JPS63140795A - Welding material for high-si austenitic stainless steel - Google Patents

Welding material for high-si austenitic stainless steel

Info

Publication number
JPS63140795A
JPS63140795A JP28828486A JP28828486A JPS63140795A JP S63140795 A JPS63140795 A JP S63140795A JP 28828486 A JP28828486 A JP 28828486A JP 28828486 A JP28828486 A JP 28828486A JP S63140795 A JPS63140795 A JP S63140795A
Authority
JP
Japan
Prior art keywords
weld
welding
nitric acid
corrosion
welding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28828486A
Other languages
Japanese (ja)
Other versions
JPH0613157B2 (en
Inventor
Masahiro Aoki
正紘 青木
Seiya Wada
和田 征也
Hideki Uno
秀樹 宇野
Akiyasu Ikeda
了康 池田
Masanori Takahashi
正憲 高橋
Masayoshi Miki
正義 三木
Katsuhiro Sakata
坂田 勝広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Sumitomo Chemical Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd, Sumitomo Chemical Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP61288284A priority Critical patent/JPH0613157B2/en
Publication of JPS63140795A publication Critical patent/JPS63140795A/en
Publication of JPH0613157B2 publication Critical patent/JPH0613157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To improve the nitric acid resistance of a weld zone by controlling C, Si, Mn, Cr, Ni, Nb, and N respectively to specific weight %, specifying the content of Nb so as to satisfy the prescribed formula and maintaining Ni-bal in a prescribed range. CONSTITUTION:The component compsn. of the welding material is controlled, by weight %, to <=0.04% C, 2.5-5.0% Si, <=5% Mn, 15-20% Cr, 10-20% Ni, 0.05-0.3% Nb, and <=0.025 N. The Nb component is so specified as to satisfy formula I. The Ni-bal expressed by formula II is limited in a -4--2 range by which the welding material for austenitic stainless steels is formed. Since the content of Nb is controlled and the Ni-bal value is limited in the range, delta ferrite is formed and the high-temp. weld crack sensitivity is degraded. Weld cracks are, therefore, decreased and the nitric acid resistance of the weld zone is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶接材料、特に硝酸に対して優れた耐食性を
有する高Siオーステナイトステンレス鋼の溶接に通し
た溶接材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to welding materials, particularly welding materials for welding high-Si austenitic stainless steels that have excellent corrosion resistance against nitric acid.

(従来の技術) 硝酸製造プラントの主要構成部は、高温高濃度硝酸環境
にあり、かかる環境は酸化性が極めて強く、ステンレス
鋼が過不働態状態となるため、一般のステンレス鋼では
不働態皮膜が維持出来ない。
(Prior art) The main components of a nitric acid production plant are in a high-temperature, highly concentrated nitric acid environment, and this environment is extremely oxidizing, causing stainless steel to become hyperpassive. cannot be maintained.

しかもそれは粒界腐食性が著しく大きい苛酷す腐食環境
でもある。
Furthermore, it is a harsh corrosive environment with extremely high intergranular corrosion.

このような酸化性の強い環境においては、硅酸質が耐用
性を有するため、従来、グラスライニング材が使用され
ているが、斯る材料は溶接不可能であるため、大型装置
の製作が困難であり、また脆(て衝撃に弱いなどプラン
ト保守上、重大な問題点があった。
Traditionally, glass lining materials have been used because silica has durability in such highly oxidizing environments, but such materials cannot be welded, making it difficult to manufacture large-scale equipment. It also had serious problems in terms of plant maintenance, such as being brittle and susceptible to impact.

近時この種の環境での耐用性ある金属材料としては、約
4%のSiを含有する17%Cr−14%Ni −4%
Si系のオーステナイトステンレス調が使用されており
、これは酸化性の強い環境下に於いて表面にSing主
体の酸化物層を形成するため、プラント装置の耐用寿命
と信較性を飛櫂的に向上させることが出来た。
Recent metal materials that are durable in this type of environment include 17%Cr-14%Ni-4% containing approximately 4% Si.
Si-based austenitic stainless steel is used, which forms a Sing-based oxide layer on the surface in a strongly oxidizing environment, which significantly increases the service life and reliability of plant equipment. I was able to improve it.

例えば、特公昭57−37669号に開示されているも
のはS i : 2 、5〜5%でCr、 Niの外に
TaまたはZrを10×C%〜2.5%(1部Nbで代
替可)の組成を有する濃硝酸用ステンレス鋼である。こ
の種の耐硝酸性ステンレス鋼はそのすぐれた特性から今
日まで多くの使用実績があり、当業界にあって評価を受
けた材料となっている。
For example, the material disclosed in Japanese Patent Publication No. 57-37669 has Si: 2, 5 to 5%, and in addition to Cr and Ni, Ta or Zr is added in an amount of 10×C% to 2.5% (partially replaced with Nb). This is a stainless steel for concentrated nitric acid with a composition of (acceptable). This type of nitric acid-resistant stainless steel has been widely used to date due to its excellent properties, and has become a highly regarded material in the industry.

(発明が解決しようとする問題点) しかし、長期の使用実績を重ねるうち、そのようなすぐ
れた耐硝酸性を示す材料にあっても溶接ビード部の腐食
穿孔問題がクローズアンプされてきた。
(Problems to be Solved by the Invention) However, as the material has been used for a long time, even with materials exhibiting such excellent nitric acid resistance, the problem of corrosion perforation in the weld bead has become more prevalent.

