JPS6314057B2 - - Google Patents

Info

Publication number
JPS6314057B2
JPS6314057B2 JP61086935A JP8693586A JPS6314057B2 JP S6314057 B2 JPS6314057 B2 JP S6314057B2 JP 61086935 A JP61086935 A JP 61086935A JP 8693586 A JP8693586 A JP 8693586A JP S6314057 B2 JPS6314057 B2 JP S6314057B2
Authority
JP
Japan
Prior art keywords
silicon
alloy
weight
component
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61086935A
Other languages
Japanese (ja)
Other versions
JPS621840A (en
Inventor
Jii Hesutaabaagu Uiriamu
Jei Donahyuu Reimondo
Eru Sheifua Benjamin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brunswick Corp
Original Assignee
Brunswick Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brunswick Corp filed Critical Brunswick Corp
Publication of JPS621840A publication Critical patent/JPS621840A/en
Publication of JPS6314057B2 publication Critical patent/JPS6314057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 発明の背景 従来、アルミニウム合金は、その軽量さの故
に、内燃機関のエンジンブロツクに使用されてい
た。シリンダボアに必要な耐摩耗性を与えるため
に、シリンダボアにクロムメツキを施したり、あ
るいは、シリンダボアに鉄ライナを鋳込んだりす
るのが普通であつた。シリンダボアを均一にメツ
キするのは難しく、メツキ作業は費用のかかる作
業である。鋳込み鉄ライナを使用した場合には、
エンジンブロツクの全コストが増大すると共にエ
ンジン重量も増大する。
DETAILED DESCRIPTION OF THE INVENTION Background of the Invention Traditionally, aluminum alloys have been used in engine blocks of internal combustion engines because of their light weight. To provide the cylinder bore with the necessary wear resistance, it was common to chrome plate the cylinder bore or to cast an iron liner into the cylinder bore. It is difficult to plate cylinder bores uniformly, and plating is an expensive operation. When using a cast iron liner,
The overall cost of the engine block increases as well as the engine weight.

17〜19重量%の珪素を含有する過共晶アルミニ
ウム・珪素合金は主相をなす析出珪素結晶のおか
げで良好な耐摩耗性を持つている。この耐摩耗性
の故に、シリンダボアをメツキしたり、ライナを
鋳込んだりする必要性を排除すべくエンジンブロ
ツクのための鋳造合金として過共晶アルミニウ
ム・珪素合金を利用する試みがなされてきた。
Hypereutectic aluminum-silicon alloys containing 17-19% silicon by weight have good wear resistance due to the precipitated silicon crystals that form the main phase. Because of this wear resistance, attempts have been made to utilize hypereutectic aluminum-silicon alloys as casting alloys for engine blocks to eliminate the need to plate cylinder bores or cast liners.

アルミニウム・珪素・銅合金の珪素成分が17〜
19%の範囲まで増加すると、三元素合金の鋳造性
に悪影響がることがわかつている。たとえば、16
〜18%の珪素、0.6〜1.1%の鉄、4.0〜5.0%の銅、
0.1%のマンガン、0.45〜0.65%のマグネシウム、
残りアルミニウムを含有する普通の過共晶アルミ
ニウム・珪素・銅合金は良好な耐摩耗性を持つと
共に共晶温度で望ましい低分別固形物を有し、良
好な流動性を示す。しかしながら、この合金は
250度付近の広い凝固温度範囲を有し、その鋳造
性が著しく低い。さらに、この合金はかなりの量
の銅を含有しているので塩水環境において耐腐蝕
性が低く、船用エンジンには使えない。
The silicon content of aluminum/silicon/copper alloys is 17~
It has been found that increases to the range of 19% have an adverse effect on the castability of ternary alloys. For example, 16
~18% silicon, 0.6-1.1% iron, 4.0-5.0% copper,
0.1% manganese, 0.45-0.65% magnesium,
Common hypereutectic aluminum-silicon-copper alloys containing residual aluminum have good wear resistance, desirable low solids fractionation at eutectic temperatures, and exhibit good flow properties. However, this alloy
It has a wide solidification temperature range of around 250 degrees, and its castability is extremely low. Additionally, this alloy contains significant amounts of copper, which makes it less resistant to corrosion in saltwater environments, making it unsuitable for use in marine engines.

