JPS63140018A - Fluidized bed reduction device for iron ore - Google Patents

Fluidized bed reduction device for iron ore

Info

Publication number
JPS63140018A
JPS63140018A JP28659886A JP28659886A JPS63140018A JP S63140018 A JPS63140018 A JP S63140018A JP 28659886 A JP28659886 A JP 28659886A JP 28659886 A JP28659886 A JP 28659886A JP S63140018 A JPS63140018 A JP S63140018A
Authority
JP
Japan
Prior art keywords
gas
furnace
fluidized bed
bed reduction
reduction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28659886A
Other languages
Japanese (ja)
Other versions
JPH0637659B2 (en
Inventor
Tatsuhiko Egashira
江頭 達彦
Nobuyoshi Nishihara
信義 西原
Kazuya Kunitomo
和也 国友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28659886A priority Critical patent/JPH0637659B2/en
Publication of JPS63140018A publication Critical patent/JPS63140018A/en
Publication of JPH0637659B2 publication Critical patent/JPH0637659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE:To make expanded use of resources and to reduce the cost of a molten iron by using fine powder raw materials by disposing an external circulating device to a fluidized bed reduction furnace and providing means for blowing gas to the particle downcomer of the circulating device and blowing the gas to the bottom and upper part of the furnace. CONSTITUTION:A cyclone 31 is connected to the upper part of the fluidized bed reduction furnace 6 to capture the particles entrained in a reducing gas. A gas blow port 34 is provided to the suitable position of the particle downcomer connected to a hopper 32 in which the captured particles are stored and a carrier gas is blown from said port to smoothly circulate the particles to the furnace 6. A bottom blowing gas diffusion floor 36 is formed to the bottom of the furnace 6 and gas blow ports 38 are formed slightly upper than the outlet of the downcomer 33. The reducing gases are blown from the respective ports. The high-temp. iron ore is thereby fluidized and reduced, by which the reduced ore is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶融還元法・高炉法等に使用するための鉄鉱石
を流動層還元炉で還元する鉄鉱石還元装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an iron ore reduction apparatus for reducing iron ore for use in a smelting reduction method, a blast furnace method, etc. in a fluidized bed reduction furnace.

(従来の技術) 鉄鉱石を還元して溶銑を製造するために、高炉を使用す
る方法、シャフト炉で還元した鉄鉱石を電気炉で溶解す
る方法が従来から採用されている。
(Prior Art) In order to reduce iron ore to produce hot metal, a method of using a blast furnace and a method of melting iron ore reduced in a shaft furnace in an electric furnace have been adopted.

高炉を使用する方法では、熱源及び還元剤として多量の
コークスを使用し、鉄源である鉄鉱石は炉内に於ける通
気性、還元性を向上させるために通常焼結され、焼結鉱
として高炉に装入されている。このようなことから、該
高炉法は、強粘結炭を乾溜するためのコークス炉設備及
び焼結鉱を製造する為の焼結設備を必要とする。従って
、該高炉法には、多大な設備費は勿論のこと、多くのエ
ネルギー及び労働が必要となる。この為、高炉法には処
理コストが高くなるという欠点があった。
In the method using a blast furnace, a large amount of coke is used as a heat source and a reducing agent, and the iron ore, which is the iron source, is usually sintered to improve air permeability and reducing properties in the furnace, and is processed as sintered ore. It is charged into the blast furnace. For this reason, the blast furnace method requires coke oven equipment for dry distilling highly caking coal and sintering equipment for producing sintered ore. Therefore, the blast furnace method requires a large amount of energy and labor as well as a large amount of equipment cost. For this reason, the blast furnace method has the disadvantage of high processing costs.

更に、強粘結炭は世界的に賦与量が少なく、しかもその
分布が地域的に偏っているため供給が不安定である。
Furthermore, the supply of strong coking coal is unstable because there is only a small amount of it available worldwide and its distribution is regionally uneven.

一方、シャフト炉による鉄鉱石の還元法は鉄鉱石をベレ
ット化する前処理を行うことが必要となり、また還元剤
、熱源として高価な天然ガス等を大量に消費するという
欠点がある。
On the other hand, the method of reducing iron ore using a shaft furnace requires pre-treatment of turning the iron ore into pellets, and has the disadvantage that it consumes a large amount of reducing agent, expensive natural gas, etc. as a heat source.