すなわち、使用中に特に溶接ビー1部が第3図に示すよ
うな凹凸の激しい腐食を生じ優先腐食部が貫通して溶液
の−a2!!を招き重大事故を発生させるおそれがある
。なお、第3図(alおよび(blは後述するように、
従来例における腐食部の金属ML織の顕微鏡写真である
。したがって、現在では点検期間を短縮するとか、等の
手段を講じている。
That is, during use, one part of the welding bead in particular undergoes severe corrosion with unevenness as shown in FIG. 3, and the preferentially corroded area penetrates, causing -a2! ! This may lead to serious accidents. In addition, as shown in FIG. 3 (al and (bl) will be described later,
It is a micrograph of the metal ML weave of the corroded part in a conventional example. Therefore, we are currently taking measures such as shortening the inspection period.

しかしながら、かかる手段ばあ(までも対症的なもので
根本的解決にはなっておらず、またしばしば操業を中断
して点検を行わなければならないなど、コスト的にも高
価なものとなっている。
However, such measures are only symptomatic and do not provide a fundamental solution, and they are also expensive in terms of costs, as operations often have to be interrupted for inspection. .

かくして、本発明の目的は、上述のような耐硝酸性ステ
ンレス鋼の溶接をする場合、その溶接ビード部における
腐食穿孔の発生を阻止し母材と同等の耐硝酸性を有する
溶接材料を提供することである。
Thus, an object of the present invention is to provide a welding material that prevents the occurrence of corrosion perforation at the weld bead when welding nitric acid-resistant stainless steel as described above and has a nitric acid resistance equivalent to that of the base metal. That's true.

(問題点を解決するための手段) 上述のような溶接ビード部の腐食穿孔問題を解決すべく
、種々調査研究を行った結果、以下のような知見を得た
(Means for solving the problem) In order to solve the problem of corrosion perforation of the weld bead as described above, various research studies were conducted and the following knowledge was obtained.

(1)前述の耐硝酸性ステンレス鋼の溶接用に使用され
てきた溶接材料は、例えば特開昭58−154491号
に開示されているように、C≦0.015%、Si :
5〜7 %、N≦0.02%、C+N≦0.03%、N
b+Ta≧15x (C+N)%と、低炭素、低窒素で
あって比較的多量のSiを含むものであった。また、N
b、 Taの量についても従来は(C+N)量に対して
比較的多量に添加することが必要と考えられていた。
(1) Welding materials that have been used for welding the nitric acid-resistant stainless steel mentioned above have C≦0.015%, Si:
5-7%, N≦0.02%, C+N≦0.03%, N
b+Ta≧15x (C+N)%, which means that it is low in carbon and nitrogen, and contains a relatively large amount of Si. Also, N
b. Regarding the amount of Ta, it was conventionally thought that it was necessary to add a relatively large amount relative to the amount of (C+N).

(2)そこで、このような溶接材料を使って前記耐硝酸
性ステンレス鋼の溶接を行ったところ、その腐食は溶接
部の凝固偏析の結果析出するSi含有量の高い金属間化
合物(Ni −5t−Nb系)に起因するものであるこ
とが明らかになった。
(2) Therefore, when welding the nitric acid-resistant stainless steel using such a welding material, the corrosion was caused by intermetallic compounds with high Si content (Ni-5t) precipitated as a result of solidification segregation in the weld zone. -Nb system).

(3)すなわち、上述のような高SI含有金属間化合物
の析出に伴い、硝酸中でのすぐれた耐食性を発揮する上
で肝要な周囲のマトリクス中のSi含有量が低下し、マ
トリクスの優先腐食を伴う孔食状の腐食を惹起するので
ある。
(3) In other words, with the precipitation of the high-SI content intermetallic compound as described above, the Si content in the surrounding matrix, which is important for exhibiting excellent corrosion resistance in nitric acid, decreases, resulting in preferential corrosion of the matrix. This causes pitting-like corrosion.

ここに、本発明者らは、このような孔食状腐食の防止対
策について種々検討した結果、17%Cr −14%N
i−4%Si系材料用の溶接材料として通常用いられて
いる共金糸のNb人溶接材料(Nb:0.5〜1゜2%
添加)のNb含有量を0.3%以下にコントロールする
とともに(C+N)に対して2X(C+N)〜6×(C
+ N)の範囲内に制限することにより上述の金属間化
合物析出量を著しく低減することが可能であり、これに
より上記ビード部の穿孔腐食を効果的に防止し得ること
を知見し、本発明を完成した。
As a result of various studies on measures to prevent such pitting corrosion, the present inventors found that 17%Cr -14%N
I-4% Nb welding material (Nb: 0.5 to 1°2%), which is commonly used as a welding material for Si-based materials.
In addition to controlling the Nb content of (addition) to 0.3% or less, 2X (C + N) to 6 × (C
+N), it is possible to significantly reduce the amount of intermetallic compound precipitation mentioned above, and thereby the perforation corrosion of the bead portion can be effectively prevented, and the present invention completed.

よって、本発明の要旨とするところは重量%で、C≦0
.04%、  Si:2.5〜5.0%、MnS2.0
 %、      Cr:15 〜20%、Ni:10
〜20%、 Nb:0.05〜0.3%、更に2X(C
+N)≦Nb≦6X(C+N)とし、N≦0.02%、 残部Feおよび不可避不純物 より成り、かつ下記で表わされるNi−bal、が−4
〜−2であることを特徴とする、硝酸に対して優れた耐
食性を有する高Siオーステナイトステンレス鋼用溶接
材料である。
Therefore, the gist of the present invention is that C≦0 in weight%.
.. 04%, Si:2.5-5.0%, MnS2.0
%, Cr:15-20%, Ni:10
~20%, Nb: 0.05~0.3%, further 2X(C
+N)≦Nb≦6
The present invention is a welding material for high-Si austenitic stainless steel having excellent corrosion resistance against nitric acid, characterized in that the corrosion resistance is -2.

