7が、鋼材2がマイナス側。
FIG. 1 is a schematic configuration diagram of an antifouling device according to the present invention. In FIG. 1, a steel material 2 constituting the outer panel of an offshore structure is immersed in seawater 1, with its water contact surface clad with an antifouling metal 3 made of copper or a copper alloy. Further, an anode 4 made of a titanium base material coated with platinum is immersed in the seawater 2 so as to face the antifouling metal 3. Between the steel material 2 and the anode 4, there is a power supply device 7 consisting of a DC power source 5 and a switch 6, with the steel material 2 on the negative side.

陽極4がプラス側となるように、リード線8.9により
接続されている。そして、スイッチ6をオンにして通電
すると、陽極4から防汚金属3の方向へ電流lOが流れ
る。
The anode 4 is connected by a lead wire 8.9 so as to be on the positive side. Then, when the switch 6 is turned on and energized, a current lO flows from the anode 4 toward the antifouling metal 3.

上記防汚装置を用い、スイッチ6のオン−オフを繰返し
て防汚金属3−陽極4間の直流電流の通電を間欠的に行
なう、この結果、第2図に示すように不通電時T1、T
3、・・・には電流は流れず、通電時T、、T、、・・
・には所定の電流密度(1/S)で電流が魔れる。なお
、Iは電流(1) 、 Sは接木面積(cm2)である
Using the antifouling device, the switch 6 is repeatedly turned on and off to intermittently energize the direct current between the antifouling metal 3 and the anode 4. As a result, as shown in FIG. T
3. No current flows through T,, T,,... when energized.
・The current is distorted at a predetermined current density (1/S). In addition, I is a current (1), and S is a grafted area (cm2).

そして、通電時には防汚金属3から銅イオンが溶出して
海生物の付着を抑制する。ただし、この間に防汚金属3
表面には徐々にCu2Oが生成する。一方、通電時には
防汚金属表面が陰分極されてCu2Oが還元され、防汚
金属3表面が再生されて裸金属に近い状態となる。この
結果、次の不通電時には、初期のように銅イオンが溶出
する。
When electricity is applied, copper ions are eluted from the antifouling metal 3 to suppress the adhesion of sea creatures. However, during this time, the antifouling metal 3
Cu2O is gradually generated on the surface. On the other hand, when electricity is applied, the surface of the antifouling metal is cathodically polarized and Cu2O is reduced, and the surface of the antifouling metal 3 is regenerated to a state close to that of bare metal. As a result, at the next power-off, copper ions are eluted as in the initial stage.

実際に、防汚金属として90/1Ocu−Ni合金を用
い、第1図図示の防汚装置を構成した場合(実施例)と
、構造物の鋼材表面に上記と同じ防汚金属をクラッドし
、これを単に海水に浸漬した場合(比較例)とで、防汚
金属の溶解速度の経時変化を電気化学的微小分極抵抗法
により追跡した結果を第3図に示す、なお、実験条件は
海水の流速を 0.2m/Sとし、実施例ではT s 
/ T 2 =0.2、電流密度0.IA/m”として
行なった。また、第3図において、縦軸のR1は防汚金
属表面の分極抵抗であり、1 / R,と溶解速度とが
比例する。すなわち、R1の値が大きいほど溶解速度が
小さいことを意味する。
Actually, when the antifouling device shown in FIG. 1 was constructed using 90/1 Ocu-Ni alloy as the antifouling metal (example), and when the same antifouling metal as above was clad on the steel surface of the structure, Figure 3 shows the results of tracking the change in the dissolution rate of the antifouling metal over time by electrochemical micropolarization resistance method when it was simply immersed in seawater (comparative example). The flow velocity was 0.2 m/S, and in the example, T s
/ T 2 =0.2, current density 0. In Fig. 3, R1 on the vertical axis is the polarization resistance of the antifouling metal surface, and 1/R is proportional to the dissolution rate.In other words, the larger the value of R1, the more This means that the dissolution rate is low.

第3図から明らかなように、比較例では時間とともに溶
解速度が低下するのに対し、実施例+は長時間にわたっ
て初期の溶解速度がほぼ維持されていることがわかる。
As is clear from FIG. 3, the dissolution rate of Comparative Example decreases with time, whereas the initial dissolution rate of Example + is almost maintained over a long period of time.

以上のように長期間にわたってCuイオンを溶出させる
ことができるので、海生物の付着を有効に抑制すること
ができ、しかも防汚金属の破孔を防止することができる
As described above, since Cu ions can be eluted over a long period of time, adhesion of marine organisms can be effectively suppressed, and pores in the antifouling metal can be prevented.