このような従来の溶銑製造技術に代わるものとして、溶
融還元法が注目を浴びている。この方法で使用する溶融
還元炉は使用する原料に制約を受けることなく、より小
規模な設備により鉄系合金の溶湯を製造することを目的
として開発されたものである。
As an alternative to such conventional hot metal production techniques, the smelting reduction method is attracting attention. The smelting reduction furnace used in this method was developed for the purpose of producing molten iron-based alloys using smaller-scale equipment without being restricted by the raw materials used.

上述する溶融還元精練法の一例として本発明者は先に第
6図に示すフローで構成される方法を特願昭59〜18
4056号として提案している。
As an example of the above-mentioned melting reduction scouring method, the present inventor previously proposed a method consisting of the flow shown in FIG.
It is proposed as No. 4056.

この方法によるとき、次のようにして溶銑が製造される
。即ち鉄鉱石1及び石灰石2は流動層予熱炉3内で石炭
4と空気5との燃焼反応で生じた熱によって加熱される
。その結果、石灰石2 (CaCOl)は生石灰(Ca
b)となって流動層還元炉6に供給される。
According to this method, hot metal is produced as follows. That is, iron ore 1 and limestone 2 are heated in a fluidized bed preheating furnace 3 by heat generated by a combustion reaction between coal 4 and air 5. As a result, limestone 2 (CaCOl) is
b) and is supplied to the fluidized bed reduction furnace 6.

流動層還元炉6内では流動状態の予熱鉱石及び生石灰に
石炭7及び酸素又は酸素含有ガスが吹き込まれる。この
石炭7は、流動層還元炉6内で予熱鉱石と熱交換し、ま
た酸素との反応による部分燃焼により熱分解する。これ
によって、石炭7は、還元性のガスを発生すると共にチ
ャー9となる。
In the fluidized bed reduction furnace 6, coal 7 and oxygen or oxygen-containing gas are blown into the preheated ore and quicklime in a fluidized state. This coal 7 exchanges heat with the preheated ore in the fluidized bed reduction furnace 6 and is thermally decomposed by partial combustion due to reaction with oxygen. As a result, the coal 7 generates reducing gas and becomes char 9.

他方溶融還元炉10で発生したガス又はそのガスを脱炭
酸処理して得られる還元ガス11は流動層還元炉6から
の燃料ガス12との熱交換によって700〜900℃に
昇温された後、流動層還元炉6に吹き込まれる。流動層
還元炉6に吹き込まれた還元ガス11は石炭7の熱分解
により生成した還元ガスと混合されて、流動状態にある
高温の粉粒状鉄鉱石を還元し、還元□鉱13を生成する
On the other hand, the gas generated in the melting reduction furnace 10 or the reducing gas 11 obtained by decarboxylating the gas is heated to 700 to 900°C by heat exchange with the fuel gas 12 from the fluidized bed reduction furnace 6, and then It is blown into the fluidized bed reduction furnace 6. The reducing gas 11 blown into the fluidized bed reduction furnace 6 is mixed with the reducing gas generated by thermal decomposition of the coal 7 to reduce the high temperature granular iron ore in a fluidized state and generate reduced □ ore 13.

また、流動層予熱炉3内に生成した生石灰14は、予熱
鉱石と共に流動層還元炉6に装入され、流動層還元炉6
内にあるガスの脱硫を行う。
Moreover, the quicklime 14 generated in the fluidized bed preheating furnace 3 is charged into the fluidized bed reduction furnace 6 together with the preheated ore, and
Desulfurizes the gas inside.

次いで、該生石灰14は、還元鉱13及びチャー9と共
に流動層還元炉6から排出される。
Next, the quicklime 14 is discharged from the fluidized bed reduction furnace 6 together with the reduced ore 13 and the char 9.

このようにして得られた還元鉱13、チャー9及び生石
灰14に対して、溶融還元炉10に於ける熱バランス上
必要な石炭、コークス等の炭材が外部から加えられ、混
練される0次いで、混合物は、プリソケットマシン等の
塊成化装置15におってブリケント16に成型された後
、装入装置17によって溶融還元炉10に装入される。
To the reduced ore 13, char 9, and quicklime 14 obtained in this way, carbonaceous materials such as coal and coke necessary for the heat balance in the smelting reduction furnace 10 are added from the outside and kneaded. After the mixture is formed into a Briquent 16 in an agglomeration device 15 such as a pre-socket machine, it is charged into the smelting reduction furnace 10 by a charging device 17.