Ni−bal、−%Ni+30(%C+%N)+0.5
%Mn−1,L(%Cr + 1.5%Si+0.5%
Nb)+8.2なお、Nb含有量の少なくとも1部はT
aで胃き換えてもよい。
Ni-bal, -%Ni+30(%C+%N)+0.5
%Mn-1,L(%Cr+1.5%Si+0.5%
Nb)+8.2 Note that at least a part of the Nb content is T
You can change your stomach with a.

通常オーステナイト系Nb安定化鋼におけるNb添加量
は、8 X(C+N)%以上が御粘的であり、本発明の
場合の結果とは異った傾向を示しているがこれは次のよ
うに考えることが出来る。
Normally, the amount of Nb added in austenitic Nb-stabilized steel is viscous when it is 8X(C+N)% or more, which shows a different tendency from the results of the present invention, but this can be explained as follows. I can think.

すなわち、従来にあっては、安定化元素であるNbは、
Cr炭化物の析出を可及的に抑制して固溶Cr量を確保
するために、炭素、窒素を固定化すべく添加するもので
あって、その歩留りその他を考慮して比較的多量に添加
していたのであった。
That is, conventionally, Nb, which is a stabilizing element, is
Carbon and nitrogen are added to fix carbon and nitrogen in order to suppress the precipitation of Cr carbides as much as possible and secure the amount of solid solution Cr, and are added in relatively large amounts taking into consideration the yield and other factors. It was.

しかし、本発明が溶接施工の対象とする鋼種の溶接金属
結晶粒界には、溶接凝固時の濃縮作用によりStの正偏
析が強く認められる。よって、溶接時多重熱サイクルを
被るが、本発明におけるようにNb添加量が少ない場合
、溶接金属粒界にCr炭化物を生じこれに伴うCr欠乏
域が形成されても、このCr欠乏域のSi濃度が高いた
め耐硝酸性の低下を生じないものと考えられる。
However, strong positive segregation of St is observed in the grain boundaries of the weld metal of the steel that is the object of welding in the present invention due to the concentration effect during weld solidification. Therefore, multiple thermal cycles occur during welding, but when the amount of Nb added is small as in the present invention, even if Cr carbides are generated at the weld metal grain boundaries and a Cr-depleted region is formed, Si in this Cr-depleted region is Since the concentration is high, it is thought that there is no decrease in nitric acid resistance.

本発明が溶接施工の対象としている鋼種は、特定的には
17%Cr−14%N+−4%54系のオーステナイト
ステンレス鋼であり、好ましくは、Siを約4%含有し
且つNbを添加したものであるが、特にそれにのみ制限
されるものではなく一般には高Siオーステナイトステ
ンレス鋼であれば本発明はいずれであっても通用される
The steel type targeted for welding in the present invention is specifically 17%Cr-14%N+-4%54 type austenitic stainless steel, preferably containing about 4% Si and adding Nb. However, the present invention is not limited to this, and in general, the present invention can be applied to any high-Si austenitic stainless steel.

なお、かかる鋼種は高Siであるため一般に溶接高温割
れ感受性が本質的に高い、この割れ感受性を低下させる
ため溶接金属&[]織にδフェライトを生成するよう成
分調整することが有効であり、5〜15%のδフェライ
トを溶接金属に生成せしめることにより、実用上問題の
ないレベルまで溶接高温割れ感受性を低下せしめること
が必要である。
In addition, since such steel types have high Si content, they generally have an inherently high welding hot cracking susceptibility.In order to reduce this cracking susceptibility, it is effective to adjust the composition so that δ ferrite is generated in the weld metal & [ ] weave. By producing 5 to 15% of δ ferrite in the weld metal, it is necessary to reduce the weld hot cracking susceptibility to a level that causes no practical problems.

そのため、本発明にあっては前述のNi−bal、を−
4〜−2に制限するのである。
Therefore, in the present invention, the above-mentioned Ni-bal is -
It is limited to 4 to -2.

(作用) 次に、本発明にかかる溶接材料における各成分の限定理
由について以下に記述する。
(Function) Next, the reason for limiting each component in the welding material according to the present invention will be described below.

C:耐食性を改善するには、特に粒界腐食性の大きい高
温濃硝酸環境下においてCr炭化物の析出を防止するた
めには、Cば出来るだけ低い方が好ましいが、被覆アー
ク溶接環の場合、溶接中に不可避的にCが混入するため
、C含有量の上限を0.04%とする。ただし、本発明
にかかる溶接材料では、高Si鋼特有のNi −5i−
Nb系析出物が溶接金属に生成して耐食性が低下するの
を防止するために、C安定化用のNb含有量を低く抑え
ている。そのためC含有量もできるだけ少ないのが好ま
しい。TIG 。
C: In order to improve corrosion resistance, especially in order to prevent the precipitation of Cr carbides in a high-temperature concentrated nitric acid environment with high intergranular corrosion, it is preferable that C be as low as possible; however, in the case of a coated arc welded ring, Since C is unavoidably mixed during welding, the upper limit of the C content is set to 0.04%. However, in the welding material according to the present invention, the Ni-5i-
In order to prevent Nb-based precipitates from forming in the weld metal and reducing corrosion resistance, the Nb content for C stabilization is kept low. Therefore, it is preferable that the C content is as low as possible. T.I.G.

