JPS63140044A - Treatment of slag generated in refining of stainless steel - Google Patents

Treatment of slag generated in refining of stainless steel

Info

Publication number
JPS63140044A
JPS63140044A JP61287250A JP28725086A JPS63140044A JP S63140044 A JPS63140044 A JP S63140044A JP 61287250 A JP61287250 A JP 61287250A JP 28725086 A JP28725086 A JP 28725086A JP S63140044 A JPS63140044 A JP S63140044A
Authority
JP
Japan
Prior art keywords
slag
molten
chromium oxide
reducing agent
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61287250A
Other languages
Japanese (ja)
Other versions
JP2632676B2 (en
Inventor
Yuzo Saida
斉田 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP28725086A priority Critical patent/JP2632676B2/en
Publication of JPS63140044A publication Critical patent/JPS63140044A/en
Application granted granted Critical
Publication of JP2632676B2 publication Critical patent/JP2632676B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To easily and economically recover chromium and to obtain a useful slag by applying stirring to the chromium oxide-contg. slag discharged in a molten state and adding a reducing agent of the amt. enough to reduce chromium oxide to said slag. CONSTITUTION:After a stainless steel is refined under the atm. pressure in a converter 1, the molten steel 4 is collected into a ladle 3 and the chromium oxide-contg. slag 5 is discharged in the molten state into a slag pot 2. An inert gas such as Ar or N2 is blown from a lance pipe 6 to the molten slag 5 in the slag pot 2 to stir the molten slag. The reducing agent 8 such as Fe-Si or Al dross is added to the slag 5 simultaneously therewith. The reducing agent 8 is added thereto at the amt. enough to reduce the chromium oxide in the slag 5. The treated matter after the above-mentioned treatment is thereby solidified and the solidified matter is taken out of the slag pot 2. The solidified matter is pulverized and the metal component is fractionated and collected. The chromium component is thereby recovered and the slag contg. the metal oxide at a lower ratio and having the high additive value in terms of utilization is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ステンレス鋼の精錬時に発生するスラグの処
理法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for treating slag generated during refining of stainless steel.

〔従来の技術および問題点〕[Conventional technology and problems]

ステンレス鋼の如き1通常は12%以上のクロムを含有
る含クロム溶鋼の脱炭方法は、−酸化炭素分圧(Pco
)を低下させるために希釈ガスを吹き込む希釈脱炭法と
、中期以降での脱炭を減圧下で行う真空脱炭法が広く用
いられている。前者は一般にAOD法、a者はVOD法
とよばれ、いずれも仕上脱炭工程において、溶鋼中のC
%Cr)の酸化損失を抑えながら脱炭を進行させようと
するものである。そのさい、スラグ処理に関しては1次
のような処方が採用されている。
The decarburization method for chromium-containing molten steel, which usually contains 12% or more chromium, such as stainless steel, is based on -carbon oxide partial pressure (Pco
), and the vacuum decarburization method, in which decarburization is performed under reduced pressure after the middle stage, are widely used. The former method is generally called the AOD method, and the method a is called the VOD method.
%Cr) to proceed with decarburization while suppressing the oxidation loss. At this time, the following first-order recipe is adopted for slag treatment.

Ta1.AOD法の場合 希釈ガスと酸素ガスの混合比によってPゎ。を下げるも
のであり、これには自から限界があるので。
Ta1. In the case of AOD method, Pゎ depends on the mixing ratio of dilution gas and oxygen gas. This is because it has its own limits.

〔%Cr)の酸化は避けられず、特に〔%C)濃度の低
下に伴って〔%Cr)の酸化損失も増大しスラグ中の酸
化クロム(Cry’s)濃度が高くなる。
Oxidation of [%Cr) is unavoidable, and in particular, as the [%C] concentration decreases, the oxidation loss of [%Cr) also increases, and the chromium oxide (Cry's) concentration in the slag increases.

この酸化されたクロムを回収するために、一般にFe−
5tと造滓剤(Cab、CaF、等)をAOD炉内に投
入して還元処理するのが通常である。この還元処理を経
たスラグはそのまま炉刀)ら排出され廃棄される。
In order to recover this oxidized chromium, Fe-
Usually, 5 tons and a slag forming agent (Cab, CaF, etc.) are put into an AOD furnace and subjected to reduction treatment. The slag that has undergone this reduction treatment is directly discharged from the furnace and disposed of.

この方法の場合、炉内でスラグを還元処理するのでその
ための還元時間を要し、また還元によってスラグの流動
性が向上して炉耐火物の溶損の問題が付きまとう。
In this method, the slag is reduced in the furnace, which requires time for reduction, and the reduction improves the fluidity of the slag, causing the problem of melting of the furnace refractories.

