JPS6314112B2 - - Google Patents

Info

Publication number
JPS6314112B2
JPS6314112B2 JP57222441A JP22244182A JPS6314112B2 JP S6314112 B2 JPS6314112 B2 JP S6314112B2 JP 57222441 A JP57222441 A JP 57222441A JP 22244182 A JP22244182 A JP 22244182A JP S6314112 B2 JPS6314112 B2 JP S6314112B2
Authority
JP
Japan
Prior art keywords
cyano group
auxiliary metal
copper sulfide
copper
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57222441A
Other languages
Japanese (ja)
Other versions
JPS59112502A (en
Inventor
Shinji Tomibe
Norio Murazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Sanmo Dyeing Co Ltd
Original Assignee
Nihon Sanmo Dyeing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Sanmo Dyeing Co Ltd filed Critical Nihon Sanmo Dyeing Co Ltd
Priority to JP57222441A priority Critical patent/JPS59112502A/en
Priority to US06/461,250 priority patent/US4556508A/en
Priority to DE8383300486T priority patent/DE3365757D1/en
Priority to EP83300486A priority patent/EP0086072B1/en
Priority to KR1019830000438A priority patent/KR870001970B1/en
Publication of JPS59112502A publication Critical patent/JPS59112502A/en
Priority to US06/736,778 priority patent/US4670189A/en
Publication of JPS6314112B2 publication Critical patent/JPS6314112B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】 本発明は導電性材料に関するものである。 近年、導電性繊維に対する需要が高まり、種々
のものが提案されている。本発明者等は、アクリ
ル系繊維又はポリアミド系繊維、ポリエステル系
繊維、天然の動・植物性繊維にシアン基を含有せ
しめた繊維に硫化銅を付着もしくは含浸した導電
性繊維を提案した(特開昭56−128311号、同56−
169808号及び同57−21570号公報)。これらの導電
性繊維は他の公知の導電性繊維(例えば、米国特
許第3940533号のもの)に比べ堅牢性が高く、染
色も可能な上、繊維本来の柔軟性も有しているこ
とから、幾つかの分野で実際に利用されている。
しかしながら、これらの硫化銅含有導電性繊維の
耐湿性、耐アルカリ性、耐洗浄性は実用的な見地
からは未だ充分満足し得るものではなく、もし、
これらの問題点が克服し得れば、その応用分野は
更に拡大するものと期待される。 本発明者等は上記したような従来の導電性材料
の欠点を克服すべく鋭意研究を重ねた結果、驚く
べきことに、シアノ基を含有する物質に硫化銅と
共に少量の特定の金属成分を吸着、付着もしくは
含浸により結合させることにより、耐アルカリ
性、洗濯耐久性などの耐洗浄性が飛躍的に改善さ
れることを見出し、本発明を完成するに到つた。
すなわち、本発明によれば、シアノ基を含有する
物質に対し、硫化銅と共に、その補助金属成分と
して銀、金及び白金族金属の中から選ばれた少な
くとも1種の金属成分を少なくとも該シアノ基を
有する物質の表面において該シアノ基を介して結
合させたことを特徴とする導電性材料が提供され
る。 本発明において用いるシアノ基含有物質は、水
不溶性の固体であれば任意のものが使用でき、高
分子物質及び低分子の化合物を含むものである。
シアノ基含有高分子物質は天然又は合成の高分子
物質のいずれでもよい。 シアノ基含有合成高分子物質の例としては、ア
クリロニトリル系のポリマー、コポリマー(ラン
ダム重合体、ブロツク重合体、グラフト重合体等
を含む)の他、ポリアミド、ポリエステル、レー
ヨン、キユプラ等のシアノ基を含まない高分子に
シアノ基を導入せしめたものが挙げられる。この
ようなシアノ基の導入法は、任意の慣用の方法が
採用され、例えば、ジシアンジアミドを反応せし
める方法、アクリロニトリルをグラフトさせる方
法、シアノエチル化法、混合紡糸法等がある。こ
れらのシアノ基含有合成高分子物質は粉体の他、
各種の成形体、例えば、フイルム、フアイバー、
板、布、紙、シート、ブロツク、ペレツト、糸、
棒、パイプ等の形態で用いられる。 シアノ基含有天然高分子物質は絹、羊毛等のポ
リペプチドやセルロース等の多糖類の如き動物性
又は植物性の天然高分子に上記に例示した如き方
法でシアノ基を導入したもので、粉体、フアイバ
ー等の形状で用いられる。 シアノ基含有低分子化合物としては、フタロニ
トリル、イソフタロニトリル、N―シアノメチル
アニリン、N―β―シアノエチルアニリン等が例
挙でき、通常、粉体状で適用される。 本発明の導電性材料は、前記のシアノ基含有物
質に対し、硫化銅と共にその補助金属成分とし
て、銀、金及び白金族金属の中から選ばれる少な
くとも1種の金属成分を結合させたものである。
この場合、白金族金属には、ルテニウム、ロジウ
ム、パラジウム、オスミウム、イリジウム及び白
金が含まれる。 シアノ基含有物質に対して結合させる硫化銅の
量は特に制約されないが、シアノ基含有物質に対
し、金属銅として、通常、約0.5〜30重量%、好
ましくは1〜15重量%である。本発明において用
いる補助金属成分は、硫化銅の結合量に比して極
めて少量でよく、シアノ基含有物質に対し、金属
換算で、通常0.0005〜10重量%、好ましくは
0.005〜5重量%である。また、シアノ基含有物
質に対して結合された硫化銅に対する補助金属成
分の割合は、金属換算での原子モル比M/Cu
(M:Ag、Au、Ru、Rh、Pd、Os、Ir及び/又
はPt)で表わして、通常、0.0001〜0.5、好まし
くは0.001〜0.3、さらに好ましくは0.01〜0.2であ
る。この補助金属成分の結合量は微量で十分な効
果を奏し、前記したように、結合した銅1モルに
対し0.0001モル以上で実質的な添加効果、即ち、
シアノ基含有物質に対する硫化銅の結合を安定化
させ、製品の耐洗浄性や耐湿潤性等を向上させ
る。 一方、補助金属成分の結合量の上限は特に制約
されないが、結合した銅1モルに対し、0.5モル
を越えないようにするのがよく、0.5モルを越え
るようになると、導電性が損われるようになる
し、また経済性の上でも不利になるので好ましく
ない。本発明において、シアノ基含有物質に対し
て結合する補助金属成分は、通常、硫化物の形態
で存在するが、場合においては金属状態で存在す
ることもあり、シアノ基含有物質中に、硫化銅と
共に結合し得る形態であれば特に制約されない。
なお、本発明でいう硫化銅や補助金属成分に関し
ていうシアノ基含有物質に対する結合とは、物理
的又は化学的のいずれの結合も包含される。 前記した本発明の導電性材料は種々の方法で製
造することが可能であり、次に、その製法につい
て詳細に述べる。 その製法の1つの態様においては、あらかじめ
硫化銅を結合させたシアノ基含有導電性物質を用
いる。この硫化銅を結合したシアノ基含有導電性
物質は従来公知であり、例えば、前記した特開昭
56−128311号、同56−169808号及び同57−21570
号公報等に記載された方法で得ることができ、そ
の詳細な説明は省略するが、その概説を示せば、
前記したシアノ基含有物質を1価の銅イオン供給
源及びイオウ含有化合物により処理する方法であ
る。この場合、イオウ含有化合物による処理は1
価の銅イオン供給源による処理と同時又はその後
に行われる。尚、本発明においては、この硫化銅
を結合したシアノ基含有導電性物質に関しては、
市販品をそのまま使用することができる。 本発明においては、前記した硫化銅を結合した
導電性物質に対し、補助金属イオンを含む溶液を
接触させて処理する。この場合、溶解させる補助
金属は可溶性の形で使用され、例えば、硫酸塩、
硝酸塩等の無機酸、酢酸塩、安息香酸塩等の有機
酸塩の他、ロダン錯塩、チオ硫酸錯塩等の各種の
錯塩が挙げられる。溶液中の補助金属化合物の濃
度は特に制約されないが、金属換算量で、通常
0.005〜10g/、好ましくは0.01〜6g/で
ある。溶液中に硫化銅を結合させた導電性物質を
浸漬させて処理する場合、該導電性物質に対する
浴比は、導電性物質1重量部に対し、溶液5〜50
重量部、好ましくは10〜30重量部である。処理温
度は通常室温〜100℃、好ましくは30〜80℃であ
り、また、処理時間は0.5〜20時間、好ましくは
1〜10時間である。 以上のように、硫化銅を結合させた導電性物質
に対して補助金属イオンを含む溶液を接触させる
だけで、該導電性物質に対する硫化銅の結合安定
性を高め、耐洗浄性や耐湿性等の向上した製品を
得ることができるが、この処理に際しては、必要
に応じ還元性イオウ化合物を併用することがで
き、これによつて硫化銅の結合安定性をさらに高
めることができる。この場合のイオウ化合物は、
還元作用を持つものであればよく、例えば、硫化
ナトリウム(Na2S)、硫化水素(H2S)、二酸化
イオウ(SO2)、亜硫酸水素ナトリウム
(NaHSO3)、チオ硫酸ナトリウム(Na2S2O3)、
亜硫酸(H2SO3)、二亜硫酸ナトリウム
(Na2S2O5)、亜ニチオン酸ナトリウム
(Na2S2O4)亜ニチオン酸(H2S2O4)、ロンガリ
ツト(亜ニチオン酸塩とホルマリンの付加物)、
あるいは前記の混合物が挙げられる。硫化水素や
二酸化イオウのようなガス状イオウ化合物を用い
る時には、補助金属成分含有溶液に浸漬した後、
取出した導電性物質をオートクレーブ中などで該
ガスと加圧下で接触せしめるか、あるいはガス状
イオウ化合物を連続的に溶液中に吹込むのがよ
い。イオウ化合物の添加量は、溶液中の補助金属
化合物1モルに対し、通常、0.2〜5モル、好ま
しくは0.4〜3モルの範囲である。このイオウ化
合物の使用は、硫化銅の結合した導電性物質上へ
の補助金属成分の結合を促進させかつ安定化さ
せ、さらに、導電性を向上させる効果も示す。前
記還元性イオウ化合物を併用する場合、補助金属
イオンを含む溶液による処理をイオウ化合物の存
在下で行うことができ、また、その溶液による処
理の後、イオウ化合物で処理することができる。 尚、上記の態様において、市販の硫化銅を結合
させたシアノ基含有導電性物質を用いる場合に
は、これを上記した如く補助金属成分含有化合物
の溶液に浸漬し、必要に応じこの溶液中に前記イ
オウ化合物を存在させるか又は浸漬後イオウ化合
物で後処理を行うが、硫化銅を結合させる工程か
ら出発する場合には、硫化銅を結合させる工程が
終了もしくは大部分終了した時点で処理浴中に前
記した補助金属成分含有化合物を加えることによ
つても本発明の導電性材料を得ることができる。
この場合も必要に応じイオウ化合物を更に同時添
加してもよい。 上記の態様においては、あらかじめ硫化銅を結
合させた導電性物質に対して補助金属成分を結合
させたが、これとは別に、補助金属成分は、シア
ノ基含有物質に対して硫化銅を結合させる際に、
同時に結合させることも可能であり、次にこの態
様について説明する。 この態様においては、前記したシアノ基含有物
質を(イ)1価の銅イオン供給源、(ロ)補助金属含有イ
オン、(ハ)還元性イオウ化合物を含む浴で処理す
る。 1価の銅イオン供給源としては、1価の銅の塩
及び錯塩を用いることはできるが、通常、2価の
銅の塩、錯塩などの第2銅化合物と2価の銅を1
価の銅に還元しうる還元剤の組合せが用いられ
る。第2銅化合物の例としては硫酸銅、塩化第二
銅、硝酸第二銅、酢酸第二銅などが挙げられる。
一方上記還元剤としては、金属銅、ヒドロキシル
アミン及びその塩、硫酸第1鉄、バナジン酸アン
モン、フルフラール、次亜リン酸ナトリウム、グ
リコースが例挙できる。 還元性イオウ化合物としては、チオ硫酸塩又は
チオ硫酸塩と他のイオウ化合物との混合物が用い
られ、また、補助金属イオンは、前記した態様に
おいて用いられるものと同一である。尚、還元性
イオウ化合物は上記した第2銅を第1銅に還元す
るための還元剤の代りとして又はその一部として
使用できる。 一浴法を行う場合、シアノ基含有物質は前記
(イ)、(ロ)、(ハ)の成分を含む浴中に浸漬され、通常20
〜150℃、好ましくは30〜100℃で1〜24時間処理
される。加熱処理を行う場合、浴の温度を1〜3
℃/分の昇温速度で室温から徐々に加熱するとよ
い。浴のPHは通常1.5〜6であり、必要に応じ硫
酸、塩酸、リン酸の如き無機酸、クエン酸、酢酸
の如き有機酸、リン酸水素二ナトリウム、クエン
酸ナトリウム、酢酸ナトリウムの如き塩、及びこ
れらの混合物等のPH調整剤が加えられる。 上記の方法において、(イ)成分である1価の銅イ
オン供給源のシアノ基含有物質に対する使用割合
は、シアノ基含有物質100gあたり、金属銅に換
算して、通常2〜15gの範囲であり、浴中で1〜
10g/の濃度で使用される。(ロ)成分である補助
金属イオンの使用量は、処理に用いた第1銅1モ
ル当り、0.001〜0.5モル程度である。又、(ハ)成分
であるイオウ化合物の使用量は(イ)と(ロ)の成分の合
計量に対し1〜3倍モルである。 本発明で得られる処理物は、水洗後、50〜100
℃、好ましくは60〜80℃で乾燥され、製品とされ
る。この製品は、シアノ基含有物質の表面及び/
又は内部に連続した硫化銅の層が形成されたこと
による良好な導電性と共に、補助金属成分の結合
による著しく改善された耐洗浄性や耐湿性を有す
る。製品中の補助金属成分は、前記したように、
通常、硫化物として存在するが、この場合、この
補助金属成分は、硫化銅のイオウ原子と結合して
1種の混晶を形成している場合も考えられる。 次に本発明を実施例により詳細に説明する。 なお、実施例中の耐洗浄性、耐湿性の試験は次
のような条件下で行つた。 耐洗浄性試験 サンプルを市販の洗剤(全温度チアー)を3
g/含む水溶液に浴比1:50(wt/wt)の割合
で加え、これをスチールボール10個とともに洗濯
堅老度試験機にて50℃で30分撹拌洗浄する。水洗
後乾燥する。このような洗浄工程を所定回数繰返
し行い、その時の電気比抵抗値(Ω−cm)を測定
する。 アルカリスポツテイングテスト JIS L 0864に従い、10g/の炭酸ナトリウ
ム水溶液30重量部に対し、サンプル1重量部を浸
漬し、1時間還流した後、堅牢度を判定する。 実施例 1 カシミロン、アクリル系繊維(商品名:2デニ
ール、カツト長さ51mm、タイプFWBR、旭化成
工業(株)製)5gを20g/の硫酸銅、6g/の
硫酸銀、20g/のチオ硫酸ナトリウム、20g/
の亜硫酸水素ナトリウム、30g/のリン酸2
ナトリウム、12g/のクエン酸を含む液100ml
中で50℃で5時間処理した後、水洗して乾燥す
る。処理された繊維の比抵抗値は1.2×10-1Ω・
cmで、100回の繰り返し洗濯に耐えた。比較のた
め本実施例を硫酸銀を併用せずに繰返したとこ
ろ、得られた導電性繊維は40回の繰り返し洗濯に
耐えるのみであつた。 実施例 2 ポリアクリロニトリル系(商品名:シルパロン
100デニール、40フイラメント、三菱レーヨン(株)
製)を前記実施例1の硫酸銀の代りに同量の塩化
パラヂウムを使用した以外は全く同様に処理して
導電性繊維を得た。このものの比抵抗値は3×
10-1Ω・cmであり、100回の繰り返し洗濯に耐え
た。 実施例 3 15μmの厚さのナイロンフイルム(商品名:B0
#15東レ(株)製)2.5gを、10g/の過硫酸アン
モニウム、10g/の亜硫酸水素ナトリウムを含
む液200mlに常温で30分間浸漬した後、ステンレ
ススチール製の容器に入れ、アクリロニトリルの
蒸気を同容器内に導入し、38〜40℃で3時間グラ
フト重合反応を行う。この反応により重量は32.8
%増加した。得られたシアノ基含有ナイロンフイ
ルムを前記実施例1と同様な処理を施し導電性フ
イルムを得た。このフイルムの表面抵抗率(ρs
は180Ωであつた。硫酸銀を使用しないものに比
してアルカリスポツテイング堅ろう度が2級向上
した。 実施例 4 10μm以下に粉砕したポリアクリロニトリル粉
末を実施例1と同様に処理する。得られた粉末は
12%の重量増を示し良好な電導性を示した。これ
をポリ塩化ビニルのメルトに5wt%加えて軍手に
射出したところ、良好な帯電防止品を得た。 実施例 5 フタロニトリルの結晶を10μm以下に粉砕した
粉末10gを実施例1と同様に処理する。得られた
粉末は黒灰色で11%の重量増を示し良好な導電性
を示した。これを市販の塗料(アクリライト500)
に1:1の重量割合で加え、鉄板に塗布、乾燥し
たところ、2×102Ωの表面抵抗を示し、反射減
衰率は−25bBであつた。 実施例 6 特開昭57−21570号公報の実施例1に記載の方
法により得た、電気比抵抗値3.6×10-2Ω・cmの
硫化銅含有導電性アクリル繊維を、硝酸銀5重量
%、チオ硫酸ナトリウム15重量%及び亜硫酸ナト
リウム5重量%を含む水溶液中に、浴比1:20の
割合で浸漬し、55℃で2時間処理した。処理前の
導電性繊維は40回の洗濯により導電性が失われた
が、本実施例で得た導電性繊維は100回の洗濯の
後も満足し得る導電性を示した。本実施例におい
て、硝酸銀に代えて塩化パラジウム、クロロ金酸
及び塩化白金をそれぞれ用いた以外は全く同様に
して本実施例を繰返したところ、硝酸銀を用いた
場合とほぼ同様な耐洗浄性の優れた導電性繊維が
得られた。 実施例 7 特開昭57−21570号公報の実施例1において、
硫酸第二銅、チオ硫酸ナトリウム及び亜硫酸水素
ナトリウムの濃度を半分に減じた以外は該実施例
1と全く同様な方法で得た、硫化銅含有導電性ア
クリル繊維(電気比抵抗値1.16×10-1Ω・cm)
を、種々の濃度の硝酸銀水溶液中に浸漬し、50℃
で2時間処理して、表―1に示す種々の銀含有量
をもつ導電性繊維を得た。これらの繊維について
耐洗浄性試験を行つた結果を表―1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electrically conductive materials. In recent years, demand for conductive fibers has increased, and various types have been proposed. The present inventors have proposed conductive fibers in which copper sulfide is attached or impregnated to fibers containing cyan groups in acrylic fibers, polyamide fibers, polyester fibers, or natural animal/vegetable fibers (Unexamined Japanese Patent Publication No. No. 128311, No. 56-
169808 and 57-21570). These conductive fibers have higher robustness than other known conductive fibers (for example, those in U.S. Pat. No. 3,940,533), can be dyed, and have the inherent flexibility of fibers. It is actually used in several fields.
However, the moisture resistance, alkali resistance, and wash resistance of these copper sulfide-containing conductive fibers are still not fully satisfactory from a practical standpoint.
If these problems can be overcome, it is expected that the field of application will further expand. As a result of intensive research to overcome the drawbacks of conventional conductive materials as described above, the present inventors surprisingly discovered that a small amount of a specific metal component along with copper sulfide can be adsorbed onto a substance containing a cyano group. The present inventors have discovered that washing resistance such as alkali resistance and washing durability can be dramatically improved by bonding by adhesion or impregnation, and have completed the present invention.
That is, according to the present invention, at least one metal component selected from silver, gold, and platinum group metals is added to a substance containing a cyano group together with copper sulfide as an auxiliary metal component thereof. Provided is a conductive material characterized in that the cyano group is bonded to the surface of a substance having the cyano group. The cyano group-containing substance used in the present invention can be any water-insoluble solid, and includes high-molecular substances and low-molecular compounds.
The cyano group-containing polymeric substance may be either a natural or synthetic polymeric substance. Examples of cyano group-containing synthetic polymers include acrylonitrile-based polymers and copolymers (including random polymers, block polymers, graft polymers, etc.), as well as cyano group-containing materials such as polyamide, polyester, rayon, and kyupra. Examples include polymers that have cyano groups introduced into them. Any conventional method can be used to introduce such a cyano group, such as a method of reacting with dicyandiamide, a method of grafting acrylonitrile, a cyanoethylation method, a mixed spinning method, and the like. These cyano group-containing synthetic polymer substances are available in powder form,
Various molded objects, such as films, fibers,
board, cloth, paper, sheet, block, pellet, thread,
Used in the form of rods, pipes, etc. Cyano group-containing natural polymer substances are obtained by introducing cyano groups into animal or vegetable natural polymers, such as polypeptides such as silk and wool, and polysaccharides such as cellulose, by the method exemplified above. , fiber, etc. Examples of the cyano group-containing low-molecular compound include phthalonitrile, isophthalonitrile, N-cyanomethylaniline, and N-β-cyanoethylaniline, which are usually applied in powder form. The conductive material of the present invention is made by bonding the above-mentioned cyano group-containing substance with copper sulfide and at least one metal component selected from silver, gold, and platinum group metals as an auxiliary metal component. be.
In this case, platinum group metals include ruthenium, rhodium, palladium, osmium, iridium and platinum. The amount of copper sulfide to be bonded to the cyano group-containing substance is not particularly limited, but is usually about 0.5 to 30% by weight, preferably 1 to 15% by weight, as metallic copper, relative to the cyano group-containing substance. The amount of the auxiliary metal component used in the present invention may be extremely small compared to the amount of copper sulfide bonded, and is usually 0.0005 to 10% by weight, preferably 0.0005 to 10% by weight in terms of metal, based on the cyano group-containing substance.
It is 0.005 to 5% by weight. In addition, the ratio of the auxiliary metal component to the copper sulfide bonded to the cyano group-containing substance is the atomic molar ratio M/Cu
(M: Ag, Au, Ru, Rh, Pd, Os, Ir and/or Pt) is usually 0.0001 to 0.5, preferably 0.001 to 0.3, more preferably 0.01 to 0.2. A small amount of this auxiliary metal component is enough to produce a sufficient effect, and as mentioned above, a substantial addition effect can be obtained when the amount is 0.0001 mol or more per 1 mol of bound copper, that is,
Stabilizes the bond of copper sulfide to cyano group-containing substances, improving the wash resistance and moisture resistance of products. On the other hand, there is no particular restriction on the upper limit of the amount of the auxiliary metal component bound, but it is best not to exceed 0.5 mol per 1 mol of bound copper; if it exceeds 0.5 mol, conductivity may be impaired. This is not desirable because it is also disadvantageous from an economic point of view. In the present invention, the auxiliary metal component that binds to the cyano group-containing substance usually exists in the form of sulfide, but in some cases it may also exist in the metal state, and copper sulfide is present in the cyano group-containing substance. There is no particular restriction as long as it can be combined together.
In the present invention, the bond to the cyano group-containing substance with respect to copper sulfide and the auxiliary metal component includes both physical and chemical bonds. The conductive material of the present invention described above can be manufactured by various methods, and the manufacturing method will be described in detail next. In one embodiment of the manufacturing method, a cyano group-containing conductive material to which copper sulfide is bonded in advance is used. This cyano group-containing conductive material bonded with copper sulfide is known in the art, for example,
No. 56-128311, No. 56-169808 and No. 57-21570
It can be obtained by the method described in the publication, etc., and the detailed explanation will be omitted, but the outline will be shown as follows.
This is a method in which the above-described cyano group-containing substance is treated with a monovalent copper ion source and a sulfur-containing compound. In this case, treatment with sulfur-containing compounds is 1
This may occur simultaneously with or subsequent to treatment with a source of valent copper ions. In the present invention, regarding the cyano group-containing conductive substance bonded with copper sulfide,
Commercially available products can be used as they are. In the present invention, the above-described conductive material bonded with copper sulfide is treated by bringing it into contact with a solution containing auxiliary metal ions. In this case, the auxiliary metals to be dissolved are used in soluble form, for example sulfates,
Examples include inorganic acids such as nitrates, organic acid salts such as acetates and benzoates, and various complex salts such as rhodan complexes and thiosulfate complexes. The concentration of the auxiliary metal compound in the solution is not particularly restricted, but it is usually
The amount is 0.005 to 10 g/, preferably 0.01 to 6 g/. When treating a conductive substance bonded with copper sulfide by immersing it in a solution, the bath ratio for the conductive substance is 1 part by weight of the conductive substance to 5 to 50 parts by weight of the solution.
parts by weight, preferably 10 to 30 parts by weight. The treatment temperature is usually room temperature to 100°C, preferably 30 to 80°C, and the treatment time is 0.5 to 20 hours, preferably 1 to 10 hours. As described above, simply by bringing a solution containing auxiliary metal ions into contact with a conductive material bound to copper sulfide, the stability of the bonding of copper sulfide to the conductive material is increased, resulting in improved wash resistance, moisture resistance, etc. A product with improved properties can be obtained, and in this treatment, a reducing sulfur compound can be used in combination if necessary, thereby further increasing the bonding stability of copper sulfide. The sulfur compound in this case is
Any substance that has a reducing effect may be used, such as sodium sulfide (Na 2 S), hydrogen sulfide (H 2 S), sulfur dioxide (SO 2 ), sodium hydrogen sulfite (NaHSO 3 ), and sodium thiosulfate (Na 2 S). 2O3 ) ,
Sulfite (H 2 SO 3 ), Sodium Disulfite (Na 2 S 2 O 5 ), Sodium Nithionite (Na 2 S 2 O 4 ), Nithionite (H 2 S 2 O 4 ), Rongarit (Nithionite) and formalin adducts),
Alternatively, a mixture of the above may be mentioned. When using gaseous sulfur compounds such as hydrogen sulfide or sulfur dioxide, after immersing them in a solution containing auxiliary metal components,
It is preferable to bring the removed conductive substance into contact with the gas under pressure in an autoclave or the like, or to continuously blow a gaseous sulfur compound into the solution. The amount of the sulfur compound added is generally in the range of 0.2 to 5 mol, preferably 0.4 to 3 mol, per 1 mol of the auxiliary metal compound in the solution. The use of this sulfur compound promotes and stabilizes the binding of the auxiliary metal component onto the copper sulfide-bound conductive material, and also exhibits the effect of improving conductivity. When the reducing sulfur compound is used in combination, treatment with a solution containing auxiliary metal ions can be performed in the presence of the sulfur compound, and treatment with the sulfur compound can be performed after the treatment with the solution. In the above embodiment, when using a commercially available cyano group-containing conductive material bonded with copper sulfide, it is immersed in the solution of the auxiliary metal component-containing compound as described above, and if necessary, added to the solution. The above-mentioned sulfur compound is present or post-treatment is performed with a sulfur compound after immersion, but when starting from the step of binding copper sulfide, the step of binding copper sulfide is completed or most of the step is completed, and then post-treatment is performed with a sulfur compound. The conductive material of the present invention can also be obtained by adding the above-mentioned auxiliary metal component-containing compound to the composition.
In this case as well, a sulfur compound may be added simultaneously if necessary. In the above embodiment, the auxiliary metal component is bonded to the conductive substance to which copper sulfide has been bonded in advance, but separately, the auxiliary metal component is bonded to the cyano group-containing substance. Occasionally,
It is also possible to combine them simultaneously, and this aspect will be explained next. In this embodiment, the above-mentioned cyano group-containing substance is treated in a bath containing (a) a source of monovalent copper ions, (b) auxiliary metal-containing ions, and (c) a reducing sulfur compound. As monovalent copper ion sources, monovalent copper salts and complex salts can be used, but usually, divalent copper salts and complex salts and other cupric compounds and divalent copper are used as monovalent copper ion sources.
A combination of reducing agents capable of reducing copper to valent copper is used. Examples of cupric compounds include copper sulfate, cupric chloride, cupric nitrate, cupric acetate, and the like.
On the other hand, examples of the reducing agent include metallic copper, hydroxylamine and its salts, ferrous sulfate, ammonium vanadate, furfural, sodium hypophosphite, and glycose. As the reducing sulfur compound, thiosulfate or a mixture of thiosulfate and other sulfur compounds is used, and the auxiliary metal ions are the same as those used in the embodiments described above. Note that the reducing sulfur compound can be used in place of or as a part of the reducing agent for reducing cupric to cuprous. When performing the one-bath method, the cyano group-containing substance is
Immersed in a bath containing ingredients (a), (b), and (c), usually 20
The treatment is carried out at ~150°C, preferably at 30-100°C for 1-24 hours. When performing heat treatment, the temperature of the bath is 1 to 3.
It is preferable to gradually heat from room temperature at a heating rate of °C/min. The pH of the bath is usually 1.5 to 6, and if necessary, inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid, organic acids such as citric acid and acetic acid, salts such as disodium hydrogen phosphate, sodium citrate, and sodium acetate, A PH adjuster such as and a mixture thereof is added. In the above method, the proportion of the monovalent copper ion supply source, which is component (a), to the cyano group-containing substance is usually in the range of 2 to 15 g in terms of metallic copper per 100 g of the cyano group-containing substance. , 1~ in the bath
Used at a concentration of 10g/. The amount of the auxiliary metal ion used as component (b) is about 0.001 to 0.5 mol per mol of cuprous used in the treatment. The amount of the sulfur compound used as component (c) is 1 to 3 times the mole of the total amount of components (a) and (b). After washing with water, the treated product obtained in the present invention has a
The product is dried at a temperature of 60 to 80 °C, preferably 60 to 80 °C. This product is suitable for use on the surface of cyano group-containing substances and/or
Alternatively, it has good electrical conductivity due to the continuous copper sulfide layer formed therein, as well as significantly improved cleaning resistance and moisture resistance due to the combination of auxiliary metal components. As mentioned above, the auxiliary metal components in the product are
Usually, it exists as a sulfide, but in this case, the auxiliary metal component may combine with the sulfur atoms of copper sulfide to form a type of mixed crystal. Next, the present invention will be explained in detail with reference to examples. Note that the wash resistance and moisture resistance tests in Examples were conducted under the following conditions. Washing resistance test Samples were washed with commercially available detergent (all temperature Cheer) for 3 days.
g/added to the aqueous solution at a bath ratio of 1:50 (wt/wt), and stirred and washed at 50°C for 30 minutes in a laundry fastness tester together with 10 steel balls. Dry after washing with water. Such a cleaning process is repeated a predetermined number of times, and the electrical specific resistance value (Ω-cm) at that time is measured. Alkaline Spotting Test According to JIS L 0864, 1 part by weight of the sample is immersed in 30 parts by weight of a 10 g/aqueous sodium carbonate solution, and after refluxing for 1 hour, the fastness is determined. Example 1 5 g of Cashmilon, acrylic fiber (product name: 2 denier, cut length 51 mm, type FWBR, manufactured by Asahi Kasei Industries, Ltd.) was mixed with 20 g of copper sulfate, 6 g of silver sulfate, and 20 g of sodium thiosulfate. , 20g/
of sodium bisulfite, 30g/2 of phosphoric acid
100ml of solution containing sodium, 12g/citric acid
After processing at 50°C for 5 hours, the sample is washed with water and dried. The specific resistance value of the treated fiber is 1.2×10 -1 Ω・
cm, and withstood 100 repeated washings. For comparison, this example was repeated without using silver sulfate, and the resulting conductive fibers could only withstand repeated washing 40 times. Example 2 Polyacrylonitrile type (product name: Silparon
100 denier, 40 filament, Mitsubishi Rayon Co., Ltd.
Conductive fibers were obtained by processing in exactly the same manner as in Example 1 except that the same amount of palladium chloride was used instead of silver sulfate. The specific resistance value of this thing is 3×
10 -1 Ω・cm and withstood repeated washing 100 times. Example 3 Nylon film with a thickness of 15 μm (product name: B0
#15 (manufactured by Toray Industries, Inc.) 2.5 g was immersed in 200 ml of a solution containing 10 g/ammonium persulfate and 10 g/sodium bisulfite at room temperature for 30 minutes, then placed in a stainless steel container and soaked with acrylonitrile vapor. The mixture is introduced into a container and a graft polymerization reaction is carried out at 38 to 40°C for 3 hours. This reaction results in a weight of 32.8
% increase. The obtained cyano group-containing nylon film was treated in the same manner as in Example 1 to obtain a conductive film. The surface resistivity of this film (ρ s )
was 180Ω. The alkali spotting fastness was improved by two grades compared to the product that did not use silver sulfate. Example 4 Polyacrylonitrile powder pulverized to 10 μm or less is treated in the same manner as in Example 1. The obtained powder is
It showed a 12% weight increase and good electrical conductivity. When 5wt% of this was added to a polyvinyl chloride melt and injected into work gloves, a good antistatic product was obtained. Example 5 10 g of powder obtained by pulverizing phthalonitrile crystals to a size of 10 μm or less was treated in the same manner as in Example 1. The obtained powder was blackish gray in color and showed a weight increase of 11% and good conductivity. Apply this to commercially available paint (Acrylite 500)
When it was applied to an iron plate at a weight ratio of 1:1 and dried, it exhibited a surface resistance of 2×10 2 Ω and a reflection attenuation coefficient of −25 bB. Example 6 Copper sulfide-containing conductive acrylic fibers having an electrical resistivity value of 3.6×10 -2 Ω·cm obtained by the method described in Example 1 of JP-A No. 57-21570 were mixed with 5% by weight of silver nitrate, It was immersed in an aqueous solution containing 15% by weight of sodium thiosulfate and 5% by weight of sodium sulfite at a bath ratio of 1:20 and treated at 55°C for 2 hours. Although the conductive fibers before treatment lost their conductivity after being washed 40 times, the conductive fibers obtained in this example showed satisfactory conductivity even after being washed 100 times. In this example, when this example was repeated in exactly the same manner except that palladium chloride, chloroauric acid, and platinum chloride were used in place of silver nitrate, the cleaning resistance was almost the same as when silver nitrate was used. A conductive fiber was obtained. Example 7 In Example 1 of JP-A-57-21570,
Copper sulfide-containing conductive acrylic fiber (electrical resistivity value 1.16×10 − 1Ω・cm)
were immersed in silver nitrate aqueous solutions of various concentrations and heated at 50°C.
Conductive fibers having various silver contents shown in Table 1 were obtained. Table 1 shows the results of washing resistance tests on these fibers. 【table】

Claims (1)

【特許請求の範囲】 1 シアノ基を有する物質に対し、硫化銅と共に
その補助金属成分として銀、金及び白金族金属の
中から選ばれた少なくとも1種の金属成分を少な
くとも該シアノ基を有する物質の表面において該
シアノ基を介して結合させたことを特徴とする導
電性材料。 2 該補助金属成分が硫化物の状態で結合してい
る特許請求の範囲第1項の導電性材料。 3 あらかじめ硫化銅を結合させたシアノ基含有
導電性物質を、銀、金及び白金族金属の中から選
ばれた少なくとも1種の補助金属イオンを用い、
還元性イオウ化合物の存在下で処理することを特
徴とする導電性材料の製造方法。 4 あらかじめ硫化銅を結合させたシアノ基含有
導電性物質を、銀、金及び白金族金属の中から選
ばれた少なくとも1種の補助金属イオンを含む溶
液で処理した後、還元性イオウ化合物で処理する
ことを特徴とする導電性材料の製造方法。
[Scope of Claims] 1. At least one metal component selected from silver, gold, and platinum group metals is added as an auxiliary metal component to a substance having a cyano group together with copper sulfide. An electrically conductive material, characterized in that the material is bonded to the surface of the material via the cyano group. 2. The conductive material according to claim 1, wherein the auxiliary metal component is bonded in the form of sulfide. 3. A cyano group-containing conductive substance to which copper sulfide has been bonded in advance is mixed with at least one auxiliary metal ion selected from silver, gold, and platinum group metals,
A method for producing a conductive material, comprising processing in the presence of a reducing sulfur compound. 4 A cyano group-containing conductive material to which copper sulfide has been bonded in advance is treated with a solution containing at least one auxiliary metal ion selected from silver, gold, and platinum group metals, and then treated with a reducing sulfur compound. A method for producing a conductive material, characterized by:
JP57222441A 1982-02-05 1982-12-17 Conductive material Granted JPS59112502A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57222441A JPS59112502A (en) 1982-12-17 1982-12-17 Conductive material
US06/461,250 US4556508A (en) 1982-02-05 1983-01-26 Electrically conducting material and process of preparing same
DE8383300486T DE3365757D1 (en) 1982-02-05 1983-01-31 Electrically conducting material and process of preparing same
EP83300486A EP0086072B1 (en) 1982-02-05 1983-01-31 Electrically conducting material and process of preparing same
KR1019830000438A KR870001970B1 (en) 1982-02-05 1983-02-04 Conductive material and its preparing process
US06/736,778 US4670189A (en) 1982-02-05 1985-05-22 Electrically conducting material and process of preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57222441A JPS59112502A (en) 1982-12-17 1982-12-17 Conductive material

Publications (2)

Publication Number Publication Date
JPS59112502A JPS59112502A (en) 1984-06-29
JPS6314112B2 true JPS6314112B2 (en) 1988-03-29

Family

ID=16782442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57222441A Granted JPS59112502A (en) 1982-02-05 1982-12-17 Conductive material

Country Status (1)

Country Link
JP (1) JPS59112502A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612641B2 (en) * 1984-07-31 1994-02-16 日本蚕毛染色株式会社 Conductive inorganic material
KR101580121B1 (en) * 2015-03-27 2015-12-28 이규상 a functional copper sulfide composition and a functional fiber produced therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53789A (en) * 1976-11-12 1978-01-06 Glory Kogyo Kk Coin guide device for coin wrapping machine
JPS56128311A (en) * 1980-03-05 1981-10-07 Nippon Sanmou Senshoku Kk Electrically conductive fiber and its preparation
JPS5721570A (en) * 1980-07-15 1982-02-04 Nippon Sanmou Senshiyoku Kk Production of electroconductive fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53789A (en) * 1976-11-12 1978-01-06 Glory Kogyo Kk Coin guide device for coin wrapping machine
JPS56128311A (en) * 1980-03-05 1981-10-07 Nippon Sanmou Senshoku Kk Electrically conductive fiber and its preparation
JPS5721570A (en) * 1980-07-15 1982-02-04 Nippon Sanmou Senshiyoku Kk Production of electroconductive fiber

Also Published As

Publication number Publication date
JPS59112502A (en) 1984-06-29

Similar Documents

Publication Publication Date Title
KR870001970B1 (en) Conductive material and its preparing process
US4378226A (en) Electrically conducting fiber and method of making same
JP3296491B2 (en) Electroless plated aramid surface and method for producing the surface
US4364739A (en) Method of making electrically conducting fiber
JP3183513B2 (en) Electroless plated aramid surface
US4681820A (en) Method of producing an electrically conductive polymeric material with adsorbed metal sulfide and product
JPS6354791B2 (en)
EP0035406B1 (en) Electrically conducting fibres and method of making same
EP0217987B1 (en) Electrically conducting material and method of preparing same
JPS6096766A (en) Activation for substrates of nonelectrical metallization
JPS6314112B2 (en)
EP0620562B1 (en) Electrically conducting polyester material and process of producing same
JPH01207473A (en) Silver-coated organic fiber
JPS6319629B2 (en)
JPH02197579A (en) Pretreating agent for electroless plating of polyamide resin
KR930002981B1 (en) Electric conductive materials and making method thereof
JP2861059B2 (en) Metal-coated nonwoven fabric and method of manufacturing
JPS62215070A (en) Production of copper-containing material
JPH0749626B2 (en) Method for producing metal-coated fiber
JPS6221869A (en) Production of electroless plating fiber
JP3279881B2 (en) Manufacturing method of chitosan fixed fiber
RU2104328C1 (en) Method of electrolysisless deposition of metallic coating on the surface of object of aromatic polyamide and object of aromatic polyamide with metallic coating
JPS61147882A (en) Pretreatment of electroless plating for forming metallic coating on fiber material
JPH0583664B2 (en)
JPS61281874A (en) Production for polyester molded article having metallized surface