MIG溶接棒においては、被覆棒を使った上記の如き溶
接中におけるclの増加が殆どないが、上述のようにN
b1tが少ないため、C50゜015%とすることが望
ましい。
With MIG welding rods, there is almost no increase in Cl during welding using a coated rod, but as mentioned above, N
Since b1t is small, it is desirable to set C50°015%.

Si: Stは高酸化性環境下において鋼表面にSin
g系皮膜全皮膜させて耐硝酸性を付与せしめる主要元素
であり、母材と同程度(2,5〜5.0%)のSilは
不可欠である。しかし、Si 5%超の添加は、溶接棒
の製造性を劣化させるため、上限を5%とする。
Si: St forms Si on the steel surface in a highly oxidizing environment.
Sil is the main element that imparts nitric acid resistance to the entire G-based coating, and Sil of the same level (2.5 to 5.0%) as the base material is essential. However, since adding more than 5% of Si deteriorates the manufacturability of the welding rod, the upper limit is set to 5%.

Mn: オーステナイト生成元素としてCr、 Si、
 Nbなどの元素とバランスして鋼のオーステナイト化
に寄与し、且つ鋼中不純物元素であるSを固定して溶接
割れ感受性を低下させる作用効果を有するほか、工業的
生産上脱酸剤として使用される6通常脱酸剤としては、
Mn2%以下で十分であるが溶接割れ感受性、特に溶接
再熱割れを防止するためには1〜5%の添加が有効であ
る。一般には5.0%以下である。
Mn: Cr, Si, as austenite forming elements
It contributes to the austenitization of steel in balance with elements such as Nb, and has the effect of fixing S, an impurity element in steel, and reducing susceptibility to weld cracking.It is also used as a deoxidizing agent in industrial production. 6 As a normal deoxidizing agent,
Mn of 2% or less is sufficient, but addition of 1 to 5% is effective in preventing weld cracking susceptibility, especially weld reheat cracking. Generally it is 5.0% or less.

なお5%超のMn添加は耐濃硝酸性を劣化させるため上
限を5%とする。
Note that addition of more than 5% Mn deteriorates the resistance to concentrated nitric acid, so the upper limit is set to 5%.

Crニ一般の耐食性および低中濃度の硝酸に対する耐食
性を付与するにはCr 15%以上は必要である。しか
しながら、20%を越えるとオーステナイトマトリクス
にフェライトが多量に生成した二相Mn織を呈し、加工
性を害し、且つシグマ脆性を加速するので、本発明にあ
っては15〜20%に限定する。
15% or more of Cr is required to provide general corrosion resistance to Cr and corrosion resistance to low and medium concentrations of nitric acid. However, if it exceeds 20%, a two-phase Mn weave in which a large amount of ferrite is formed in the austenite matrix will appear, impairing workability and accelerating sigma brittleness, so in the present invention, it is limited to 15 to 20%.

Ni: Ntは主要なオーステナイト生成元素であり、
Cr、 Si、 Nbなどとバランスして組織をオース
テナイトに保ち、加工性良好なる溶接継手を得るために
10〜20%が必要である。
Ni: Nt is the main austenite-forming element,
In order to maintain an austenitic structure in balance with Cr, Si, Nb, etc., and obtain a welded joint with good workability, 10 to 20% is required.

Nb: libは鋼中Cを固定し、綱に耐粒界腐食性を
付与する元素である。
Nb: lib is an element that fixes carbon in steel and imparts intergranular corrosion resistance to the steel.

Nbは一般的には8X(C+N)%以上の添加が必要で
あると考えられており、母材の場合約18x(C+N)
%添加している。しかしながら、本発明にかかる材料は
、高酸化性環境下で鋼表面にSiO□皮膜を形成するこ
とにより、耐硝酸性を付与する高Siオーステナイト鋼
用溶接材料であり、通常のオーステナイトステンレス鋼
に生ずる結晶粒界のCr欠乏層により惹起される粒界腐
食現象とは異った傾向を示す。
It is generally thought that Nb needs to be added in an amount of 8X (C+N)% or more, and in the case of the base material, it is approximately 18X (C+N)%.
% is added. However, the material according to the present invention is a welding material for high-Si austenitic steel that imparts nitric acid resistance by forming a SiO□ film on the steel surface in a highly oxidizing environment. This shows a different tendency from intergranular corrosion caused by Cr-depleted layers at grain boundaries.

すなわち、本発明による場合、溶接金属の結晶粒界には
溶接凝固時の濃縮現象によりSiの正偏析が強く認めら
れる。よって、溶接時多重熱サイクルを被り溶接金属粒
界にCr炭化物の生成とこれに伴うCr欠乏域が周囲マ
トリクスに形成されても、このCr欠乏域のSi濃度が
高いため、耐硝酸性の大きな低下は生じない。
That is, in the case of the present invention, positive segregation of Si is strongly observed at the grain boundaries of the weld metal due to the concentration phenomenon during weld solidification. Therefore, even if Cr carbide is generated at the grain boundaries of the weld metal due to multiple thermal cycles during welding, and a Cr-depleted region is formed in the surrounding matrix, the Si concentration in this Cr-depleted region is high, resulting in a high resistance to nitric acid. No decline occurs.