この溶融還元炉10には、上吹きランス18から酸素1
9が浴に向かって吹き付けられると共に、底吹き羽口2
0から浴中に酸素及び炭材が吹き込まれている。そして
、ブリケット16に含まれている炭材、底吹き羽口20
から酸素と共に吹き込まれている炭材、装入装置17か
ら供給されたコークス21等の炭材は、上吹きランス1
8から供給された酸素と反応し、溶融還元炉10内に大
量の熱を発生する。この発生熱によって、ブリケット1
6中の還元鉱13が溶解し、還元が進行して溶銑となる
This melting reduction furnace 10 is supplied with oxygen 1 from a top blowing lance 18.
9 is blown toward the bath, and the bottom blowing tuyere 2
Oxygen and carbonaceous material are blown into the bath from zero. Then, the charcoal material contained in the briquette 16, the bottom blowing tuyere 20
The carbonaceous material such as coke 21 supplied from the charging device 17 is blown in with oxygen from the top blowing lance 1.
It reacts with the oxygen supplied from 8 and generates a large amount of heat in the melting reduction furnace 10. Due to this generated heat, the briquette 1
The reduced ore 13 in 6 is dissolved, and the reduction progresses to become hot metal.

一方、還元鉱13中の脈石と炭材及び生石灰14とが反
応して、スラグ23が生成する。このスラグ23は溶融
還元炉10内に貯留し、時間が経過するにつれてその量
を増していく、そこで、該スラグ23を間欠的または連
続的に炉外に排出する。
On the other hand, the gangue in the reduced ore 13 reacts with the carbon material and the quicklime 14, and slag 23 is generated. This slag 23 is stored in the melting reduction furnace 10 and increases in amount as time passes, so the slag 23 is intermittently or continuously discharged outside the furnace.

(発明が解決しようとする問題点) このような溶融還元法においては、特にその開発過程か
らしても明らかなように、使用可能な原料の範囲の拡大
、熱回収の効率化、溶融還元炉に於ける精練反応の促進
を如何にして達成するかが課題である。
(Problems to be solved by the invention) In this smelting reduction method, as is clear from the development process, it is important to expand the range of usable raw materials, improve the efficiency of heat recovery, and improve the smelting reduction furnace. The challenge is how to accelerate the scouring reaction in the process.

しかし、一般炭、粉鉱石等の廉価な原料を使用すると、
処理過程で大量の粉塵が発生する。このため、炉内の通
気性が悪くなって多量のガスを吹き込むことが出来ず、
生産性を上げることが困難となる。そこで、このような
粉鉱石等はブリケット或いはペレフト等の塊成化を行い
、粉塵を発生しない原料に加工して使用されている。
However, if cheap raw materials such as thermal coal and fine ore are used,
A large amount of dust is generated during the processing process. As a result, the ventilation inside the furnace deteriorates, making it impossible to blow in a large amount of gas.
It becomes difficult to increase productivity. Therefore, such powdered ores are agglomerated into briquettes, pellets, etc., and processed into raw materials that do not generate dust.

また、これまでに開発されている溶融還元法においては
、流動層還元炉から排出される還元鉄は必要に応じて熱
回収した後、炭に溶融還元炉に投入しているに過ぎない
、このような方式では、効率的な熱回収及び精練反応の
促進を行うことに限界がある。
In addition, in the smelting reduction methods that have been developed so far, the reduced iron discharged from the fluidized bed reduction furnace is simply put into the smelting reduction furnace after recovering the heat as necessary. In such a system, there are limits to efficient heat recovery and promotion of the scouring reaction.

そこで本発明は溶融還元法により鉄鉱石から溶銑を得る
に際し、賦装置の多い一般炭と現在利用価値の少ない微
粉鉱石を原料として用い、資源の拡大活用及び溶銑コス
トの低下を図ることを目的とするものである。
Therefore, when obtaining hot metal from iron ore by the smelting reduction method, the present invention aims to expand the utilization of resources and reduce the cost of hot metal by using steam coal, which requires a lot of heating equipment, and fine ore, which currently has little utility value, as raw materials. It is something to do.

(問題点を解決するための手段) 本発明の鉄鉱石流動層還元装置は、溶融還元法に使用す
る還元鉱石を製造する設備に於いて、流動層還元炉6に
外部循環装置を配設し、この外部粒子循環装置の粒子下
降管33にガス吹出し口34を設け、かつ前記流動層還
元炉6の底部と上部にガス吹込み口36.38を設けて
なることを特徴とする。
(Means for Solving the Problems) The iron ore fluidized bed reduction apparatus of the present invention includes an external circulation device disposed in the fluidized bed reduction furnace 6 in equipment for producing reduced ore used in the smelting reduction method. The particle downcomer pipe 33 of this external particle circulation device is provided with a gas blowing port 34, and the fluidized bed reduction furnace 6 is provided with gas blowing ports 36 and 38 at the bottom and top thereof.

(作用) 本発明は上述のように構成し、流動層予熱炉で予熱され
た鉄鉱石、石灰石等の製鉄原料を流動層還元炉6に粉粒
状の石炭も併せて装入し、溶融還元炉lOで発生したガ
ス或いは脱炭酸ガス処理して得られる還元ガス11を流
動層還元炉6の下部から吹き込む。
(Function) The present invention is constructed as described above, and iron ore, limestone, and other ironmaking raw materials preheated in a fluidized bed preheating furnace are charged into a fluidized bed reduction furnace 6 together with powdered coal, and the smelting reduction furnace Gas generated by lO or reducing gas 11 obtained by decarbonation treatment is blown into the fluidized bed reduction furnace 6 from the lower part thereof.

この還元ガスで、高温の鉄鉱石を流動状態にして還元し
、還元鉱を生成する。生成された還元鉱は流動層還元炉
6の下部に設けた排出部から採取される。還元ガス11
の空塔速度を大にして流動粒子とのスリップ速度を大き
くとることにより、還元反応の促進を行い生産性及びガ
ス利用効率を向上させる。このとき、装入原料粒子の多
くが流動層還元炉6から還元ガスに同伴し飛散する。
This reducing gas transforms the hot iron ore into a fluidized state and reduces it, producing reduced ore. The generated reduced ore is collected from a discharge section provided at the lower part of the fluidized bed reduction furnace 6. Reducing gas 11
By increasing the superficial velocity of the particles and increasing the slip velocity with the fluidized particles, the reduction reaction is promoted and productivity and gas utilization efficiency are improved. At this time, many of the charged raw material particles are entrained in the reducing gas and scattered from the fluidized bed reduction furnace 6.

この飛散した原料粒子を、流動層還元炉出口に設けたサ
イクロン31で粒子を捕集して再び流動層還元炉6内へ
循環供給させる為に外部粒子循環装置を付設し、サイク
ロン31で粒子を捕集した粒子を粒子下降管33を介し
流動層還元炉6に循環供給している。この粒子下降管3
3の途中にガス吹き込み口34.34′を設け、下降途
中の粒子の棚吊り現象の防止を図りつつ、流動層還元炉
6に循環させる。
An external particle circulation device is attached to collect these scattered raw material particles with a cyclone 31 installed at the outlet of the fluidized bed reduction furnace and circulate them back into the fluidized bed reduction furnace 6. The collected particles are circulated and supplied to the fluidized bed reduction furnace 6 via the particle downcomer pipe 33. This particle downcomer 3
A gas blowing port 34, 34' is provided in the middle of the tube 3, and the particles are circulated to the fluidized bed reduction furnace 6 while preventing the particles from hanging during the descent.

このガス吹き込み口34.34″の吹き込み量の大小に
より循環量のコントロールをも可能としている。
It is also possible to control the amount of circulation by changing the amount of gas blown into the gas blowing port 34.34''.

更に流動層還元炉6の底部に有するガス吹込み口36か
ら吹き込まれるガスは、粒子下降管33より排出された
流動層還元炉6の底部に有する粒子の安息角をこわす働
きをし粒子を炉底部へ流入拡散させる。この流入粒子の
レベルを炉上部に移行させ、ガス吹き込み口38より上
方に粒子レベルを上げる。
Further, the gas injected from the gas inlet 36 at the bottom of the fluidized bed reduction furnace 6 serves to destroy the angle of repose of the particles at the bottom of the fluidized bed reduction furnace 6 discharged from the particle downcomer pipe 33, and It flows into the bottom and diffuses. The level of the incoming particles is shifted to the upper part of the furnace, raising the particle level above the gas inlet 38.