なお、T□、T2、I/Sは季節、海生物の種類(その
銅イオンに対する抵抗性)、海水の流動状態等に応じて
適宜設定される。
Note that T□, T2, and I/S are appropriately set depending on the season, the type of marine organisms (their resistance to copper ions), the flow state of seawater, and the like.

次に、本発明に係る防汚装置の他の実施例を第4図を参
照して説明する。第4図において、海水lには海洋構造
物の外板を構成する鋼材2が、その接水面に銅又は銅合
金からなる防汚金属3がクラッドされた状態で浸漬され
ている。また、海水2には上記防汚金属3に対向するよ
うに、チタン基村上に白金をコーティングした陽極4が
浸漬されている。上記鋼材2と陽極4との間には、直流
電流出力器11がリード線12.13により接続されて
いる。この直流電流出力器11には電位制御器14がリ
ード線15により接続されている。
Next, another embodiment of the antifouling device according to the present invention will be described with reference to FIG. 4. In FIG. 4, a steel material 2 constituting the outer panel of an offshore structure is immersed in seawater 1, with its water contact surface clad with an antifouling metal 3 made of copper or copper alloy. Further, an anode 4 having a titanium substrate coated with platinum is immersed in the seawater 2 so as to face the antifouling metal 3. A DC current output device 11 is connected between the steel material 2 and the anode 4 by lead wires 12 and 13. A potential controller 14 is connected to the DC current output device 11 by a lead wire 15.

また、防汚金属3の近傍には塩化銀、硫酸銅、亜鉛等か
らなる基準電極16が設けられ、上記電位制御器14と
防汚金属3とはリード線17により接続され、電位制御
器14と基準電極16とはリード線18により接続され
ている。そして1通電時には陽極4から防汚金属3の方
向へ電流19が流れる。
Further, a reference electrode 16 made of silver chloride, copper sulfate, zinc, etc. is provided near the antifouling metal 3, and the potential controller 14 and the antifouling metal 3 are connected by a lead wire 17. and the reference electrode 16 are connected by a lead wire 18. When one current is applied, a current 19 flows from the anode 4 toward the antifouling metal 3.

この防汚装置では、電位制御器14により防汚金属3の
電位が、第2図に示したのと同様に期間T1ではElに
、期間T2ではElに、・・・というように間欠的に変
化するようプログラムされている。上記E1の値は防汚
金属3の浸漬初期の裸状態の電位に、Elの値はElの
値より−200〜−300mV程度卑な電位に設定され
ている。この場合、ElをElよりも大幅に卑な値にす
ると海水中の硬度成分(CaCO3やMg(OH)2)
が金属表面に析出し、防汚金属3からの銅イオンの溶出
を阻害するので好ましくない、そして、基準電極16と
防汚金属3との間の電位差Exに対して、 期間TI      (El−El)=ΔE1期間T2
     (Ex−El)xΔE2で表わされるΔEt
及びΔE2をそれぞれ0にするように(Elをそれぞれ
El、Elに一致させるように)、直流電波出力器11
から防汚金属3へ電流工を流入させる。このような防汚
?を置で1士 防汚金属の霊位をItiJ制御しで裏面
卿化物の口〒を正確に制御することができる。
In this antifouling device, the potential of the antifouling metal 3 is intermittently adjusted by the potential controller 14 to El in period T1, to El in period T2, etc., as shown in FIG. programmed to change. The value of E1 is set to the potential of the bare state of the antifouling metal 3 at the initial stage of immersion, and the value of El is set to a potential that is about -200 to -300 mV less noble than the value of El. In this case, if El is made much baser than El, the hardness components (CaCO3 and Mg(OH)2) in seawater
is deposited on the metal surface and inhibits the elution of copper ions from the antifouling metal 3, which is undesirable. ) = ΔE1 period T2
ΔEt expressed as (Ex-El)xΔE2
and ΔE2 to 0 (so that El matches El and El, respectively), the DC radio wave output device 11
The electric current flows into the antifouling metal 3 from there. Antifouling like this? By placing it, you can precisely control the mouth of the monster on the back by controlling the spirit position of the antifouling metal with ItiJ.