かかる効果を得るにはNb O,05%以上が必要であ
る。また、溶接金属にNb添加量が多い場合−1Ni−
5i−Nb系の金属間化合物を析出し耐食性を低下させ
ビード部の穿孔腐食を惹起する。17%Cr−14%N
i−4%Si系の場合にはNb量が0.3%を越えると
急激に溶接割れ感受性が増加する。従って上記高SL溶
接金属の特徴からNb添加量の下限を0.05%、上限
を0.3%とする。
To obtain such an effect, Nb 2 O, 0.5% or more is required. In addition, if the weld metal has a large amount of Nb added, -1Ni-
5i-Nb-based intermetallic compounds precipitate, reducing corrosion resistance and causing perforation corrosion in the bead. 17%Cr-14%N
In the case of i-4%Si type, when the Nb content exceeds 0.3%, weld cracking susceptibility increases rapidly. Therefore, from the characteristics of the above-mentioned high SL weld metal, the lower limit of the amount of Nb added is set at 0.05% and the upper limit is set at 0.3%.

後述する第1図にグラフで示すように、最大侵食深さは
(Nb + Ta) / (C+ N)の比が2〜4の
範囲内にあるとき特に顕著な減少を呈する。
As shown graphically in FIG. 1 below, the maximum erosion depth exhibits a particularly significant decrease when the ratio (Nb+Ta)/(C+N) is in the range of 2 to 4.

このように1部Taで置換してもよいNb1lは2X 
 (C+N)%より少ないと、耐食性が十分でなく、一
方、6 X (C+N)%を越えると腐食穿孔抵抗性が
十分でない、したがって、本発明において、2X(C+
N)%≦Nb%≦6×(C+N)%とする。
In this way, Nb1l, which may be partially replaced with Ta, is 2X
If it is less than (C+N)%, corrosion resistance is insufficient, while if it exceeds 6 X (C+N)%, corrosion perforation resistance is insufficient. Therefore, in the present invention, 2
N)%≦Nb%≦6×(C+N)%.

N:NはNbとの親和力が強<NbによるCの固定を阻
害することより出来るだけ低い方が好ましいが製造性と
経済性とを勘案して上限を0602%とする。
N: It is preferable that N has a strong affinity with Nb and is as low as possible since it inhibits the fixation of C by Nb, but the upper limit is set to 0.602% in consideration of manufacturability and economic efficiency.

なお、本発明にかかる溶接材料はオーステナイト鋼でS
i含有量が極めて高く、かつNbを含有するため、溶接
時の凝固割れ感受性が高いので本発明においては、この
凝固割れ感受性を血りする目的で溶接金属に5〜15%
のδフェライトを生成させルタめに前記Ni−bal、
を−4〜−2の範囲にコントロールする* Ni−ba
l、の値が一2超のときはδフェライトの生成量が少な
く割れ感受性の低減効果が十分でない、一方、−4未満
ではδフェライトの生成量が多くなりすぎて、溶接金属
の靭性を劣化させてしまう、また、−4未満の場合、熱
間加工性も著しく劣化し、製造性が悪化する。
Note that the welding material according to the present invention is austenitic steel and S
Since the i content is extremely high and Nb is included, the susceptibility to solidification cracking during welding is high. Therefore, in the present invention, in order to reduce this susceptibility to solidification cracking, 5 to 15% of the weld metal is added.
The above Ni-bal to produce δ ferrite,
control in the range of -4 to -2* Ni-ba
When the value of l is more than 12, the amount of δ ferrite produced is small and the effect of reducing cracking susceptibility is insufficient. On the other hand, when the value of l is less than -4, the amount of δ ferrite produced is too large, degrading the toughness of the weld metal. In addition, if it is less than -4, hot workability is also significantly deteriorated and manufacturability is deteriorated.

次に、本発明をその実施例によってさらに具体的に説明
する。
Next, the present invention will be explained in more detail with reference to examples thereof.

実施例 第1表は本発明例および比較例の各溶接材料の化学成分
を示したもので、これら一連の材料を用いて17%Cr
−14%Ni−4%Si系の高SLオーステナイト鋼の
TIG溶接後腐食試験を行った。試験結果の一部を第2
表および第1図にまとめて示す。
Table 1 of Examples shows the chemical composition of each welding material of the present invention example and comparative example.
A post-TIG welding corrosion test was conducted on a -14%Ni-4%Si high SL austenitic steel. Part of the test results
They are summarized in the table and FIG.

また、これらの溶接材料の溶接割れ感受性とNb量との
関係を第2図にそれぞれまとめて示す。
Furthermore, the relationship between the weld cracking susceptibility and the Nb content of these welding materials is summarized in FIG. 2.

すなわち、第2表は、前述のようにして得た溶接金属(
溶接+650℃X2hr鋭敏化)について実際の硝酸製
造プラント中(98%IIN(h、沸騰状態およびN0
8ガス雰囲気)における3624時間の腐食試験結果を
示したものであり、第1図はそれらの結果をグラフにま
とめて示すものである。
That is, Table 2 shows the weld metal (
In an actual nitric acid manufacturing plant (98% IIN (h, boiling state and NO
Fig. 1 shows the results of a corrosion test for 3,624 hours in a 8-gas atmosphere), and Fig. 1 summarizes the results in a graph.

これらの結果からも分かるように、0.04%以下のC
景においては(Nb +Ta) /(C+N)が2〜6
の範囲が最良であることがわかる。また、0.05%程
度のC量では、穿孔腐食以外に粒界腐食も激しく起こり
、(Nb +Ta) /(C十N)によらず実用上不十
分である。
As can be seen from these results, C below 0.04%
In the landscape, (Nb + Ta) / (C + N) is 2 to 6
It can be seen that the range of is the best. Further, when the amount of C is about 0.05%, grain boundary corrosion occurs violently in addition to drilling corrosion, which is insufficient for practical use regardless of (Nb + Ta) / (C + N).