そして、ガス吹込み口38により粒子終末速度Ut以上
の空塔ガス速度になるように還元ガスを吹き込み、粒子
を高速流動化して効率的に還元反応を進行させる。細粒
状の粒子は還元ガスに同伴して炉内を飛散流動しつつ還
元され、炉外へ飛散する。
Then, a reducing gas is blown through the gas blowing port 38 so that the superficial gas velocity is higher than the particle terminal velocity Ut, and the particles are fluidized at high speed to efficiently proceed with the reduction reaction. The fine particles are reduced while scattering and flowing inside the furnace together with the reducing gas, and are scattered outside the furnace.

そして外部粒子循環装置によって、再び炉内へ供給され
還元が進行される。一方粗粒状の粒子は飛散せず炉下部
に滞留し還元される。還元された還元鉱石は流動層還元
炉6下部の排出部から粗粒状の還元鉱を、また外部粒子
循環装置からは細粒状の還元鉱をそれぞれ採取すること
が出来る。
The particles are then supplied into the furnace again by the external particle circulation device and reduction proceeds. On the other hand, coarse particles do not fly away but remain in the lower part of the furnace and are reduced. As for the reduced reduced ore, coarse-grained reduced ore can be collected from the discharge section at the lower part of the fluidized bed reduction furnace 6, and fine-grained reduced ore can be collected from the external particle circulation device.

(実施例) 以下本発明の一実施例を第1〜4図に示す基本的構成の
概略図で詳述する。
(Embodiment) An embodiment of the present invention will be described in detail below with reference to the schematic diagrams of the basic configuration shown in FIGS. 1 to 4.

流動層還元炉6の上部に設けられている出口にサイクロ
ン31を接続し、粒子が還元ガス11と同伴し飛散して
きた粒子を捕捉する。
A cyclone 31 is connected to an outlet provided at the upper part of the fluidized bed reduction furnace 6 to capture particles that are scattered along with the reducing gas 11.

サイクロン31の下部には捕捉した粒子を一時ためるホ
ッパ32が接続され、このホッパ32と前記流動層還元
炉6の炉底部の適宜位置を粒子下降管33で接続されて
いる。この粒子下降管33内の適宜位置、例えば粒子下
降管33の垂直管部、或いは流動層還元炉6への接続部
近傍等に設けたガス吹出し口34からは流量調節弁35
を介しキャリアガスを吹き出ししている。このガス吹出
し口34の形状は特に限定するものではなく、例えば1
点、或いは多数の細孔からまたは第3図に示す如くルー
バ形状のものなどであっても良い。
A hopper 32 for temporarily storing captured particles is connected to the lower part of the cyclone 31, and this hopper 32 is connected to an appropriate position at the bottom of the fluidized bed reduction furnace 6 by a particle downcomer pipe 33. From a gas outlet 34 provided at an appropriate position within the particle downcomer pipe 33, for example, in the vertical pipe section of the particle downcomer pipe 33, or near the connection part to the fluidized bed reduction furnace 6, a flow rate control valve 35 is supplied.
Carrier gas is blown out through. The shape of this gas outlet 34 is not particularly limited, and for example,
It may be a point, a large number of pores, or a louver shape as shown in FIG.

流動層還元炉6の炉底部にはガス分散床36が形成され
ている。このガス分散床36は例えば第4図に示す如く
突設した筒状ノズル37の側面に下方向に適宜数の穴3
Tを穿設している。また流動層還元炉6への粒子下降管
33の出口よりやや上方にガス吹込み口38が形成され
ている。上述底吹き込みガス分散床36及びガス吹込み
口38はそれぞれ流量調節弁39.40が設けられてお
り、熔融還元炉で発生したガス或いは脱炭酸ガス処理し
て得られる還元ガス11の流動層還元炉6への吹き出し
量を調節可能としている。
A gas distribution bed 36 is formed at the bottom of the fluidized bed reduction furnace 6. This gas dispersion bed 36 is formed by, for example, as shown in FIG.
A T is drilled. Further, a gas injection port 38 is formed slightly above the outlet of the particle downcomer pipe 33 to the fluidized bed reduction furnace 6. The above-mentioned bottom blown gas distribution bed 36 and gas injection port 38 are each provided with flow rate control valves 39 and 40, and are used for fluidized bed reduction of the gas generated in the melt reduction furnace or the reducing gas 11 obtained by decarbonation treatment. The amount of air blown into the furnace 6 can be adjusted.

図中41は粉鉱石、石灰石等の原料25を流動層還元炉
6に装入するための切出弁、42は細粒状の還元鉱の切
出弁、43は粗粒状の還元鉱の切出弁である。
In the figure, 41 is a cutting valve for charging the raw material 25 such as fine ore or limestone into the fluidized bed reduction furnace 6, 42 is a cutting valve for fine-grained reduced ore, and 43 is a cutting valve for coarse-grained reduced ore. It is a valve.