ただし、Elの値によっては防汚金属3から銅イオンを
゛強制的辷溶出させることがあり、この場合はCu2O
の生成も速く、局部溶解を併発することがある。したが
って1局部溶解を防止するためにT、、”r、のシーケ
ンスを調節することが重要になる。
However, depending on the value of El, copper ions may be forcibly eluted from the antifouling metal 3, and in this case, Cu2O
Formation is also rapid, and local dissolution may occur. Therefore, it is important to adjust the sequence of T, ``r'' to prevent local dissolution.

なお、上記実施例では浮体構造体に防汚装置を取付けた
場合について説明したが、本発明の防汚装置は船舶、海
水取水口、コンデンサ氷室、岸壁等海水と接する構造体
の全てに適用することができる。また、構造体がコンク
リート製等の電気絶縁体の場合には、構造体ではなく、
防汚金属にリード線を!lc続すればよいことは自明で
ある。
In addition, although the above embodiment describes the case where the antifouling device is attached to a floating structure, the antifouling device of the present invention can be applied to all structures that come into contact with seawater, such as ships, seawater intakes, condenser ice chambers, and quays. be able to. In addition, if the structure is made of concrete or other electrical insulators, instead of the structure,
Lead wire to antifouling metal! It is obvious that it is only necessary to continue with lc.

また、本発明の防汚装置を船舶に適用した場合、タイマ
ーを用いて常に電源装置のオン−オフを繰返すだけでも
よいし、航行時には常にオン。
Furthermore, when the antifouling device of the present invention is applied to a ship, it is sufficient to simply repeatedly turn the power supply device on and off using a timer, or it is always turned on during navigation.

停泊時にオン−オフを繰返すという制御を行なってもよ
い、また、前者の場合、船速度肝に連動させて航行時に
船速が速いほどオン時間を長くするという制御を組合わ
せてもよい。
Control may be performed to repeat on-off when at anchor, or in the former case, control may be combined with control that is linked to the ship speed and increases the on time as the ship speed increases during navigation.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明の海水に接する構造体の防汚
装置によれば、防汚金属の表面が常に活性であるので長
期間にわたって防汚効果を維持することができ、また不
通電時にのみイオンの溶出が起りかつその溶出が均一で
あるので、従来と同一板厚であっても長寿命となりしか
も破孔等も生じない、更に、表面粗度が悪くならないの
で、船舶等のように表面粗度が問題になる場合にも好都
合である。
As detailed above, according to the antifouling device for structures in contact with seawater of the present invention, the surface of the antifouling metal is always active, so the antifouling effect can be maintained for a long period of time, and even when the power is turned off, the antifouling effect can be maintained for a long time. The elution of ions only occurs and the elution is uniform, so even if the plate thickness is the same as conventional ones, it has a long life and does not cause holes.Furthermore, the surface roughness does not worsen, so it can be used on ships, etc. It is also advantageous when surface roughness is an issue.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における海水に接する構造体の
防汚装置の概略構成図、第2図は同装置の防汚金属−陽
極間の通電のシーケンスを示す波形図、第3図は上記実
施例の装置及び比較例により得られる防汚金属表面の分
極抵抗の経時変化を示す特性図、第4図は本発明の他の
実施例における海水に接する構造体の防汚装置の概略構
成図である。 l・・・海水、2・・・鋼材、3・・・防汚金属、4・
・・陽極、5・・・直流電源、6・・・スイッチ、7・
・・電源装置、8.9・・・リード線、10・・・電流
、11・・・直流電流出力器、12.13・・・リード
線、14・・・電位制御器、15・・・リード線、16
・・・基準電極、17.18・・・リード線、19・・
・電流。 出願人復代理人 弁理士 鈴江武彦 第1図 −T(Hr) 第2図 第3図 1ソ 第4図
Fig. 1 is a schematic configuration diagram of an antifouling device for a structure in contact with seawater in an embodiment of the present invention, Fig. 2 is a waveform diagram showing the sequence of energization between the antifouling metal and anode of the same device, and Fig. 3 is a A characteristic diagram showing the change over time in the polarization resistance of the antifouling metal surface obtained by the apparatus of the above embodiment and the comparative example, and FIG. 4 is a schematic configuration of an antifouling apparatus for a structure in contact with seawater in another embodiment of the present invention. It is a diagram. l...seawater, 2...steel, 3...antifouling metal, 4...
...Anode, 5...DC power supply, 6...Switch, 7.
... Power supply device, 8.9... Lead wire, 10... Current, 11... DC current output device, 12.13... Lead wire, 14... Potential controller, 15... Lead wire, 16
...Reference electrode, 17.18...Lead wire, 19...
・Current. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 - T (Hr) Figure 2 Figure 3 Figure 1 So Figure 4

Claims (1)

【特許請求の範囲】[Claims] 海水に接する構造物の表面に被覆された銅又は銅合金か
らなる防汚金属と、この防汚金属と対向して海水に浸漬
された陽極と、上記防汚金属と陽極との間の直流電流の
通電を間欠的に行なう制御機構を有する電源装置とを具
備したことを特徴とする海水に接する構造物の防汚装置
An antifouling metal made of copper or copper alloy coated on the surface of a structure in contact with seawater, an anode facing the antifouling metal and immersed in seawater, and a direct current between the antifouling metal and the anode. An antifouling device for a structure in contact with seawater, comprising: a power supply device having a control mechanism for intermittently energizing the structure.
JP28929286A 1986-12-04 1986-12-04 Antifouling apparatus for structure in contact with sea water Pending JPS63142109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28929286A JPS63142109A (en) 1986-12-04 1986-12-04 Antifouling apparatus for structure in contact with sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28929286A JPS63142109A (en) 1986-12-04 1986-12-04 Antifouling apparatus for structure in contact with sea water

Publications (1)

Publication Number Publication Date
JPS63142109A true JPS63142109A (en) 1988-06-14

Family

ID=17741290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28929286A Pending JPS63142109A (en) 1986-12-04 1986-12-04 Antifouling apparatus for structure in contact with sea water

Country Status (1)

Country Link
JP (1) JPS63142109A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478482A (en) * 1990-07-23 1992-03-12 Daiki Rubber Kogyo Kk Method and device for preventing scale
JPH04313378A (en) * 1991-04-10 1992-11-05 Daiki Rubber Kogyo Kk Antifouling device
JPH06255578A (en) * 1993-03-04 1994-09-13 Ichiro Yamazaki Electrolytic corrosion preventing device for hull
JP2019508875A (en) * 2015-12-23 2019-03-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Power equipment for supplying power to load equipment and loads
JP2019509923A (en) * 2015-12-23 2019-04-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Load equipment and power equipment for supplying power to the load

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478482A (en) * 1990-07-23 1992-03-12 Daiki Rubber Kogyo Kk Method and device for preventing scale
JPH04313378A (en) * 1991-04-10 1992-11-05 Daiki Rubber Kogyo Kk Antifouling device
JPH06255578A (en) * 1993-03-04 1994-09-13 Ichiro Yamazaki Electrolytic corrosion preventing device for hull
JP2019508875A (en) * 2015-12-23 2019-03-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Power equipment for supplying power to load equipment and loads
JP2019509923A (en) * 2015-12-23 2019-04-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Load equipment and power equipment for supplying power to the load

Similar Documents

Publication Publication Date Title
US3497434A (en) Method for preventing fouling of metal in a marine environment
JPH02225574A (en) Apparatus for preventing of fouling of structure in contact with seawater
CA2092304C (en) Prevention method of aquatic attaching fouling organisms and its apparatus
JPS63142109A (en) Antifouling apparatus for structure in contact with sea water
JP4652221B2 (en) Koji growing device and kite growing structure
JPH05106070A (en) Corrosion protective method for pump
JP3386898B2 (en) Corrosion protection structure of the material to be protected
JPS6233366B2 (en)
JPS59158813A (en) Prevention from adherence of organism to structure
JPS61221382A (en) Method for preventing corrosion and contamination of steel structure sunk under sea water
JP2002302923A (en) Antifouling method and its device for seawater contact structural body
JPH05123079A (en) Underwater fence
JPS5858429B2 (en) Corrosion prevention method for steel structures in marine environment
JP4438158B2 (en) Antifouling method for concrete structure and antifouling device for seawater conduit of concrete structure
JP2505608B2 (en) Antifouling equipment for structures in contact with seawater
JP2575866B2 (en) Antifouling equipment for structures in contact with seawater
JP2518720B2 (en) Cathodic protection equipment for ships
JPH028384A (en) Stain-proofing method
JP3241179B2 (en) Anticorrosion and antifouling equipment for offshore structures
JPH0430472B2 (en)
JPH1161440A (en) Copper plated stainless steel sheet having excellent property in early generation green rust and adhesion property and its base metal as well as its production
Pushpavamam et al. Direct platinum plating on titanium substrates
JPS6344837B2 (en)
JPH0752167Y2 (en) Replaceable energizing antifouling cover for offshore structures
JPH08151617A (en) Constant-current flow type marine organism adherence preventing method and constant-current control device