第2図は、TIG溶接時の割れ感受性に及ぼすNb量の
影響を示したものであり、Nbiが0.3%を越えると
著しく割れ感受性が高まることがわかる。
FIG. 2 shows the influence of the amount of Nb on cracking susceptibility during TIG welding, and it can be seen that when Nbi exceeds 0.3%, cracking susceptibility increases significantly.

なお、割れ指数は、0:割れなし、1: ビット発生、
2・: わずかに割れ発生、3; 若干割れあり、4:
 激しい割れありである。
The cracking index is 0: no cracking, 1: bit occurrence,
2: Slight cracking, 3: Slight cracking, 4:
There are severe cracks.

図中、()内の数字は試験覧を示す。In the figure, the numbers in parentheses indicate the test list.

第4図+11および(blは、比較例である第2表の試
験−10の鋼についての前述の環境下での腐食試験片の
穿孔腐食の様子を示す顕微鏡金属mw&写真である。第
3図(blは第3図(alのそれを拡大したもので、孔
食状の腐食の様子がよく分かる。
Figure 4 +11 and (bl are microscopic metal mw & photographs showing the state of perforation corrosion of the corrosion test piece under the above-mentioned environment for the steel of Test-10 in Table 2, which is a comparative example. (BL is an enlarged version of Figure 3 (al), and the pitting-like corrosion can be clearly seen.

次に、Si濃化の効果をみるために、(Nb + Ta
)量が本発明の範囲内の低い側にある第2表試験隘9お
よび(Nb + Ta)量が本発明の上限を越えて多量
に含有されている同じく第2表の実験阻5の各供試材そ
れぞれについて溶着金属腐食部近傍のIEPMA(X線
マイクロアナライザ)によるX&il*度マツプ全マツ
プた。比較例および本発明例の供試材の2次電子線像を
それぞれ第4図+11ないしく5)および第5図(1)
すいしく5)として示す。
Next, in order to examine the effect of Si concentration, (Nb + Ta
) amount is on the low side within the range of the present invention, and each of Table 2, test sample 5, where the amount of (Nb + Ta) is on the low side within the range of the present invention, and is contained in a large amount exceeding the upper limit of the present invention. For each sample material, the entire X&IL* degree map near the weld metal corrosion area was measured using an IEPMA (X-ray microanalyzer). Secondary electron beam images of the test materials of the comparative example and the invention example are shown in Figures 4+11 to 5) and Figure 5(1), respectively.
This is briefly shown as 5).

各図の下段に記入の元素はそれぞれについてその分布、
濃化状態を示す。
The elements written in the bottom of each figure have their respective distributions,
Indicates the state of concentration.

第4図からはSi −Ni−Nb濃化部とSi希薄部と
の存在が明瞭に認められる。一方、第5図からは、第4
図のような強いStの濃化は認められない。
From FIG. 4, the existence of a Si--Ni--Nb enriched area and a Si-poor area can be clearly recognized. On the other hand, from Figure 5, the fourth
Strong enrichment of St as shown in the figure is not observed.

次に、本発明にかかる溶接材料のNi−bal、の意義
について溶接割れ性、靭性そして熱間加工性のそれぞれ
を評価した。
Next, the significance of Ni-bal in the welding material according to the present invention was evaluated in terms of weld cracking resistance, toughness, and hot workability.

まず、20t X150wx2001 (all)の寸
法の各供試片を用い、1200℃に加熱してがら4パス
圧延により8tにまで熱間圧延し、そのときミルエツジ
に生じた加工割れを目視観察し、次の5段階で耳割れ指
数を評価した。
First, using each specimen with dimensions of 20t x 150w x 2001 (all), hot-rolled to 8t by 4-pass rolling while heating to 1200°C, visually observing processing cracks that occurred at the mill edge, and then The ear cracking index was evaluated on a five-point scale.

試験結果は第6図にグラフにまとめて示す、なお、図中
、()内の数字は試験随を示す。
The test results are summarized in a graph in FIG. 6. In the figure, the numbers in parentheses indicate the results of the test.

量並徂歎 0: 割れなし 1: ピット発生 2: わずかに割れ発生 3: 若干割れあり 4: 激しい割れあり 次に、211−のVノツチを設けた5 X 10 X 
55mmの寸法の各供試材についてTIG溶接を行い、
溶接割れ指数を前述の要領で求めるとともに、得られた
各溶接金属部について0℃でシャルピー衝撃試験を行っ
た。試験結果は第6図、第7図にグラフにまとめて示す
、なお、図中、()内の数字は試験隘を示す。
0: No cracking 1: Pit formation 2: Slight cracking 3: Slight cracking 4: Severe cracking Next, 5 x 10 x with a 211-V notch.
TIG welding was performed on each sample material with a size of 55 mm,
The weld cracking index was determined as described above, and a Charpy impact test was conducted on each of the obtained weld metal parts at 0°C. The test results are shown in graphs in FIGS. 6 and 7. In the figures, the numbers in parentheses indicate the number of test points.

第6図に示す結果から明らかなように、Nt−bal、
−4未満で吸収エネルギーは著しく低くなり、耳割れに
ついても悪化する。
As is clear from the results shown in Figure 6, Nt-bal,
If it is less than -4, the absorbed energy becomes extremely low and the cracking on the edges becomes worse.

また第7図に示す結果から明らかなように、溶接割れは
−2を越えると著しく悪化する。
Furthermore, as is clear from the results shown in FIG. 7, weld cracking significantly worsens when the temperature exceeds -2.

第2表 (発明の効果) 本発明によれば、以上の説明からも分かるように、Nb
含有量を0.3%以下および2X(C+N)≦Nb(+
 Ta) ≦6X(C+N)に制限することによって溶
接割れ性が大幅に改善されるのであり、したがって、耐
硝酸性材料から成る4!li!Sの溶接組立てが容易に
実施可能となり、本発明による利益は大きい。
Table 2 (Effects of the Invention) According to the present invention, as can be seen from the above explanation, Nb
content below 0.3% and 2X(C+N)≦Nb(+
By limiting Ta) ≦6X(C+N), the weld cracking resistance is significantly improved, and therefore the 4! li! The welding assembly of S can be easily carried out, and the benefits of the present invention are large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、溶接金属の最大侵食深さとNb + Ta 
/C+Nilとの関係を示すグラフ; 第2図は、溶接材料の溶接割れ悪受性とNb(±Ta)
含有量との関係を示すグラフ; 第3図は、従来例にみられる穿孔腐食の様子を表わす顕
微鏡金属組織写真; 第4図および第5図は、それぞれ比較例および本発明例
のX線マイクロマナライザの金属Mi織写真;および 第6図および第7図は、Ni−bat、が材料特性に及
ぼす影響を示すグラフである。 第1図 0  2  4  6   B  To  12 14
 16 18 20第2図 OQ、!    CAoh    Q88第3 ス436 手続主甫正書(方式) 昭和62年 5月25日 昭和61年特許願第288284号 2、発明の名称 高Sjオーステナイトステンレス鋼用溶接材料3、補正
をする者 事件との関係   特許出願人 住 所 東京都新宿区本塩町8番地の2氏 名 日本ス
テンレス株式会社(ほか1名)4、代 理 人 〒10
1 γ補正の内容 (1)明細書第15頁6行目から19行目の記載を次の
通り訂正する。 r 次に、S i ’IQ化の効果をみるために、(N
b + Ta)量が本発明の範囲内の低い側にある第2
表試験寛5および(Nb + Ta) ffiが本発明
の上限を超えて多量に含有されている同じく第2表の実
験隘9の各供試材それぞれについて)容性金属腐食部近
傍のEI’MA (X線マイクロアナライザ)によるX
線強度マツプを作成した。これらの本発明例および比較
例の供試材の2次電子線像をそれぞれ作成して各元素の
分布、ン農化状態を検討したところ、比較例の場合、S
i −Ni −NMffi化部とSi希薄部との存在が
明瞭に認められたが、本発明例の場合、比較例における
ような強いSiの4化はL?1、められなかった。J (2)明細占中下記の箇所の記載を次の通り訂正する。 、■  丘   4哉   訂JJ1列辻哉16 8 
  第6図    第4図 且  丘   もとの記載   肛工災見尺M1620
    第6図    第4図〃  〃   第7図 
   第5図 17 3   第6図    第4図 6   第7図    第5図 2015〜17            削除〃18 
   第6図    第4図 第7図    第5図 (3)添付図面の「第4図」および「第5図」を゛ハリ
11余セするとともに「第6図」および「第7図」をそ
れぞれ本文に添付する図面のように「第4図」および「
第5図」と訂正する。 8、添付書類の目録 図面番号を訂正した図面(第4図および第5図)以上
Figure 1 shows the maximum erosion depth of weld metal and Nb + Ta
/C+Nil; Figure 2 shows the relationship between the welding material's welding crack susceptibility and Nb(±Ta)
Graph showing the relationship with content; Figure 3 is a microscopic metallographic photograph showing the state of perforation corrosion seen in the conventional example; Figures 4 and 5 are X-ray microscopic photographs of the comparative example and the inventive example, respectively. A photo of the metal Mi weave of the manalizer; and FIGS. 6 and 7 are graphs showing the influence of Ni-bat on material properties. Figure 1 0 2 4 6 B To 12 14
16 18 20Figure 2 OQ,! CAoh Q88 No. 3 S436 Procedural Owner's Manual (Method) May 25, 1988 Patent Application No. 288284 of 1988 2, Title of Invention: High Sj Welding Material for Austenitic Stainless Steel 3, Person Making Amendment Case and Relationship Patent applicant Address: 2, 8-8 Honshio-cho, Shinjuku-ku, Tokyo Name: Nippon Stainless Steel Co., Ltd. (and one other person) 4, Agent: 10
1. Contents of the γ correction (1) The statement from line 6 to line 19 on page 15 of the specification is corrected as follows. r Next, in order to see the effect of converting S i 'IQ, (N
b + Ta) amount is on the lower side within the range of the present invention.
EI' in the vicinity of the capacitive metal corrosion area for each of the test materials in table test 5 and experiment 9 in Table 2 in which (Nb + Ta) ffi is contained in a large amount exceeding the upper limit of the present invention) X by MA (X-ray microanalyzer)
A line intensity map was created. Secondary electron beam images were created for the test materials of the present invention example and the comparative example, and the distribution of each element and the agricultural state were examined. In the case of the comparative example, S
The presence of an i-Ni-NMffi-formed part and a Si-poor part was clearly recognized, but in the case of the present invention example, the strong Si quaternization as in the comparative example is due to L? 1. I couldn't get it. J (2) The following sections of the detailed description are corrected as follows. ,■ Oka 4ya revised JJ1 series Tsujiya 16 8
Fig. 6 Fig. 4 and hill Original description Anal injury measuring scale M1620
Figure 6 Figure 4 Figure 7
Figure 5 17 3 Figure 6 Figure 4 6 Figure 7 Figure 5 2015-17 Delete 18
Fig. 6 Fig. 4 Fig. 7 Fig. 5 (3) ``Fig. 4'' and ``Fig. 5'' of the attached drawings have been added by 11 times, and ``Fig. 6'' and ``Fig. 7'' have been added respectively. As shown in the drawings attached to the main text, “Figure 4” and “
Figure 5” is corrected. 8. Catalog of attached documents Drawings with corrected drawing numbers (Figures 4 and 5) and above

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、 C≦0.04%、Si:2.5〜5.0%、 Mn≦5.0%、Cr:15〜20%、 Ni:10〜20%、Nb:0.05〜0.3%、 N≦0.02%、 更に2×(C+N)≦Nb≦6×(C+N)とし、 残部Feおよび不可避不純物 より成り、かつ下記で表わされるNi−bal.が−4
〜−2であることを特徴とする、硝酸に対して優れた耐
食性を有する高Siオーステナイトステンレス鋼用溶接
材料。 Ni−bal.=%Ni+30(%C+%N)+0.5
%Mn−1.1(%Cr+1.5%Si+0.5%Nb
)+8.2
(1) In weight%, C≦0.04%, Si: 2.5 to 5.0%, Mn≦5.0%, Cr: 15 to 20%, Ni: 10 to 20%, Nb: 0. 05 to 0.3%, N≦0.02%, further 2×(C+N)≦Nb≦6×(C+N), and the balance consists of Fe and inevitable impurities, and the Ni-bal. ga-4
A welding material for high-Si austenitic stainless steel having excellent corrosion resistance against nitric acid, characterized in that the corrosion resistance is -2. Ni-bal. =%Ni+30(%C+%N)+0.5
%Mn-1.1(%Cr+1.5%Si+0.5%Nb
)+8.2
(2)前記Nb含有量の少なくとも一部がTaで置換さ
れた、特許請求の範囲第1項記載の高Siオーステナイ
トステンレス鋼用溶接材料。
(2) The welding material for high-Si austenitic stainless steel according to claim 1, wherein at least a part of the Nb content is replaced with Ta.
JP61288284A 1986-12-03 1986-12-03 Welding material for high Si austenitic stainless steel Expired - Lifetime JPH0613157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288284A JPH0613157B2 (en) 1986-12-03 1986-12-03 Welding material for high Si austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288284A JPH0613157B2 (en) 1986-12-03 1986-12-03 Welding material for high Si austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPS63140795A true JPS63140795A (en) 1988-06-13
JPH0613157B2 JPH0613157B2 (en) 1994-02-23

Family

ID=17728169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288284A Expired - Lifetime JPH0613157B2 (en) 1986-12-03 1986-12-03 Welding material for high Si austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPH0613157B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107197A (en) * 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd Austenitic alloy welded joint excellent in weld crack resistance
CN103826766A (en) * 2011-07-29 2014-05-28 新日铁住金株式会社 Method for producing austenitic stainless steel
CN112605558A (en) * 2020-12-26 2021-04-06 江苏新核合金科技有限公司 00Cr19Ni14Si5 welding wire and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154491A (en) * 1982-03-08 1983-09-13 Nippon Stainless Steel Co Ltd Welding material for high si austenitic stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154491A (en) * 1982-03-08 1983-09-13 Nippon Stainless Steel Co Ltd Welding material for high si austenitic stainless steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107197A (en) * 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd Austenitic alloy welded joint excellent in weld crack resistance
CN103826766A (en) * 2011-07-29 2014-05-28 新日铁住金株式会社 Method for producing austenitic stainless steel
EP2737961A4 (en) * 2011-07-29 2015-06-03 Nippon Steel & Sumitomo Metal Corp Method for producing austenitic stainless steel
CN112605558A (en) * 2020-12-26 2021-04-06 江苏新核合金科技有限公司 00Cr19Ni14Si5 welding wire and preparation method thereof

Also Published As

Publication number Publication date
JPH0613157B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
KR101256268B1 (en) Austenitic stainless steel
RU2421539C2 (en) Martensite stainless steel for welded structures
EP3437791B1 (en) Welded structural member
WO2010090041A1 (en) Ferrite stainless steel with low black spot generation
WO2012018074A1 (en) Ferritic stainless steel
JP2018122329A (en) Coated arc welding electrode
WO2010110003A1 (en) Austenitic stainless steel
WO2017183719A1 (en) High tensile steel and marine structure
WO2014119189A1 (en) Coated electrode
CA1214667A (en) Duplex alloy
EP2708310B1 (en) Welding material and welded joint
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
EP3255166A1 (en) Welded metal and welded structure
EP3437790B1 (en) Welded structural member
WO2017154754A1 (en) Welded metal and welded structure containing said welded metal
JPS63140795A (en) Welding material for high-si austenitic stainless steel
JP2016216782A (en) Austenitic stainless steel
JP2022089304A (en) Welded joint of austenitic stainless steel, welded structure, and mother steel, and method for producing welded joint of austenitic stainless steel
JP4465066B2 (en) Welding materials for ferrite and austenitic duplex stainless steels
JP3141646B2 (en) Austenitic stainless steel for nitric acid containing environment
JP7360032B2 (en) Austenitic heat resistant steel welded joints
JPH01100247A (en) Austenitic corrosion-resisting cast steel
JP7485594B2 (en) Flux-cored wire and gas-shielded arc welding method
WO2024127494A1 (en) Welded joint and welding structure
JP3237132B2 (en) Stainless steel for concentrated nitric acid with excellent weld toughness and corrosion resistance