(b)、VOD法の場合 仕上脱炭工程では真空排気装置によって減圧されるので
peoは極めて低く下げることが可能であり、この工程
では〔%Cr)の酸化ロスは殆どない。しかし、この真
空処理での生産性および作業性の点からこの工程前の〔
%C〕値を0.2〜0.5%程度まで脱炭しておく方法
が採られ、この前工程の粗脱炭時にCrJs含有スラグ
が発生する。す □゛なわち1電気炉や転炉において0
.5%以下にまで粗脱炭することが行われるが、いずれ
も大気圧下での脱炭のためにPCOが高くなり、脱炭時
に比較的多量の〔%Cr)が酸化され、酸化クロムとな
ってスラグとなる。
(b) In the case of the VOD method, in the final decarburization step, the pressure is reduced by a vacuum evacuation device, so peo can be lowered to an extremely low level, and there is almost no oxidation loss of [%Cr] in this step. However, from the viewpoint of productivity and workability in this vacuum treatment, [
%C] is decarburized to about 0.2 to 0.5%, and CrJs-containing slag is generated during the rough decarburization in the previous step. □That is, 0 in electric furnaces and converter furnaces.
.. Rough decarburization is performed to 5% or less, but in both cases PCO increases due to decarburization under atmospheric pressure, and a relatively large amount of [%Cr] is oxidized during decarburization, resulting in chromium oxide and It becomes slag.

この酸化されたクロムは一般に以下のように処理される
This oxidized chromium is generally treated as follows.

T11.AOD法の場合と同様に電気炉や転炉工程にお
いてFe−3tと造滓剤(CaO,CaFg等)を投入
して酸化クロム等を還元する。
T11. As in the case of the AOD method, Fe-3t and a slag-forming agent (CaO, CaFg, etc.) are introduced in the electric furnace or converter process to reduce chromium oxide and the like.

(2)、電気炉や転炉では還元を行わず、酸化クロムは
スラグとして排出し、冷却したあと破砕機によって破砕
し、この破砕したスラグを電気炉にリサイクルする。
(2) Reduction is not performed in an electric furnace or converter, and chromium oxide is discharged as slag, cooled and then crushed by a crusher, and the crushed slag is recycled to the electric furnace.

(3)、前記(2)の電気炉にリサイクルすることは止
めてそのまま廃棄処分する。
(3) Stop recycling to the electric furnace mentioned in (2) above and dispose of it as is.

しかし、このVOD法のスラグ処理において。However, in the slag processing of this VOD method.

+11の方法では炉内で還元するのでそのための還元時
間を要して生産性が低下すると共にスラグの流動性が著
しく向上するので炉の耐火物の溶損が大きくなるという
問題があり、(2)や(3)の方法ではスラグカット時
にスラグと共にメタルも不可避的にカットされて歩留り
が低下するとともに、(2)のリサイクルの場合にもス
ラグをいったん冷却して再利用するので熱エネルギーの
損失が大きくまた破砕などの後処理を要するという゛問
題があった。(3)のように廃棄処分する場合には、高
価なりロム分を廃棄することになつて責源の無駄が生じ
また製造原価面でもコトスアップにつながると共に3高
クロム濃度のスラグを廃棄することによって6価クロム
が溶出するという公害問題の発生が懸念される。
In the +11 method, since the reduction is carried out in the furnace, the reduction time is required, which reduces productivity, and the fluidity of the slag is significantly improved, which increases the erosion of the refractories in the furnace. ) and (3), metal is inevitably cut along with the slag during slag cutting, resulting in a lower yield.In addition, in the case of recycling (2), the slag is cooled and reused, resulting in a loss of thermal energy. There was a problem that the material was large and required post-processing such as crushing. In the case of disposal as in (3), the expensive ROM content will be discarded, resulting in waste of resources, and will also lead to an increase in manufacturing costs. There are concerns that a pollution problem will arise due to the elution of hexavalent chromium.

このような問題を解決する方法として、同一出願人に係
る特公昭56−17405号公報において、かような酸
化クロム含有スラグをそのまま減圧下における脱ガス工
程に移行せしめ、該スラグ中の酸化クロムを溶鋼中の残
留炭素によって還元する方法を提案した。
As a method to solve such problems, in Japanese Patent Publication No. 17405/1985, filed by the same applicant, such chromium oxide-containing slag is directly transferred to a degassing process under reduced pressure, and the chromium oxide in the slag is removed. A method of reduction using residual carbon in molten steel was proposed.

この特公昭56−17405号公報の方法によると、脱
ガス工程前の作業性と作業能率が向上し、またスラグカ
ー/ )作業の省略によってスラグ中への懸濁メタルの
溶出の問題が回避されると共にクロム歩留りや原価面で
大幅な向上が達成される。
According to the method disclosed in Japanese Patent Publication No. 56-17405, the workability and efficiency before the degassing step are improved, and the problem of elution of suspended metals into the slag is avoided by omitting the slag car/) work. At the same time, significant improvements can be achieved in terms of chromium yield and cost.

しかし、この方法は、AIやTi等の酸化されやすい合
金元素を含有する鋼種を溶製する場合や極低炭素鋼を溶
製する場合にはその実施に問題があった。その理由は、
AIやTi等を含有する鋼種では多量の酸化性スラグに
よってその歩留りが低下すると共に成分調整の面でも目
的範囲に的中させるのが難しくなるためであり、極低炭
素鋼でも多量のスラグの存在によって気体酸素との脱炭
反応を妨害するためである。したがってこの種の鋼を溶
製する場合には、特公昭56−17405号公報の方法
が採用できず、従前の方法によって酸化クロム含有スラ
グを処理しているのが実情である。
However, this method has problems in its implementation when steel types containing easily oxidized alloy elements such as AI and Ti are produced, or when ultra-low carbon steel is produced. The reason is,
This is because steel types containing AI, Ti, etc. have a large amount of oxidizing slag, which lowers their yield and makes it difficult to hit the target range in terms of composition adjustment.Even ultra-low carbon steel has a large amount of slag. This is to prevent the decarburization reaction with gaseous oxygen. Therefore, when producing this type of steel, the method disclosed in Japanese Patent Publication No. 56-17405 cannot be adopted, and the actual situation is that chromium oxide-containing slag is treated by conventional methods.

〔発明の目的〕[Purpose of the invention]

本発明は0以上のようなステンレス鋼精錬において発生
する酸化クロム含有スラグの処理に関する種々の問題を
解決することを目的としてなされたものである。より具
体的には9本発明は前記のような金属酸化物を含有する
スラグから有用金属を簡単に回収すること、そして金属
酸化物の含有量が低いスラグを製造することによってス
ラグ利川面での付加価値を高めること、そして最終廃棄
スラグの無害化を達成すること、を主たる目的とする。
The present invention was made for the purpose of solving various problems related to the treatment of chromium oxide-containing slag generated in stainless steel refining. More specifically, the present invention aims to easily recover useful metals from slag containing metal oxides as described above, and to produce slag with a low content of metal oxides, thereby increasing the slag production in the river. The main objectives are to increase added value and to make final waste slag harmless.

〔発明の構成〕[Structure of the invention]

該目的を達成せんとする本発明の要旨とするところは、
ステンレス鋼の精錬時における大気圧下での溶解または
精錬工程で発生する酸化クロム含有スラグを溶融状態の
まま別の容器に排出し、該容器内の溶融スラグに撹拌を
付与し且つ酸化クロムを還元するに十分な量の還元剤を
添加することを特徴とする。
The gist of the present invention, which aims to achieve the object, is as follows:
The chromium oxide-containing slag generated during the melting or refining process under atmospheric pressure during stainless steel refining is discharged in a molten state into a separate container, the molten slag in the container is agitated, and the chromium oxide is reduced. It is characterized by adding a sufficient amount of reducing agent to

すなわち本発明では、電気炉や転炉における大気圧下で
の含クロム溶銑の精錬工程で発生するスラグをいったん
該精錬炉からメタル(含クロム溶銑または溶!ll)と
は分離して別の容器に排滓し。
That is, in the present invention, the slag generated in the refining process of chromium-containing hot metal under atmospheric pressure in an electric furnace or converter is once separated from the metal (chromium-containing hot metal or molten pig iron) from the refining furnace and placed in a separate container. Exclude the slag.

この容器内のスラグが溶融状態にある間に撹拌付与と還
元剤添加を行うことによってスラグ中の金属酸化物、特
に酸化クロムを還元してメタル回収を行うものであり、
スラグだけを精錬工程から取り出して別の容器で“還元
処理することに特徴がある。
While the slag in the container is in a molten state, stirring is performed and a reducing agent is added to reduce metal oxides in the slag, especially chromium oxide, and recover metal.
The unique feature is that only the slag is removed from the refining process and subjected to reduction treatment in a separate container.

本発明法を図面を参照しながら具体的に説明すると、第
1図は、大気圧下での代表的な脱炭炉である転炉で発生
したスラグを処理する方法を図解的に示したもので、転
炉1からスラグだけをスラグボット2に溶融状態で排出
する。3は溶鋼取鍋である。VOD法の場合には、転炉
1において大気圧下で粗脱炭した含クロム溶ta4はこ
の取鍋3に出鋼して真空脱ガス工程へ移される。
To specifically explain the method of the present invention with reference to the drawings, Figure 1 schematically shows a method for treating slag generated in a converter, which is a typical decarburization furnace under atmospheric pressure. Then, only the slag in a molten state is discharged from the converter 1 to the slagbot 2. 3 is a molten steel ladle. In the case of the VOD method, chromium-containing molten ta4 that has been roughly decarburized under atmospheric pressure in the converter 1 is tapped into the ladle 3 and transferred to a vacuum degassing process.

スラグボット2内に取り出された溶融状態のスラグ5に
対して、浴面よりランスバイブロを挿入し、このランス
バイブロを通じてArやN2ガスなどの不活性ガスを吹
き込むことによってスラグ5に撹拌を付与し、浴面上よ
り還元剤8を投入する。還元剤8としてはFe−5tや
^lドロスなどを使用する。還元剤8は少なくとも酸化
クロムを還元するに十分な量で添加する。もちろん酸化
クロムに加えて他の金属酸化物例えば酸化鉄も還元され
るに十分な量で還元剤を添加してもよい。
A lance vibro is inserted into the molten slag 5 taken out into the slagbot 2 from the bath surface, and an inert gas such as Ar or N2 gas is blown through the lance vibro to impart agitation to the slag 5. Reducing agent 8 is added from above the bath surface. As the reducing agent 8, Fe-5t, ^l dross, or the like is used. The reducing agent 8 is added in an amount sufficient to reduce at least chromium oxide. Of course, a reducing agent may be added in an amount sufficient to reduce other metal oxides such as iron oxide in addition to chromium oxide.

溶融スラグへのガス吹き込みによる撹拌を実施すると、
これによるスラグの冷却が生ずるが、還元剤の投入によ
る還元反応の進行により発熱が生じるので、ガス吹き込
みの時期と吹き込み量を還元剤の投入にあわせて適切に
行うならば、溶融状態を維持したままで酸化クロムの還
元処理が行えることがわかった0例えば、  Fe−3
(や^lドロスなどの還元剤を溶融した酸化クロム含有
スラグに投入すると2次式のような還元反応が進行する
When stirring is performed by blowing gas into the molten slag,
This causes cooling of the slag, but heat generation occurs due to the progress of the reduction reaction due to the addition of the reducing agent, so if the timing and amount of gas injection are adjusted appropriately to the addition of the reducing agent, the slag can be maintained in a molten state. It has been found that reduction treatment of chromium oxide can be performed as is. For example, Fe-3
When a reducing agent such as dross is poured into molten chromium oxide-containing slag, a reduction reaction occurs according to the quadratic equation.

3Si + 2CrzOs =  3 Siow + 
4Cr +88.9Kcal/mol  ・ ・ +1
)2^1+CrzO==AIz05+2Cr+130.
5Kcal/mol   HH(21すなわち、(l)
や〔2)式に示されるとおり、 Cr1Osの還元反応
は発熱反応であるので、この反応を進行させる間にその
発熱によって撹拌ガスから持ち込まれる冷熱を補うこと
ができ、スラグを溶融状態に保ったまま処理することが
できる。また9反応の終期はスラグA度の急激な低下を
もって判別することもできる。反応が終了したらその処
理物の全体をスラグボット2内で凝固させる。そして凝
固した処理物の全体をスラグポット2から固体として排
出し、その固体をクラッシュすることによってメタル分
をスラグ分から簡単に分別採取することができる。
3Si + 2CrzOs = 3 Siow +
4Cr +88.9Kcal/mol ・ ・ +1
)2^1+CrzO==AIz05+2Cr+130.
5Kcal/mol HH (21 i.e. (l)
As shown in equation [2], the reduction reaction of Cr1Os is an exothermic reaction, so while this reaction was progressing, the heat generated could compensate for the cold heat brought in from the stirring gas, keeping the slag in a molten state. It can be processed as is. Further, the final stage of the 9 reaction can also be determined by a rapid decrease in the slag A degree. After the reaction is completed, the entire treated product is solidified within the slugbot 2. Then, the entire solidified material to be treated is discharged as a solid from the slag pot 2, and by crushing the solid, metal components can be easily separated and collected from the slag.

第2図は、電気炉によって発生したスラグを処理する場
合を図解的に示したものである。電気炉9によって炭素
質還元剤の存在下で原料を溶解処理して含クロム溶銑ま
たは溶鋼10を製造するさいに酸化クロム含有スラグ1
1が発生するが、このスラグ11を含クロム溶銑または
tlllloと共にいったん取!1&12に収容する。
FIG. 2 schematically shows a case in which slag generated by an electric furnace is treated. When producing chromium-containing hot metal or molten steel 10 by melting raw materials in the presence of a carbonaceous reducing agent in an electric furnace 9, chromium oxide-containing slag 1 is produced.
1 is generated, but this slag 11 is once removed together with chromium-containing hot metal or tllllo! Accommodates in 1 & 12.

ついで、耐火物を内張した容器13にスラグ11だけを
分別して溶融状態のまま排出する。そして、スラグ11
の浴面上よりインペラー撹拌翼14をスラグ11内に挿
入してスラグr1を撹拌し、スラグ11の浴面上から還
元剤8を投入して還元処理を行う。この場合も第1図の
場合と同様に還元反応の進行に伴って発熱するので溶融
状態を維持したまま還元処理を進行させることができる
。この還元処理を終えたら、溶融状態のままスラグポッ
トにその全体を移してメタル分を比重差で沈降させ、そ
の全体をスラグボット内で冷却凝固させる。そして、第
1図で説明したのと同様にしてメタル分をスラグ分から
分別採取する。
Then, only the slag 11 is separated into a container 13 lined with a refractory material and discharged in a molten state. And slag 11
The impeller stirring blade 14 is inserted into the slag 11 from above the bath surface to stir the slag r1, and the reducing agent 8 is introduced from above the bath surface of the slag 11 to perform a reduction treatment. In this case, as in the case of FIG. 1, heat is generated as the reduction reaction progresses, so the reduction process can proceed while maintaining the molten state. After this reduction treatment is completed, the entire molten metal is transferred to a slag pot, the metal content is allowed to settle due to the difference in specific gravity, and the entire molten metal is cooled and solidified in the slag pot. Then, the metal component is separated and collected from the slag in the same manner as described in FIG.

なお、第1図の処理におけるガス撹拌を第2図のような
インペラー撹拌に換えることができるし逆に第2図の処
理におけるインペラー撹拌を第1図のガス撹拌に換える
ことができることは勿論である。また、このような撹拌
処方の他に、ポーラスプラグを底部に備えたガス底吹き
取鍋をスラグ還元処理用の容器に使用して底吹き撹拌を
行う方法、更には、空き転炉にスラグだけを排出してこ
の転炉をスラグ還元用の容器に使用し、転炉に偏心回転
運動を与えることによってスラグに渦流を生じさせて撹
拌する方法も本発明に適用できる。
It is of course possible to replace the gas agitation in the process shown in Figure 1 with impeller agitation as shown in Figure 2, and vice versa. be. In addition to this stirring recipe, there is also a method of bottom blowing stirring using a gas bottom blowing ladle equipped with a porous plug at the bottom as a container for slag reduction treatment, and a method of bottom blowing stirring using a gas bottom blowing ladle equipped with a porous plug at the bottom. A method of discharging the slag, using the converter as a container for slag reduction, and applying an eccentric rotational motion to the converter to create a vortex in the slag to stir it can also be applied to the present invention.

本発明法において、かような処方によって還元処理中に
スラグに撹拌を付与することは極めて重要である。これ
は、溶融スラグだけを取り出して単独処理する場合に還
元剤とスラグとの反応を促進するうえで撹拌は必須不可
欠となり、またこれによって反応熱を有効に利用できる
ことになるからである。
In the method of the present invention, it is extremely important to provide agitation to the slag during the reduction treatment using such a formulation. This is because, when only the molten slag is taken out and treated alone, stirring is indispensable to promote the reaction between the reducing agent and the slag, and this allows the heat of reaction to be used effectively.

本発明法によると、メタル分を分別採取したあとのスラ
グには金属酸化物特に酸化クロムが殆ど含有されなくな
るので、公害のおそれのないスラグが得られ、二次利用
することができることになる。また、炉から排出された
ままの高温の溶融スラグを対象として還元処理するので
スラグが有する顕熱を有効に還元反応に利用できるので
熱エネルギーの面でも有利となり、既述の本発明の目的
が効果的に達成できる。
According to the method of the present invention, the slag after the metals have been separated and collected hardly contains metal oxides, particularly chromium oxide, so that slag that does not pose a risk of pollution can be obtained and can be used for secondary purposes. In addition, since the high-temperature molten slag discharged from the furnace is subjected to the reduction treatment, the sensible heat of the slag can be effectively utilized for the reduction reaction, which is advantageous in terms of thermal energy. can be achieved effectively.

以下に本発明の代表的な実施例を挙げる。Typical examples of the present invention are listed below.

実施例1 転炉法によってステンレス鋼を製造する際に。Example 1 When manufacturing stainless steel using the converter method.

転炉で規定量の酸素吹錬後、第1図のように溶鋼を溶鋼
取鍋に取り出すと共にスラグだけをスラグポットに排出
した。このときのスラグ組成とスラグ量を第1表に示す
After blowing a specified amount of oxygen in the converter, the molten steel was taken out into a molten steel ladle as shown in Figure 1, and only the slag was discharged into a slag pot. Table 1 shows the slag composition and slag amount at this time.

第1表 スラグポット内のスラグの浴面上から還元剤としてFe
−5iを投入し、第1図のようにランスパイプを浸漬し
てN富ガスを吹き込んで還元剤とスラグとを十分に撹拌
した。還元剤の投入量とガス吹き込み条件を第2表に示
した。
Table 1 Fe as a reducing agent from above the slag bath surface in the slag pot
-5i, the lance pipe was immersed as shown in Fig. 1, and N-rich gas was blown into the reactor to thoroughly stir the reducing agent and slag. Table 2 shows the amount of reducing agent added and gas blowing conditions.

第2表 還元処理後はその全体をスラグボット内で冷却凝固させ
た。そしてスラグボット内から全体を固体として取り出
し、スラグポットの底部に凝縮していたメタル分をスラ
グから分別採取し、得られたメタルとスラグを分析した
結果、第3表の通りであった。
Table 2 After the reduction treatment, the whole was cooled and solidified in a slugbot. Then, the entire slag was taken out as a solid from inside the slag pot, and the metal that had condensed at the bottom of the slag pot was separated and collected from the slag.The obtained metal and slag were analyzed, and the results were as shown in Table 3.

第3表 実施例2 実施例1同様、転炉法によってステンレス網を製造する
際に、転炉で規定量の酸素吹錬後、溶鋼とスラグをいっ
たん取鍋に移してから、第2図に示したような耐火物内
張の容器にスラグだけを排出した。このときのスラグ組
成とスラグ量を第4表に示す。
Table 3 Example 2 Similar to Example 1, when manufacturing stainless steel mesh by the converter method, after blowing a specified amount of oxygen in the converter, the molten steel and slag are transferred to a ladle, and then Only the slag was discharged into a refractory-lined container as shown. Table 4 shows the slag composition and slag amount at this time.

第4表 容器内のスラグの浴面上から還元剤としてへ1ドロスを
投入し、第2図のように耐火物製のインペラー翼を浸漬
して回転することによって還元剤とスラグとを撹拌した
。還元剤の投入量と回転翼撹拌条件を第5表に示した。
Table 4 One drop of dross was added as a reducing agent from above the bath surface of the slag in the container, and the reducing agent and slag were stirred by dipping and rotating a refractory impeller blade as shown in Figure 2. . Table 5 shows the amount of reducing agent added and the rotary blade stirring conditions.

第5表 次に、一定時間撹拌後、前記の容器からスラグボットに
その全体を移して放冷して全体を凝固させた。冷却後、
実施例1と同様にしてメタル分をスラグから分別採取し
、得られたメタルとスラグを分析した結果、第6表の通
りであった。
Table 5 Next, after stirring for a certain period of time, the whole was transferred from the container to a slugbot and allowed to cool to solidify the whole. After cooling,
The metal content was separated and collected from the slag in the same manner as in Example 1, and the obtained metal and slag were analyzed, and the results were as shown in Table 6.

第6表 以上の実施例結果に見られるように1本発明法によると
スラグ中の金属酸化物特に酸化クロムがメタル分として
高い回収率で回収できると共に。
As can be seen from the results of the examples shown in Table 6 and above, according to the method of the present invention, metal oxides, particularly chromium oxide, in slag can be recovered as metal components at a high recovery rate.

メタル回収後のスラグは公害面で問題がないので二次利
用(例えばセメント用に利用)ができるので、スラグを
廃棄していた従来法に比べるとステンレス鋼の製造原価
を低減させることができる。
The slag after metal recovery poses no pollution problem and can be used for secondary purposes (for example, for use in cement), making it possible to reduce the manufacturing cost of stainless steel compared to conventional methods in which slag is discarded.

また、酸化クロム含有スラグを冷却したあと破砕して電
気炉原料に再利用していた従来法に比べると9本発明法
では回収したメタル分だけ電気炉で溶解すればよいので
、溶解のための電気エネルギーが低減すると共に溶解時
間も短縮され熱エネルギー面および作業面でも非常に宥
和である。その実効果を第7表に示した。
In addition, compared to the conventional method in which the chromium oxide-containing slag is cooled, crushed, and reused as raw material for an electric furnace, the method of the present invention requires only the recovered metal to be melted in the electric furnace. The electrical energy is reduced and the melting time is shortened, making it very friendly in terms of thermal energy and workability. The actual effects are shown in Table 7.

第7表Table 7

【図面の簡単な説明】 第1図は本発明法をスラグ処理の例を示す機器配置系統
図、第2図は本発明法のスラグ処理の他の例を示す機器
配置系統図である。 1・・転炉、  2・・スラグポット。 3・・溶鋼取鍋、  4・・溶鋼、  5・・スラグ。 6・・ガス吹き込み用ランスパイプ。 8・・還元剤、  9・・電気炉、11・・スラグ。 [2・・溶鋼取鍋、13・・容器、14・・インペラー
撹拌翼。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an equipment layout system diagram showing an example of slag processing using the method of the present invention, and FIG. 2 is an equipment layout system diagram showing another example of slag processing using the method of the invention. 1. Converter, 2. Slag pot. 3. Molten steel ladle, 4. Molten steel, 5. Slag. 6. Lance pipe for gas blowing. 8. Reducing agent, 9. Electric furnace, 11. Slag. [2... Molten steel ladle, 13... Container, 14... Impeller stirring blade.

Claims (1)

【特許請求の範囲】[Claims] ステンレス鋼の精錬時における大気圧下での溶解または
精錬工程で発生する酸化クロム含有スラグを溶融状態の
まま別の容器に排出し、該容器内の溶融スラグに撹拌を
付与し且つ酸化クロムを還元するに十分な量の還元剤を
添加することを特徴とするステンレス鋼精錬時に発生す
るスラグの処理法。
The chromium oxide-containing slag generated during the melting or refining process under atmospheric pressure during stainless steel refining is discharged in a molten state into a separate container, the molten slag in the container is agitated, and the chromium oxide is reduced. A method for treating slag generated during stainless steel refining, which is characterized by adding a sufficient amount of reducing agent.
JP28725086A 1986-12-02 1986-12-02 Chromium recovery method in stainless steel refining. Expired - Lifetime JP2632676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28725086A JP2632676B2 (en) 1986-12-02 1986-12-02 Chromium recovery method in stainless steel refining.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28725086A JP2632676B2 (en) 1986-12-02 1986-12-02 Chromium recovery method in stainless steel refining.

Publications (2)

Publication Number Publication Date
JPS63140044A true JPS63140044A (en) 1988-06-11
JP2632676B2 JP2632676B2 (en) 1997-07-23

Family

ID=17714965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28725086A Expired - Lifetime JP2632676B2 (en) 1986-12-02 1986-12-02 Chromium recovery method in stainless steel refining.

Country Status (1)

Country Link
JP (1) JP2632676B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502504A (en) * 1999-06-23 2003-01-21 エスエムエス・デマーク・アクチエンゲゼルシャフト Method for recovering chromium metal from slag containing chromium oxide
KR100411288B1 (en) * 1996-12-14 2004-03-24 주식회사 포스코 Method for recovering chromium from electric furnace slag
JP2008050700A (en) * 2007-10-26 2008-03-06 Nippon Yakin Kogyo Co Ltd Method for treating chromium-containing steel slag
JP2008081845A (en) * 2007-10-26 2008-04-10 Nippon Yakin Kogyo Co Ltd Method for treating slag for refining chromium-containing steel
JP2010105826A (en) * 2008-10-28 2010-05-13 Jfe Steel Corp Producing method of slag for cement raw material
JP2010242128A (en) * 2009-04-01 2010-10-28 Nippon Steel Corp Method for recovering molten metal
WO2011081265A1 (en) * 2009-12-30 2011-07-07 현대제철 주식회사 Method for recovering valuable metals from slag
WO2011081267A1 (en) * 2009-12-30 2011-07-07 현대제철 주식회사 Method and apparatus for recovering valuable metals from slag and for producing multifunctional aggregates
KR101159938B1 (en) * 2010-01-28 2012-06-25 현대제철 주식회사 Method for producing of multi-functional aggregate using slag
KR101175423B1 (en) 2009-12-30 2012-08-20 현대제철 주식회사 Method for recovering valuable metals from slag
WO2013081285A1 (en) * 2011-11-29 2013-06-06 현대제철 주식회사 Method for recovering valuable metals from slag and apparatus for manufacturing multifunctional aggregate
CN111254342A (en) * 2020-01-17 2020-06-09 贺海川 Method for directly reducing hazardous waste chromium slag into ferrochrome
CN118048490A (en) * 2024-01-16 2024-05-17 广东广青金属科技有限公司 Stainless steel red slag recycling method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210642A (en) * 1975-06-23 1977-01-27 Nec Corp Offering analysis device
JPS53117601A (en) * 1977-03-23 1978-10-14 Sumitomo Metal Ind Ltd Recovering method for valuable metals in stainless steel slag
JPS54122615A (en) * 1978-03-16 1979-09-22 Showa Denko Kk Reducing method for chromium oxide-containing slag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210642A (en) * 1975-06-23 1977-01-27 Nec Corp Offering analysis device
JPS53117601A (en) * 1977-03-23 1978-10-14 Sumitomo Metal Ind Ltd Recovering method for valuable metals in stainless steel slag
JPS54122615A (en) * 1978-03-16 1979-09-22 Showa Denko Kk Reducing method for chromium oxide-containing slag

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100411288B1 (en) * 1996-12-14 2004-03-24 주식회사 포스코 Method for recovering chromium from electric furnace slag
JP2013079449A (en) * 1999-06-23 2013-05-02 Sms Siemag Ag Method for recovering metallic chromium from slag containing chromium oxide
JP2003502504A (en) * 1999-06-23 2003-01-21 エスエムエス・デマーク・アクチエンゲゼルシャフト Method for recovering chromium metal from slag containing chromium oxide
JP2008050700A (en) * 2007-10-26 2008-03-06 Nippon Yakin Kogyo Co Ltd Method for treating chromium-containing steel slag
JP2008081845A (en) * 2007-10-26 2008-04-10 Nippon Yakin Kogyo Co Ltd Method for treating slag for refining chromium-containing steel
JP2010105826A (en) * 2008-10-28 2010-05-13 Jfe Steel Corp Producing method of slag for cement raw material
JP2010242128A (en) * 2009-04-01 2010-10-28 Nippon Steel Corp Method for recovering molten metal
US8534578B2 (en) 2009-12-30 2013-09-17 Hyundai Steel Company Method and apparatus for recovering valuable metals from slag and manufacturing multifunctional aggregate
WO2011081267A1 (en) * 2009-12-30 2011-07-07 현대제철 주식회사 Method and apparatus for recovering valuable metals from slag and for producing multifunctional aggregates
CN102471827A (en) * 2009-12-30 2012-05-23 现代制铁株式会社 Method and apparatus for recovering valuable metals from slag and manufacturing multifunctional aggregate
WO2011081265A1 (en) * 2009-12-30 2011-07-07 현대제철 주식회사 Method for recovering valuable metals from slag
KR101175423B1 (en) 2009-12-30 2012-08-20 현대제철 주식회사 Method for recovering valuable metals from slag
JP2012528783A (en) * 2009-12-30 2012-11-15 ヒュンダイ スチール カンパニー Valuable metal recovery of slag and method and apparatus for producing multifunctional aggregate
KR101159938B1 (en) * 2010-01-28 2012-06-25 현대제철 주식회사 Method for producing of multi-functional aggregate using slag
WO2013081285A1 (en) * 2011-11-29 2013-06-06 현대제철 주식회사 Method for recovering valuable metals from slag and apparatus for manufacturing multifunctional aggregate
JP2014521830A (en) * 2011-11-29 2014-08-28 ヒュンダイ スチール カンパニー Equipment for recovering valuable metals using slag and producing multifunctional aggregates
US9469885B2 (en) 2011-11-29 2016-10-18 Hyundai Steel Company Method for recovering valuable metals from slag and apparatus for manufacturing multifunctional aggregate
CN111254342A (en) * 2020-01-17 2020-06-09 贺海川 Method for directly reducing hazardous waste chromium slag into ferrochrome
CN118048490A (en) * 2024-01-16 2024-05-17 广东广青金属科技有限公司 Stainless steel red slag recycling method

Also Published As

Publication number Publication date
JP2632676B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
CN102264919B (en) Method for reclaiming iron and phosphorus from steelmaking slag
JPS63140044A (en) Treatment of slag generated in refining of stainless steel
US3198624A (en) Process for the manufacture of stainless steel
CN105063266B (en) A kind of converter steel making method
WO2020228750A1 (en) Method for producing calcium-containing vanadium slag by adding lime to converter molten iron and leaching method therefor
JP2011174166A (en) Method for reusing oxidized slag and recycling slag
JPS61166910A (en) Production of chromium-containing alloy
JP4189112B2 (en) Processing method for slag refining stainless steel
JP3744133B2 (en) Method for removing slag generated during the manufacture of stainless steel and method for reusing waste slag
JPS63500873A (en) Vanadium slag and its manufacturing method
JP3063537B2 (en) Stainless steel manufacturing method
JP3158912B2 (en) Stainless steel refining method
JPH10265827A (en) Regenerating/utilizing method of refined slag in chromium-containing steel and regenerating/utilizing method of metallic component contained in the slag
JPS6250543B2 (en)
JP3644307B2 (en) Hot phosphorus dephosphorization method
JP3140256B2 (en) Slag reforming method
JP4063452B2 (en) Stainless steel desulfurization method
JP3994988B2 (en) Method of recovering and using metal components contained in slag slag containing chromium
JP3756904B2 (en) Treatment method of chromium-containing waste
JP2002069520A (en) Method for recovering chromium in slag
JP3297997B2 (en) Hot metal removal method
JPH06240327A (en) Production of low si-low s-high mn molten iron accompanied with smelting reduction of mn ore
CN117187563A (en) Micro-carbon ferromanganese alloy and preparation method thereof
JP3765092B2 (en) Ladle stirring method for electric arc furnace hot metal
JPH0827508A (en) Pretreatment of molten iron