切出弁41から粉鉱石、石灰石等の原料25を流動層還
元炉6に装入し還元ガス11を流量調節弁39.40を
介して炉底吹き込みガス分散床36及びガス吹込み口3
8より吹込み、この高温の還元ガス11で、高温の鉄鉱
石を流動状態にして還元し、還元鉱を生成する。この還
元ガス11の空塔速度を大きく取ることにより還元反応
の促進を行い生産性を向上させる。このとき、装入原料
粒子の多くが流動層還元炉6からの還元ガス11に同伴
して飛散するが、流動層還元炉6の出口に設けられてい
るサイクロン31で粒子を捕集し、この粒子をホッパに
貯留する。
Raw materials 25 such as fine ore and limestone are charged into the fluidized bed reduction furnace 6 from the cutting valve 41, and the reducing gas 11 is blown into the bottom of the furnace through the flow rate control valves 39 and 40 to the gas distribution bed 36 and the gas injection port 3.
8, and the high temperature reducing gas 11 transforms the high temperature iron ore into a fluidized state and reduces it to produce reduced ore. By increasing the superficial velocity of this reducing gas 11, the reduction reaction is promoted and productivity is improved. At this time, many of the charged raw material particles are scattered along with the reducing gas 11 from the fluidized bed reduction furnace 6, but the particles are collected by the cyclone 31 provided at the outlet of the fluidized bed reduction furnace 6. Particles are stored in a hopper.

この粒子は粒子下降管33を介して流動層還元炉6下部
へ循環するが、粒子下降管33の垂直管部及び流動層還
元炉6への接続部近傍に形成されているガス吹出し口3
4からキャリアガスを吹き出し、粒子下降管33内での
粒子の棚吊り現象の防止を図りつつ、流動層還元炉6に
粒子をスムーズに循環させる。
These particles circulate to the lower part of the fluidized bed reduction furnace 6 through the particle downcomer pipe 33, but the gas outlet 3 is formed near the vertical pipe part of the particle downcomer pipe 33 and the connection part to the fluidized bed reduction furnace 6.
A carrier gas is blown out from the particle downcomer pipe 33 to smoothly circulate the particles to the fluidized bed reduction furnace 6 while preventing the particles from hanging on the shelf in the particle downcomer pipe 33.

このように外部粒子循環装置を経た粒子は流動層還元炉
6の炉底部に循環され、ガス分散床36に設けられてい
る筒状ノズル37から吹出す還元ガス11より粒子下降
管33近傍に生ずる安息角をこわし還元を行いながら、
炉底部の粒子の充填レベルを高め粒子をガス吹き込み口
38の上部へ上昇させ、ガス吹込み口38より吹出す還
元ガス11により粒子を高速流動化して効率的な還元を
行わしめる。ガス吹込み口38は第5図に示すように炉
を水平方向に貫通して配設している。
The particles that have passed through the external particle circulation device in this way are circulated to the bottom of the fluidized bed reduction furnace 6, and generated near the particle downcomer pipe 33 by the reducing gas 11 blown out from the cylindrical nozzle 37 provided in the gas distribution bed 36. While breaking the angle of repose and performing reduction,
The filling level of the particles at the bottom of the furnace is increased to raise the particles to the upper part of the gas inlet 38, and the reducing gas 11 blown out from the gas inlet 38 fluidizes the particles at high speed to perform efficient reduction. The gas inlet 38 is disposed horizontally through the furnace as shown in FIG.

ここで還元速度のコントロールは流量調節弁39.40
の流量及び流量調節弁35により流動層還元炉6内で飛
散した粒子の循環量のコントロールをすることによって
行っている。
Here, the reduction speed is controlled by the flow rate control valve 39.40.
This is done by controlling the flow rate and the circulation amount of particles scattered within the fluidized bed reduction furnace 6 using the flow rate control valve 35.

なお細粒子の還元鉱は切出弁42から採取され、粗粒子
の還元鉱は切出弁43から採取される。
Note that fine-grain reduced ore is collected from the cutting valve 42, and coarse-grained reduced ore is collected from the cutting valve 43.