別の普通に用いられている過共晶アルミニウ
ム・珪素合金は19%の珪素、0.6%の銅、1%の
マグネシウム、0.4%のマンガン、残りアルミニ
ウムの公称組成を有する。ここでも、この合金は
その析出珪素結晶の故に良好な耐摩耗性を示す
が、塩水環境では耐腐蝕性が比較的低い。
Another commonly used hypereutectic aluminum-silicon alloy has a nominal composition of 19% silicon, 0.6% copper, 1% magnesium, 0.4% manganese, and the balance aluminum. Again, this alloy exhibits good wear resistance due to its precipitated silicon crystals, but relatively poor corrosion resistance in saltwater environments.

発明の概要 本発明は船用エンジンのエンジンブロツクを鋳
造するのに使用できる改良した過共晶アルミニウ
ム・珪素鋳造合金に向けたものである。
SUMMARY OF THE INVENTION The present invention is directed to an improved hypereutectic aluminum-silicon casting alloy that can be used to cast engine blocks for marine engines.

本発明の合金は16〜19重量%の珪素と、0.4〜
0.7重量%のマグネシウムと、1.4重量%までの鉄
と、0.3重量%までのマンガンと、0.37重量%ま
での銅と、残りアルミニウムとを含有する。銅成
分はできるだけ低く保ち、0.37%以下とするのが
好ましい。
The alloy of the present invention contains 16-19% by weight silicon and 0.4-19% by weight silicon.
Contains 0.7% by weight of magnesium, up to 1.4% by weight of iron, up to 0.3% by weight of manganese, up to 0.37% by weight of copper, and the balance aluminum. The copper content is kept as low as possible, preferably 0.37% or less.

析出珪素結晶の故に、この合金は優れた耐摩耗
性を有する。
Due to the precipitated silicon crystals, this alloy has excellent wear resistance.

銅成分が最低限に抑えられるので、合金の塩水
に対する耐腐蝕性は大きく改善され、船用エンジ
ンの鋳造ブロツクとして特に有用である。
Because the copper content is kept to a minimum, the salt water corrosion resistance of the alloy is greatly improved, making it particularly useful as a casting block for marine engines.

銅成分を抑えることによつて、三元素アルミニ
ウム・珪素・銅共晶が回避され、まつたく予期し
ないことであつたが、150〓以下、好ましくは100
〓以下の比較的挟い凝固範囲を得ることができ
る。これらの特性は三元素過共晶アルミニウム・
珪素合金の鋳造性をかなり改善する。
By suppressing the copper content, the three-element aluminum-silicon-copper eutectic was avoided, which was completely unexpected, but it was less than 150〓, preferably 100〓.
The following relatively narrow coagulation range can be obtained: These properties are the result of three-element hypereutectic aluminum.
Significantly improves the castability of silicon alloys.

他の目的、利点は以下の説明から明らかとなろ
う。
Other objects and advantages will become apparent from the description below.

好ましい実施例の説明 本発明の過共晶アルミニウム・珪素鋳造合金は
重量パーセントで次の概略組成を有する。
DESCRIPTION OF PREFERRED EMBODIMENTS The hypereutectic aluminum-silicon casting alloy of the present invention has the following approximate composition in weight percent.

珪素 16〜19% マグネシウム 0.4〜0.7% 鉄 1.4%まで マンガン 0.3%まで 銅 0.37%まで アルミニウム 残部 マグネシウムは合金を強化するように作用し、
鉄およびマンガンは合金高度を高め、その熱膨張
率を低め、その機械加工性を高め、高温で機械的
特性を維持するのを助け、ダイキヤスト用途での
耐はんだ性を高める傾向がある。
Silicon 16-19% Magnesium 0.4-0.7% Iron up to 1.4% Manganese up to 0.3% Copper up to 0.37% Aluminum Balance Magnesium acts to strengthen the alloy,
Iron and manganese tend to increase the alloying degree, lower its coefficient of thermal expansion, increase its machinability, help maintain mechanical properties at high temperatures, and increase its solder resistance in die casting applications.

銅成分は0.37%以下に保たれ、好ましくは最低
限に保たれる。銅濃度をかなり抑えることによつ
て、塩化環境に対する合金の耐腐蝕性がかなり改
善され、強度、耐摩耗性および耐腐蝕性を必要と
する船用エンジンのエンジンブロツクその他の部
品として特に有用な合金となる。この合金は5%
の塩化ナトリウム溶液に200時間さらしたときに
1%未満の重量損失がある。
Copper content is kept below 0.37%, preferably kept to a minimum. By significantly reducing the copper concentration, the corrosion resistance of the alloy in chlorinated environments is significantly improved, making the alloy particularly useful in engine blocks and other parts of marine engines requiring strength, wear resistance, and corrosion resistance. Become. This alloy is 5%
There is less than 1% weight loss when exposed to sodium chloride solution for 200 hours.

この合金は少量、それぞれ0.2%までの残留硬
化性元素、たとえば、ニツケル、クロム、亜鉛ま
たはチタンも含有してもよい。
The alloy may also contain small amounts of residual hardening elements, up to 0.2% each, such as nickel, chromium, zinc or titanium.

この合金は耐摩耗性に優れ、上述の珪素成分で
流動性にも優れている。
This alloy has excellent wear resistance and has excellent fluidity due to the silicon component mentioned above.

銅成分が最小限に抑えられているので、アルミ
ニウム・珪素・銅共晶はそれ相応に排除され、そ
の結果、合金の凝固範囲は比較的挟く、150〓未
満、好ましくは100〓以下である。
Since the copper content is minimized, the aluminum-silicon-copper eutectic is correspondingly eliminated, so that the solidification range of the alloy is relatively narrow, less than 150〓, preferably less than 100〓. .

良好な流動性および狭い凝固範囲のこれらの特
性は公知の過共晶三元素アルミニウム・珪素鋳造
合金よりも鋳造性で改善された合金を与える。
These properties of good flowability and narrow solidification range provide an alloy with improved castability over known hypereutectic ternary aluminum-silicon casting alloys.

さらに、本発明の合金は20000〜35000psiの極
限引張強さと、15000〜30000psiの降伏強さと、
0〜2%の伸び率パーセントとを有する。
Furthermore, the alloy of the present invention has an ultimate tensile strength of 20,000 to 35,000 psi, a yield strength of 15,000 to 30,000 psi,
and an elongation percentage of 0-2%.

溶液からの冷却時、珪素は比較的大きい結晶を
析出させる。しかしながら、金属中子を使用して
ブロツクを鋳造する際、金属中子への急速な熱の
放散のために珪素結晶がほとんどない各シリンダ
ボアを境する領域が生じる。通常のゆつくりした
冷却では、この領域は約0.02インチの厚さを有
し、一方、急速な冷却条件下ではこの領域の厚さ
は0.05インチまでとなる。珪素結晶が欠如してい
るがために、この領域の耐摩耗性は低くなる。従
来は、シリンダボア表面に珪素結晶が露出するよ
うにかなりの機械加工を行なつてこの珪素結晶欠
如領域を除いているのが普通であつた。
Upon cooling from solution, silicon precipitates relatively large crystals. However, when casting a block using a metal core, there is an area bordering each cylinder bore that is devoid of silicon crystals due to the rapid dissipation of heat into the metal core. Under normal slow cooling, this region has a thickness of about 0.02 inches, while under rapid cooling conditions this region can be up to 0.05 inches thick. Due to the lack of silicon crystals, the wear resistance in this area is low. Conventionally, it has been common practice to perform extensive machining to expose the silicon crystal on the cylinder bore surface to remove this area lacking silicon crystal.

しかしながら、本発明の合金でエンジンブロツ
クを鋳造した場合、乾燥砂または塩の中子を資料
することによつて珪素結晶欠如領域がなくなるこ
とがわかつた。このような中子は溶融合金からの
熱の伝達を遅らせ、比較的ゆつくりした速度で鋳
造物を冷却させるのである。この場合、珪素結晶
はシリンダボアの表面に広がり、激しい機械加工
が不要となり、エンジンブロツクの製造コストを
かなり減じる。
However, when engine blocks are cast from the alloy of the present invention, it has been found that dry sand or salt cores eliminate the areas lacking silicon crystals. Such a core retards the transfer of heat from the molten alloy, allowing the casting to cool at a relatively slow rate. In this case, the silicon crystals spread over the surface of the cylinder bore, eliminating the need for extensive machining and considerably reducing the manufacturing costs of the engine block.

以下に、本発明の合金の特殊な実施例をその機
械特性と共に示す。
In the following, specific examples of alloys according to the invention are presented together with their mechanical properties.

実施例 合金組成(重量%) 珪素 16.90 鉄 0.92 銅 0.14 マンガン 0.12 マグネシウム 0.41 アルミニウム 81.51 凝固範囲 79〓 腐蝕重量損失 (5%NaCl溶液に200時間) 0.18% 極限引張強さ 31157psi 降伏強さ 31157psi 伸び率パーセント 0 実施例 合金組成(重量%) 珪素 16.80 鉄 1.03 銅 0.33 マンガン 0.18 マグネシウム 0.50 アルミニウム 81.16 凝固範囲 86〓 腐蝕重量損失 (5%NaCl溶液に200時間) 0.49% 極限引張強さ 29164psi 降伏強さ 29164psi 伸び率パーセント 0Example Alloy composition (wt%) Silicon 16.90 iron 0.92 Copper 0.14 Manganese 0.12 Magnesium 0.41 Aluminum 81.51 Coagulation range 79〓 corrosion weight loss (200 hours in 5% NaCl solution) 0.18% Ultimate tensile strength 31157psi Yield strength 31157psi Elongation percentage 0 Example Alloy composition (wt%) Silicon 16.80 iron 1.03 Copper 0.33 Manganese 0.18 Magnesium 0.50 Aluminum 81.16 Coagulation range 86〓 corrosion weight loss (200 hours in 5% NaCl solution) 0.49% Ultimate tensile strength 29164psi Yield strength 29164psi Elongation percentage 0

Claims (1)

【特許請求の範囲】 1 内燃機関用の構成部品であつて、過共晶アル
ミニウム・珪素合金からなる鋳造物を含み、この
合金が、本質的に、16〜19重量%の珪素と、0.4
〜0.7重量%のマグネシウムと、1.4重量%までの
鉄と、0.3重量%までのマンガンと、0.37重量%
までの銅と、残りアルミニウムとからなり、この
合金が優れた流動性と150〓未満の凝固範囲とを
有することを特徴とする構成部品。 2 特許請求の範囲第1項記載の構成部品におい
て、前記鋳造物が均一に分布し珪素結晶を含有す
ることを特徴とする構成部品。 3 特許請求の範囲第1項記載の構成部品におい
て、前記合金が20000〜35000psiの極限引張強さ
と、15000〜30000psiの降伏強さと、0〜2%の
伸び率パーセントとを有することを特徴とする構
成部品。 4 特許請求の範囲第1項記載の構成部品におい
て、この構成部品が少なくとも1つのシリンダボ
アを有するエンジンブロツクであり、前記ブロツ
クが、鋳造時に、前記シリンダボアの各々を境す
る領域を含めてブロツク全体に均一に分布する析
出珪素結晶を含有していることを特徴とする構成
部品。 5 特許請求の範囲第1項記載の構成部品におい
て、前記鋳造物が5%の塩化ナトリウム溶液に周
囲温度で200時間さらしたときに1.0%未満の重量
損失を持つことを特徴とする構成部品。 6 エンジンブロツクを鋳造する方法であつて、
鋳造エンジンブロツクにシリンダボアを形成する
ように構成、配置した複数の非金属中子を有する
鋳型を形成する段階と、本質的に16〜19重量%の
珪素と、0.4〜0.7重量%のマグネシウムと、1.4重
量%までの鉄と、0.3重量%までのマンガンと、
0.37重量%までの銅と、残りアルミニウムからな
り、150〓未満の凝固範囲を有し、周囲温度で200
時間5%の塩化ナトリウム溶液にさらされたとき
に1%未満の重量損失がある過共晶アルミニウ
ム・珪素合金を作る段階と、この合金を鋳型に注
入して前記中子と接触させる段階と、鋳造合金を
冷却して全体にほぼ均一に分布する析出珪素結晶
を有する凝固した鋳造エンジンブロツクを作る段
階とを包含することを特徴とする方法。
Claims: 1. A component for an internal combustion engine, comprising a casting of a hypereutectic aluminum-silicon alloy, which alloy consists essentially of 16-19% by weight of silicon and 0.4% by weight of silicon.
~0.7 wt% magnesium, up to 1.4 wt% iron, up to 0.3 wt% manganese, and 0.37 wt%
Component consisting of up to 100% of copper and the remaining aluminum, characterized in that this alloy has excellent flow properties and a solidification range of less than 150%. 2. A component according to claim 1, characterized in that the casting is uniformly distributed and contains silicon crystals. 3. A component according to claim 1, characterized in that the alloy has an ultimate tensile strength of 20,000 to 35,000 psi, a yield strength of 15,000 to 30,000 psi, and a percent elongation of 0 to 2%. Component part. 4. The component according to claim 1, wherein the component is an engine block having at least one cylinder bore, and when the block is cast, the entire block including the area bordering each of the cylinder bores is A component characterized in that it contains uniformly distributed precipitated silicon crystals. 5. A component according to claim 1, characterized in that the casting has a weight loss of less than 1.0% when exposed to a 5% sodium chloride solution for 200 hours at ambient temperature. 6. A method of casting an engine block, comprising:
forming a mold having a plurality of non-metallic cores configured and arranged to form cylinder bores in a cast engine block, and comprising essentially 16-19% by weight silicon and 0.4-0.7% by weight magnesium; up to 1.4% iron and up to 0.3% manganese,
Consisting of up to 0.37% copper by weight and the balance aluminum, it has a solidification range of less than 150% and has a solidification range of less than 200% at ambient temperature.
creating a hypereutectic aluminum-silicon alloy that has a weight loss of less than 1% when exposed to a 5% sodium chloride solution for an hour; pouring the alloy into a mold and contacting the core; cooling the cast alloy to produce a solidified cast engine block having precipitated silicon crystals substantially uniformly distributed throughout.
JP61086935A 1985-04-15 1986-04-15 Pereutectic aluminum/silicon cast alloy Granted JPS621840A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/723,058 US4603665A (en) 1985-04-15 1985-04-15 Hypereutectic aluminum-silicon casting alloy
US723058 1985-04-15

Publications (2)

Publication Number Publication Date
JPS621840A JPS621840A (en) 1987-01-07
JPS6314057B2 true JPS6314057B2 (en) 1988-03-29

Family

ID=24904655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61086935A Granted JPS621840A (en) 1985-04-15 1986-04-15 Pereutectic aluminum/silicon cast alloy

Country Status (7)

Country Link
US (1) US4603665A (en)
JP (1) JPS621840A (en)
AU (1) AU564449B2 (en)
CA (1) CA1270382A (en)
DE (1) DE3612675C3 (en)
GB (1) GB2173817B (en)
SE (1) SE501750C2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966220A (en) * 1987-09-08 1990-10-30 Brunswick Corporation Evaporable foam casting system utilizing a hypereutectic aluminum-silicon alloy
JPH03501229A (en) * 1987-09-08 1991-03-22 ブランズウイック、コーポレーション Evaporative foam casting system using hypereutectic aluminum silicon alloy
US4969428A (en) * 1989-04-14 1990-11-13 Brunswick Corporation Hypereutectic aluminum silicon alloy
US5234514A (en) * 1991-05-20 1993-08-10 Brunswick Corporation Hypereutectic aluminum-silicon alloy having refined primary silicon and a modified eutectic
US5129378A (en) * 1991-09-27 1992-07-14 Brunswick Corporation Two-cycle marine engine having aluminum-silicon alloy block and iron plated pistons
US5165464A (en) * 1991-09-27 1992-11-24 Brunswick Corporation Method of casting hypereutectic aluminum-silicon alloys using a salt core
DE4212716A1 (en) * 1992-04-16 1993-10-21 Ks Aluminium Technologie Ag IC engine cylinder lining - made of hypereutectic aluminium@-silicon@ alloy whose outer surface is completely oxide-free prior to casting cylinder
US5355930A (en) * 1992-09-04 1994-10-18 Brunswick Corporation Method of expendable pattern casting of hypereutectic aluminum-silicon alloys using sand with specific thermal properties
US5355931A (en) * 1992-09-04 1994-10-18 Brunswick Corporation Method of expendable pattern casting using sand with specific thermal properties
US5253625A (en) * 1992-10-07 1993-10-19 Brunswick Corporation Internal combustion engine having a hypereutectic aluminum-silicon block and aluminum-copper pistons
US5290373A (en) * 1993-04-23 1994-03-01 Brunswick Corporation Evaporable foam casting system utilizing an aluminum-silicon alloy containing a high magnesium content
US5383429A (en) * 1994-02-23 1995-01-24 Brunswick Corporation Hypereutectic aluminum-silicon alloy connecting rod for a two-cycle internal combustion engine
US5755271A (en) * 1995-12-28 1998-05-26 Copeland Corporation Method for casting a scroll
US6024157A (en) * 1997-11-21 2000-02-15 Brunswick Corporation Method of casting hypereutectic aluminum-silicon alloys using an evaporable foam pattern and pressure
US6332906B1 (en) 1998-03-24 2001-12-25 California Consolidated Technology, Inc. Aluminum-silicon alloy formed from a metal powder
US5965829A (en) * 1998-04-14 1999-10-12 Reynolds Metals Company Radiation absorbing refractory composition
DE10220656A1 (en) * 2002-05-08 2003-11-20 Bayerische Motoren Werke Ag Process for improving the casting behavior of a super-eutectic aluminum-silicon alloy used in the manufacture of a crankcase of combustion engines comprises adding boron to a mixture of a melt of an aluminum-silicon alloy
KR100632458B1 (en) 2004-04-30 2006-10-11 아이치 세이코우 가부시키가이샤 Accelerometer
US10370742B2 (en) 2013-03-14 2019-08-06 Brunswick Corporation Hypereutectic aluminum-silicon cast alloys having unique microstructure
US9650699B1 (en) 2013-03-14 2017-05-16 Brunswick Corporation Nickel containing hypereutectic aluminum-silicon sand cast alloys
US9109271B2 (en) * 2013-03-14 2015-08-18 Brunswick Corporation Nickel containing hypereutectic aluminum-silicon sand cast alloy
CN104711462A (en) * 2015-03-31 2015-06-17 兰州理工大学 Preparation method of in-situ synthesized hypereutectic aluminum-silicon alloy alterant

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB371740A (en) * 1931-09-08 1932-04-28 Schmidt Gmbh Karl Improved aluminium alloys
GB537512A (en) * 1938-12-23 1941-06-25 British Thomson Houston Co Ltd Improvements relating to the heat treatment of aluminium base alloys
GB563994A (en) * 1941-12-01 1944-09-08 Nat Smelting Co Improvements in or relating to aluminium base alloys
GB616413A (en) * 1946-09-05 1949-01-20 Rupert Martin Bradbury An improved aluminium base alloy
JPS5134367B2 (en) * 1971-08-28 1976-09-25
FR2183220B1 (en) * 1972-05-04 1976-05-07 Metal Leve Sa
CA1017601A (en) * 1973-04-16 1977-09-20 Comalco Aluminium (Bell Bay) Limited Aluminium alloys for internal combustion engines
US4139400A (en) * 1974-06-27 1979-02-13 Comalco Aluminium (Bell Bay) Limited Superplastic aluminium base alloys
JPS5439311A (en) * 1977-09-02 1979-03-26 Honda Motor Co Ltd Aluminum casting alloy for internallcombustion engine cylinder
CA1239811A (en) * 1983-09-07 1988-08-02 Showa Aluminum Kabushiki Kaisha Extruded aluminum alloys having improved wear resistance and process for preparing same

Also Published As

Publication number Publication date
SE8601635D0 (en) 1986-04-11
DE3612675C2 (en) 1989-08-03
JPS621840A (en) 1987-01-07
GB2173817B (en) 1988-12-21
DE3612675A1 (en) 1986-10-16
AU5608186A (en) 1986-10-23
GB8608550D0 (en) 1986-05-14
SE8601635L (en) 1986-10-16
CA1270382A (en) 1990-06-19
US4603665A (en) 1986-08-05
AU564449B2 (en) 1987-08-13
SE501750C2 (en) 1995-05-08
GB2173817A (en) 1986-10-22
DE3612675C3 (en) 1996-04-25

Similar Documents

Publication Publication Date Title
JPS6314057B2 (en)
US4969428A (en) Hypereutectic aluminum silicon alloy
US4821694A (en) Hypereutectic aluminum-silicon casting alloy
EP1975262B1 (en) Aluminum alloys for casting, aluminum alloy castings and process for producing aluminum alloy castings
US7959856B2 (en) Aluminum alloys for casting and aluminum alloy castings
US5303682A (en) Cylinder bore liner and method of making the same
US6669792B2 (en) Process for producing a cast article from a hypereutectic aluminum-silicon alloy
DE69024808T2 (en) MOLDING A1-BASE MODIFIED SI-CU-NI-MG-MN-ZR-HYPEREUTECTIC ALLOYS
US5253625A (en) Internal combustion engine having a hypereutectic aluminum-silicon block and aluminum-copper pistons
US5234514A (en) Hypereutectic aluminum-silicon alloy having refined primary silicon and a modified eutectic
CZ293797B6 (en) Cylinder head casting or engine block casting of aluminium alloy and process for producing thereof
US3765877A (en) High strength aluminum base alloy
JP4093221B2 (en) Aluminum alloy for casting, aluminum alloy casting and method for producing the same
JPH08134578A (en) Aluminum alloy for die casting, excellent in high temperature strength and toughness, and its production
JP2858838B2 (en) Aluminum cast alloy and method for producing the same
JP3875338B2 (en) Aluminum alloy for piston
US5669990A (en) Si-containing magnesium alloy for casting with melt thereof
JPH02221349A (en) Lightweight casting material
JP3915739B2 (en) Aluminum alloy for casting with excellent high temperature strength
US2357449A (en) Aluminum alloy
JPH10158771A (en) Aluminum alloy for casting, excellent in pressure resistance
JPS61246339A (en) Molten-metal-forged high-toughness aluminum alloy and its manufacture
JPH0213020B2 (en)
JP2022147009A (en) Heat-resistant aluminum alloy and heat-resistant aluminum alloy member
JPS6126743A (en) Heat resistant and high strength aluminum alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees