JPS63141347A - Manufacture of monolithic integrated circuit - Google Patents

Manufacture of monolithic integrated circuit

Info

Publication number
JPS63141347A
JPS63141347A JP28934486A JP28934486A JPS63141347A JP S63141347 A JPS63141347 A JP S63141347A JP 28934486 A JP28934486 A JP 28934486A JP 28934486 A JP28934486 A JP 28934486A JP S63141347 A JPS63141347 A JP S63141347A
Authority
JP
Japan
Prior art keywords
impurity region
resistance
openings
resistance element
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28934486A
Other languages
Japanese (ja)
Inventor
Shiyuusei Tago
多胡 州星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28934486A priority Critical patent/JPS63141347A/en
Publication of JPS63141347A publication Critical patent/JPS63141347A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Bipolar Transistors (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To improve yield and to decrease the days required for manufacturing by a method wherein a monitoring resistance element equipped with two openings or more is provided on an insulating film on an impurity region and the resistance value of the element is determined prior to a wiring process. CONSTITUTION:A P-type impurity region 11 is formed on a primary surface of a semiconductor substrate whereon an N-type epitaxial layer has been grown. Openings 12 and 13 are selectively provided in an insulating film covering the P-type impurity region 11, and platinum silicide is formed in the openings 12 and 13, and a probe is applied to the openings 12 and 13 for measuring resistance. After the measurement, wirings are provided only on substrates whose resistance falls in a specified range of values. A monitoring resistance element impurity region width W1 and length L1 are so designed as to be equal to the width and length, respectively, of an circuit internal resistance element to be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明にモノリシック乗積回路、45+にバイポーラト
ランジスタを含むゲートアレイ型マスタスライス式モノ
リシック集積回路(以下、ゲートアレイと記す)の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a gate array type master slice type monolithic integrated circuit (hereinafter referred to as gate array) including a monolithic multiplication circuit and a bipolar transistor in 45+.

〔従来の技術〕[Conventional technology]

従来、種々の回路機能を有する集積回路を形成 ゛可能
なゲートアレイにおいて、その回路内部の抵抗素子の抵
抗値のモニタ用抵抗素子はゲートアレイの共通基板形成
工程において回路内部の抵抗索子と同種のものが共通基
板上に形成され、配線工程時に、この抵抗素子から配線
全引き出し、探針測定可能な配線域全形成し、この配線
工程終了後にモニタ用抵vL累子の抵抗値を測定すると
いりものでめった。
Conventionally, in a gate array capable of forming integrated circuits having various circuit functions, a resistor element for monitoring the resistance value of a resistor element inside the circuit was formed using a resistor element of the same type as a resistor wire inside the circuit during the process of forming a common substrate of the gate array. is formed on a common substrate, and during the wiring process, all the wiring is drawn out from this resistor element, the entire wiring area that can be measured by the probe is formed, and after the wiring process is completed, the resistance value of the monitor resistor VL resistor is measured. I ran into a lot of stuff.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

集積回路内部の抵抗素子の抵抗値は、拡散マスクの精度
や不純物濃度のバラツキによって決するため、その回路
の消費電力および処理速度を左右する。最近は、顧客か
らの消費電力や処理速度に対する要求も厳しく、この抵
抗値拡散マスクの精度や不純物濃度のバラツキに対する
許容範囲が喪造技術的に決まるバラツキよりも狭いもの
となる場合もある。上述し几従米のモニタ用抵抗素子で
は、配線工程終了以降でなければ回路内部のモニター用
抵抗素子の抵抗値が分らない友め、あらかじめ拡散マス
クの精度や不純物濃度のバラツキが許容範囲内のものを
選択した上で配線工程を行りことができず、そのため製
造歩留りの低下、さらに再製造による製造日数の延長な
どの発生という欠点を有している。
The resistance value of a resistance element inside an integrated circuit is determined by the accuracy of a diffusion mask and variations in impurity concentration, and therefore influences the power consumption and processing speed of the circuit. Recently, customers have strict requirements regarding power consumption and processing speed, and the tolerance range for variations in the accuracy and impurity concentration of this resistance value diffusion mask may be narrower than the variations determined by manufacturing technology. With the above-mentioned monitor resistor, the resistance value of the monitor resistor inside the circuit cannot be known until after the wiring process is completed, and the accuracy of the diffusion mask and the variation in impurity concentration must be within the allowable range in advance. It is not possible to perform the wiring process after selecting the above, which has the drawbacks of lowering the manufacturing yield and prolonging the manufacturing time due to remanufacturing.

〔問題点を解決する几めの手段〕[Elaborate means to solve problems]

本発明のゲートアレイ型マスタスライス方式のモノリシ
ック集積回路の製造方法は、素子形成金属を沖1定する
ことによってモニター用抵抗素子の抵抗値を測定・検量
し次後、配線工程を施している。すなわち、本発明のモ
ノリシック集積1gJ路の製造方法によれは、配線工程
を施す以前にlPjw/&内刀\゛ 部のモニター用抵抗素子の抵抗値を知ることめできる几
め、あらかじめこのモニタ用抵抗素子により抵抗値を計
り、所望の抵抗値を有する共通基板を選択して使用でき
、製造歩留りを高め、製造日数を短縮することができる
In the gate array type master slice method monolithic integrated circuit manufacturing method of the present invention, the resistance value of the monitoring resistance element is measured and calibrated by first setting the element forming metal, and then the wiring process is performed. That is, according to the manufacturing method of the monolithically integrated 1gJ circuit of the present invention, the resistance value of the monitor resistor element of the lPjw/& inner blade part can be known before the wiring process is performed. The resistance value can be measured using a resistance element, and a common substrate having a desired resistance value can be selected and used, thereby increasing the manufacturing yield and shortening the number of manufacturing days.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の第1の実施例によるモニター用抵抗
素子の平面図である。P形不純物領域11はへ形エピタ
キシャル層を成長させた半導体基板の一主面上に選択的
に形成されている。この不純物領域11を覆′)P3縁
膜上に開孔部12.13に設け、この開孔部12,13
に白金シリサイド全形成し、ここに探針全歯て抵抗値全
測定する。測定後、所定範囲内の抵抗値を有する半導体
基板にのみ配線工程を施す。このモニター用抵抗素子に
配線工程で杷に膜でおおわれ、配線されることにない。
FIG. 1 is a plan view of a monitoring resistance element according to a first embodiment of the present invention. P-type impurity region 11 is selectively formed on one main surface of a semiconductor substrate on which a hemi-shaped epitaxial layer is grown. This impurity region 11 is covered with apertures 12.13 on the P3 edge film, and the apertures 12,13 are
All platinum silicide is formed on the probe, and all resistance values are measured using all teeth of the probe. After the measurement, a wiring process is performed only on semiconductor substrates having resistance values within a predetermined range. This monitor resistor element is coated with a film during the wiring process and is not wired.

このモニター用抵抗素子の作製工程は回路内部の抵抗素
子のfPF−製工程と同一工程でらり1本発明の実施に
より伺ら新しい作製工程を必要としない。
The manufacturing process of this monitor resistance element is the same as the fPF manufacturing process of the resistance element inside the circuit, and by implementing the present invention, no new manufacturing process is required.

モニター用抵抗素子の不純物領域幅Wl、および不純物
領域長L1はそれぞれ測定しようとする回路内部の抵抗
素子の抵抗素子幅および抵抗素子長′ と等しくしであ
る。ここでに不純物領域@Wli5μm1不純物領域長
Llt″100μmとする。また開孔部は突起部を除い
て40μm X 40μmとする。
The impurity region width Wl and impurity region length L1 of the monitoring resistance element are equal to the resistance element width and resistance element length' of the resistance element inside the circuit to be measured, respectively. Here, it is assumed that the impurity region @Wli is 5 μm and the impurity region length Llt is 100 μm.The opening portion is 40 μm×40 μm excluding the protrusion.

不純物領域11の層抵抗″ftPs、開孔部と探針との
接触抵抗t″kLCとするとこの抵抗素子の抵抗値Rは
次式で表わせる。
Assuming that the layer resistance of the impurity region 11 is "ftPs" and the contact resistance between the opening and the probe is t"kLC, the resistance value R of this resistance element can be expressed by the following equation.

層抵抗PsにIKΩん、接触抵抗&は50とする。The layer resistance Ps is IKΩ, and the contact resistance & is 50.

この値を用いると抵抗値凡は20.005廊Rなり接触
抵抗)Lcに無視できる値でるる。今、製造バラツキに
より回路内部の抵抗素子の抵抗素子幅が0.5μm狭く
なり次とし9回路内部の抵抗素子の接触抵抗がlOΩに
なったとすると、i(、=、XIKG+10Ω′″’:
、、2z2にΩとなるが、モニター用抵抗素子も同様に
不純物領域幅W1が0.5μm狭くなる。
When this value is used, the resistance value is approximately 20.005 R, which gives a negligible value for the contact resistance (Lc). Now, suppose that the width of the resistance element inside the circuit becomes narrower by 0.5 μm due to manufacturing variations, and the contact resistance of the resistance element inside the next 9 circuits becomes lOΩ.
,,2z2 becomes Ω, but the impurity region width W1 of the monitoring resistor element is similarly narrowed by 0.5 μm.

したがって、モニター用の抵抗素子の抵抗値は回路内部
の抵抗素子と接触抵抗の違いによる差があるが、上述し
次ように接触抵抗の抵抗素子全体の抵抗値に占める割合
は微少であるため9回路内部の抵抗素子の抵抗値とほぼ
同じ値をしていることになる。
Therefore, there is a difference in the resistance value of the resistance element for monitoring due to the difference between the resistance element inside the circuit and the contact resistance, but as mentioned above, the proportion of the contact resistance in the resistance value of the entire resistance element is small; This means that the resistance value is almost the same as the resistance value of the resistance element inside the circuit.

第2因は、本発明の第2の実施例に用いるモニター用抵
抗素子の平面図である。不純物領域21および開孔部2
2.23は第1の実施例と同様にして作られる。本冥施
例の第1の実施例との相異点に、第2図の不純物領域@
W2が8J1図の不純物領域幅W1に比べて広く50μ
mである点でめり。
The second factor is a plan view of the monitoring resistance element used in the second embodiment of the present invention. Impurity region 21 and opening 2
2.23 is made in the same manner as in the first embodiment. The difference between this embodiment and the first embodiment is that the impurity region @
W2 is 50μ wider than the impurity region width W1 in Figure 8J1
Meri in that m.

不純物領域長L2および開孔部22.23の大きさは、
第1の実施例と同じく100μmおよび40μm×40
μmである。この実施例では、不純物領域幅W2および
不純物領域長1.2”k、m造バラツキによる抵抗素子
の抵vL値の変化が無視できる程度にすること11こよ
り、不純物領域21の層抵抗を比較的正確に求めるφが
できる。今、不純物積載21のI’ll抵抗PSおよび
接触抵抗几Cを第1の災施例と同じくそれぞれIKΩA
および5Ωとすると、前述の抵抗値を求める式により、
抵抗素子の抵抗値凡二2XQであり、不純物領域幅W2
が製造バラツキによりα5μm狭くなったとしても几=
z02にΩとなり不純物領域幅W2の製造バラツキによ
らずモニター用抵抗素子の抵抗値Kl−)安定しており
、これにより不純物領域210層抵抗Psを求められる
ことになる。回路内には、複数の抵抗値の抵抗素子があ
り、その各々について第1の実施例により、抵抗値を求
めることは不可能でめる几め各抵抗素子に共通な不純物
領域の層抵抗?求める事が必要であることから、不実施
例を用いて層抵抗を測定することが有効となる。
The impurity region length L2 and the size of the opening 22.23 are:
Same as the first example, 100μm and 40μm×40
It is μm. In this embodiment, the impurity region width W2 and the impurity region length are 1.2"k, and the change in resistance VL value of the resistor element due to manufacturing variations is negligible11. Therefore, the layer resistance of the impurity region 21 is relatively It is possible to accurately find φ.Now, the I'll resistance PS and the contact resistance C of the impurity loading 21 are respectively IKΩA as in the first disaster example.
and 5Ω, then according to the formula for calculating the resistance value mentioned above,
The resistance value of the resistance element is approximately 2XQ, and the impurity region width W2
Even if α5μm becomes narrower due to manufacturing variations, 几=
z02 becomes Ω, and the resistance value Kl-) of the monitoring resistor element is stable regardless of manufacturing variations in the impurity region width W2, and from this, the impurity region 210 layer resistance Ps can be determined. In the circuit, there are resistive elements with a plurality of resistance values, and it is impossible to determine the resistance value for each of them according to the first embodiment. Since it is necessary to determine the layer resistance, it is effective to measure the layer resistance using a non-example.

〔発明の効果〕〔Effect of the invention〕

以上説明し次ように1本発明のモノリシック集積(ロ)
w&框、配備工程以前に共通基板内部の抵抗素子の抵抗
1[全測定可能なモニタ用抵抗素子を共通基板上に有し
ていることにより、配線工程時に。
As explained above, monolithic integration (b) of the present invention will be explained as follows.
w & stile, the resistance of the resistance element inside the common substrate 1 before the deployment process [by having all the measurable monitor resistance elements on the common substrate, during the wiring process.

このモニタ用抵抗素子により測定した抵抗値を基に所望
の抵抗素子の抵抗値を待つ次共通基叛を選択しt上で配
線工程を行9ことができる友め9回路内部の抵抗素子の
抵抗値が顧客の要求により必然的に決定さnる許容範囲
内におさまっている製品を歩留り良く製造することがで
きるという効果がるる。また1以上の説明はエピタキシ
ャル島内の不純物領域に形成された抵抗素子について説
明したが、多結晶シリコン等による絶縁膜上に形成され
比抵抗素子に対して本発明を適用しても同様の効果が得
られる。
Wait for the resistance value of the desired resistance element based on the resistance value measured by this monitoring resistance element. Select the next common base and perform the wiring process on t. The resistance of the resistance element inside the circuit. The effect is that products whose values fall within the tolerance range inevitably determined by customer requirements can be manufactured with high yield. In addition, although the above explanations have been made regarding a resistance element formed in an impurity region within an epitaxial island, the same effect can be obtained even if the present invention is applied to a resistivity element formed on an insulating film made of polycrystalline silicon or the like. can get.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に用いるモニター用抵抗
素子の平面図でるる。 第2図に不発明の第2の実施例に用いるモニター用抵抗
素子の平面図である。 11.21・・・不純物領域、12,13,22゜23
・・・開孔部、Wl 、W2・・・不純物領域幅、Ll
。 L2・・・不純物領域長
FIG. 1 is a plan view of a monitoring resistance element used in a first embodiment of the present invention. FIG. 2 is a plan view of a monitoring resistance element used in a second embodiment of the present invention. 11.21... Impurity region, 12, 13, 22°23
...Opening portion, Wl, W2...Impurity region width, Ll
. L2... Impurity region length

Claims (1)

【特許請求の範囲】[Claims] 配線接続形態の選択により所望の論理機能を構成可能な
ゲートアレイ型マスタスライス方式のモノリシック集積
回路の製造方法において、素子形成を終了した半導体基
板が、該半導体基板の主面上に選択的に形成された該半
導体基板とは反対導電型不純物領域を有し、該不純物領
域上の絶縁膜に探針測定用の開孔部を少なくとも2個備
え、該開孔部間の前記不純物領域の抵抗値を測定した後
配線工程を施すことを特徴とするモノリシック集積回路
の製造方法。
In a method for manufacturing a monolithic integrated circuit using a gate array type master slice method in which a desired logic function can be configured by selecting a wiring connection form, a semiconductor substrate on which element formation has been completed is selectively formed on the main surface of the semiconductor substrate. an impurity region having a conductivity type opposite to that of the semiconductor substrate, the insulating film on the impurity region has at least two openings for probe measurement, and the resistance value of the impurity region between the openings. A method for manufacturing a monolithic integrated circuit, characterized in that a wiring process is performed after measuring.
JP28934486A 1986-12-03 1986-12-03 Manufacture of monolithic integrated circuit Pending JPS63141347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28934486A JPS63141347A (en) 1986-12-03 1986-12-03 Manufacture of monolithic integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28934486A JPS63141347A (en) 1986-12-03 1986-12-03 Manufacture of monolithic integrated circuit

Publications (1)

Publication Number Publication Date
JPS63141347A true JPS63141347A (en) 1988-06-13

Family

ID=17741988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28934486A Pending JPS63141347A (en) 1986-12-03 1986-12-03 Manufacture of monolithic integrated circuit

Country Status (1)

Country Link
JP (1) JPS63141347A (en)

Similar Documents

Publication Publication Date Title
US9559162B2 (en) Thermoresistance sensor structure for integrated circuits and method of making
US10153073B2 (en) Integrated circuit (IC) including semiconductor resistor and resistance compensation circuit and related methods
US4024561A (en) Field effect transistor monitors
US6559475B1 (en) Test pattern for evaluating a process of silicide film formation
US20110128113A1 (en) Strain measuring device
JPH0714904A (en) Flatness measurment of dielectric layer in integrated circuit and circuit
US3650020A (en) Method of monitoring semiconductor device fabrication
JPS63141347A (en) Manufacture of monolithic integrated circuit
JP3500924B2 (en) Manufacturing method of semiconductor sensor
JPH04101457A (en) Semiconductor circuit manufacturing device and method
JPH04333255A (en) Semiconductor integrated circuit
JPS63166256A (en) Semiconductor device and manufacture thereof
TW200847332A (en) Semiconductor device and trimming method therefor
JP2548780B2 (en) Pattern for measuring MOS transistor constants
JP3164040B2 (en) Manufacturing method of polysilicon resistance element
JPS6157698B2 (en)
JPS5946098B2 (en) Manufacturing method of semiconductor device
JPS6254952A (en) Designing semiconductor integrated circuit
JPS61168952A (en) Semiconductor integrated circuit device
JPH05157780A (en) Resistance element process monitor device
JPS63310160A (en) Laser trimming method
JPH04324952A (en) Evaluation method of semiconductor device
JPH0650712B2 (en) Method for manufacturing semiconductor device
JPH0661474A (en) Element for characteristic measurement
JPH0653416A (en) Semiconductor device incorporating resistor