このように本発明においては、細かな粒子の還元鉱は、
サイクロン31、ホッパ32、粒子下降管33よりなる
粒子循環系から還元鉱の細かな粒子のみが風ふるい効果
によって比較的整粒化されて得られ、この排出還元鉱は
気体輸送が可能であり、溶融還元炉10内にノズル吹き
込みが可能である。また粗い粒子の還元鉱は、流動層還
元炉6底部に滞留流動しており、これを流動層還元炉6
の底部に設けである排出口より切出弁43から排出する
。これは気体輸送するには大きすぎるためコンベヤ類で
機械的に輸送処理される。
In this way, in the present invention, the fine particle reduced ore is
From the particle circulation system consisting of the cyclone 31, hopper 32, and particle downcomer pipe 33, only fine particles of reduced ore are relatively sized and obtained by the wind sieving effect, and this discharged reduced ore can be transported as a gas, Nozzle blowing into the melting reduction furnace 10 is possible. In addition, the coarse particle reduced ore is retained and fluidized at the bottom of the fluidized bed reduction furnace 6, and is transferred to the fluidized bed reduction furnace 6.
It is discharged from the cut-off valve 43 through the discharge port provided at the bottom of the tank. This is too large to be transported by gas, so it is transported mechanically using conveyors.

なお本設備は溶融還元用還元鉱石の製造に用いられるも
のに限ったものでな(、例えば還元ガス11を転炉ガス
やコークス炉ガス等の還元ガス或いは、改良した還元ガ
スを用いて、本設備で鉄鉱石を還元し、高炉へ供給使用
することも可能である。
Note that this equipment is not limited to those used in the production of reduced ore for smelting reduction (for example, the reducing gas 11 may be used to reduce It is also possible to reduce iron ore using equipment and supply it to a blast furnace.

(発明の効果) 上述したように、本発明においては、流動層還元炉でガ
スに同伴飛散される粒子の流動層還元炉内への循環がス
ムーズに行われ、かつ循環量のコントロールが容易であ
ることにより、安定した高速循環流動特性の確保と炉内
の粒子濃度の確保が可能となり、効率的な還元反応の促
進が図れ高生産性とガス利用率が向上する。また粒厚分
布の広い粉鉱石を積極的に処理することが出来る為、廉
価な一般炭及び粉鉱石を使用することが可能となり、溶
銑のコストダウンを図ることが出来る。さらに、高反応
率、ガス利用率向上によりコンパクトな還元設備を提供
出来る等優れた効果を有する。
(Effects of the Invention) As described above, in the present invention, the particles entrained and scattered by the gas in the fluidized bed reduction furnace are smoothly circulated into the fluidized bed reduction furnace, and the amount of circulation can be easily controlled. This makes it possible to ensure stable high-speed circulation flow characteristics and particle concentration within the furnace, promoting efficient reduction reactions and improving high productivity and gas utilization. In addition, since powder ore having a wide grain thickness distribution can be actively processed, it becomes possible to use inexpensive steam coal and powder ore, and it is possible to reduce the cost of hot metal. Furthermore, it has excellent effects such as being able to provide compact reduction equipment due to high reaction rate and improved gas utilization rate.

また高炉法に利用した場合、高炉の生産性向上および焼
結設備・コークス炉設備等の付帯設備の小型化が図れる
Furthermore, when used in a blast furnace method, it is possible to improve the productivity of the blast furnace and to downsize ancillary equipment such as sintering equipment and coke oven equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的構成を示す説明図、第2図は同
上要部拡大説明図、第3図はこの実施例のガス吹出し口
を示す説明図、第4図は流動層還元炉底部のガス吹出し
ノズルの拡大断面図、第5図は炉内上部ガスノズルの配
置を示す説明図、第6図は本発明者等が先に提案した溶
融還元法の概略を示した説明図である。 1は鉄鉱石、2は石灰石、6は流動層還元炉、11は還
元ガス、25は原料、31はサイクロン、32はホッパ
、33は粒子下降管、34はガス吹出し口、35゜39
、40は流量調節弁、36は炉底のガス分散床、37は
筒状ノズル、38はガス吹込み口、41.42は切出弁
。 特許出願人 新日本製鐵株式会社 −” 訃 、、3 口 欠乙囚 忙−
Fig. 1 is an explanatory diagram showing the basic configuration of the present invention, Fig. 2 is an enlarged explanatory diagram of the essential parts of the same, Fig. 3 is an explanatory diagram showing the gas outlet of this embodiment, and Fig. 4 is a fluidized bed reduction furnace. FIG. 5 is an explanatory diagram showing the arrangement of the upper gas nozzle in the furnace; FIG. 6 is an explanatory diagram showing an outline of the smelting reduction method previously proposed by the inventors. . 1 is iron ore, 2 is limestone, 6 is a fluidized bed reduction furnace, 11 is a reducing gas, 25 is a raw material, 31 is a cyclone, 32 is a hopper, 33 is a particle downcomer, 34 is a gas outlet, 35° 39
, 40 is a flow control valve, 36 is a gas distribution bed at the bottom of the furnace, 37 is a cylindrical nozzle, 38 is a gas inlet, and 41.42 is a cutoff valve. Patent applicant: Nippon Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] 還元鉱石を製造する設備に於いて、流動層還元炉に外部
粒子循環装置を付設し、この外部粒子循環装置の粒子下
降管にガス吹き込み口を設け、かつ前記流動層還元炉の
底部と上部にガス吹込み口を設けてなることを特徴とす
る鉄鉱石流動層還元装置。
In equipment for producing reduced ore, an external particle circulation device is attached to a fluidized bed reduction furnace, a gas inlet is provided in the particle down pipe of this external particle circulation device, and a gas injection port is provided at the bottom and top of the fluidized bed reduction furnace. An iron ore fluidized bed reduction device characterized by being equipped with a gas inlet.
JP28659886A 1986-12-03 1986-12-03 Iron ore fluidized bed reduction device Expired - Fee Related JPH0637659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28659886A JPH0637659B2 (en) 1986-12-03 1986-12-03 Iron ore fluidized bed reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28659886A JPH0637659B2 (en) 1986-12-03 1986-12-03 Iron ore fluidized bed reduction device

Publications (2)

Publication Number Publication Date
JPS63140018A true JPS63140018A (en) 1988-06-11
JPH0637659B2 JPH0637659B2 (en) 1994-05-18

Family

ID=17706487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28659886A Expired - Fee Related JPH0637659B2 (en) 1986-12-03 1986-12-03 Iron ore fluidized bed reduction device

Country Status (1)

Country Link
JP (1) JPH0637659B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617136A1 (en) * 1993-03-26 1994-09-28 Sollac S.A. Installation for iron ore reduction in a circulating fluidized bed with solid materials flow regulating means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617136A1 (en) * 1993-03-26 1994-09-28 Sollac S.A. Installation for iron ore reduction in a circulating fluidized bed with solid materials flow regulating means
FR2703070A1 (en) * 1993-03-26 1994-09-30 Lorraine Laminage Iron ore reduction plant using a circulating fluidized bed provided with a solids flow control device.

Also Published As

Publication number Publication date
JPH0637659B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
RU2644090C2 (en) System and method of direct reduction of iron ore concentrate in fluidized bed
US6270553B1 (en) Direct reduction of metal oxide agglomerates
US20050092130A1 (en) Process and apparatus for the direct reduction of iron oxides in an electrothermal fluidized bed and resultant product
US3585023A (en) Method and apparatus for reduction of iron ore
JPS63140018A (en) Fluidized bed reduction device for iron ore
US4207093A (en) Process for reducing metal oxide containing ores
JPH06271919A (en) Method for pre-treating coal and ore for smelting reduction furnace
JPS62227022A (en) Preheating and reducing device for iron ore
JPS6311609A (en) Prereduction device for iron ore
CN105723002B (en) Method and apparatus for producing reduced iron
JP2502976B2 (en) Iron ore preliminary reduction device
JPS6311610A (en) Prereduction device for iron ore
JPS6311611A (en) Prereduction device for iron ore
JPS62228879A (en) Iron ore spare reducing device
US2784078A (en) Process of smelting finely divided metallic ore
JPS63140020A (en) Fluidized bed reducing device for iron ore
JPH0774368B2 (en) Iron ore fluidized bed reduction device
JPS62228882A (en) Iron ore spare reducing device
JPS62228870A (en) Out-of-core circulator for fluidized-bed spare reducing furnace
JPH024909A (en) Smelting reduction method for powdered ore
JPH10168508A (en) Production of molten iron
JPH09184006A (en) Method for melting iron raw material
JPS62228868A (en) Fluidized bed furnace with out-of-core circulating mechanism
CN114752763A (en) Low-temperature treatment process for stainless steel dedusting ash coal-based hydrogen metallurgy rotary kiln
JPS63143211A (en) Iron ore fluid bed reduction apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees