JPS63140020A - Fluidized bed reducing device for iron ore - Google Patents

Fluidized bed reducing device for iron ore

Info

Publication number
JPS63140020A
JPS63140020A JP28660086A JP28660086A JPS63140020A JP S63140020 A JPS63140020 A JP S63140020A JP 28660086 A JP28660086 A JP 28660086A JP 28660086 A JP28660086 A JP 28660086A JP S63140020 A JPS63140020 A JP S63140020A
Authority
JP
Japan
Prior art keywords
furnace
fluidized bed
particles
iron ore
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28660086A
Other languages
Japanese (ja)
Other versions
JPH0637660B2 (en
Inventor
Tatsuhiko Egashira
江頭 達彦
Nobuyoshi Nishihara
信義 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28660086A priority Critical patent/JPH0637660B2/en
Publication of JPS63140020A publication Critical patent/JPS63140020A/en
Publication of JPH0637660B2 publication Critical patent/JPH0637660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To accelerate high-speed fluidized reduction reaction and to improve the efficiency of reduction by providing an external particle circulating device to a fluidized bed reduction furnace and providing expanding and reducing parts to the furnace to increase the amt. of the stagnating particles. CONSTITUTION:A cyclone 31 is connected to the upper part of the fluidized bed reduction furnace 6 to capture the fine particles entrained in a reducing gas 11 and thereafter, the gas is returned through a hopper 33 to the furnace 6. The reducing part 30 and the expanding 31 are formed in the height direction of the furnace 6 to introduce the reducing gas 11 into the furnace 6 by which the iron ore particles are fluidized at high speed. The concn. of the particles is improved by the vortexes generated in the expanding part 31 and the decrease in the superficial velocity of the gas at this time. The slip speed of the reducing gas and the particles is increased by the vortexes, by which the reactivity of the iron ore and the reducing gas is improved and the rate of utilizing the reducing gas is enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶融還元法・高炉法等に使用するための、鉄鉱
石を流動層還元炉で還元する鉄鉱石還元装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an iron ore reduction apparatus for reducing iron ore in a fluidized bed reduction furnace for use in a smelting reduction method, a blast furnace method, etc.

(従来の技術) 鉄鉱石を還元して溶銑を製造するために、高炉を使用す
る方法、シャフト炉で還元した鉄鉱石を電気炉で溶解す
る方法が従来から採用されている。
(Prior Art) In order to reduce iron ore to produce hot metal, a method of using a blast furnace and a method of melting iron ore reduced in a shaft furnace in an electric furnace have been adopted.

高炉を使用する方法では、熱源及び還元剤として多量の
コークスを使用し、鉄源である鉄鉱石は炉内に於ける通
気性、還元性を向上させるために通常焼結され、焼結鉱
として高炉に装入されている。このようなことから、該
高炉法は、強粘結炭を乾溜するためのコークス炉設備及
び焼結鉱を製造する為の焼結設備を必要とする。従って
、該高炉法には、多大な設備費は勿論のこと、多くのエ
ネルギー及び労働が必要となる。この為、高炉法には処
理コストが高くなるという欠点があった。
In the method using a blast furnace, a large amount of coke is used as a heat source and a reducing agent, and the iron ore, which is the iron source, is usually sintered to improve air permeability and reducing properties in the furnace, and is processed as sintered ore. It is charged into the blast furnace. For this reason, the blast furnace method requires coke oven equipment for dry distilling highly caking coal and sintering equipment for producing sintered ore. Therefore, the blast furnace method requires a large amount of energy and labor as well as a large amount of equipment cost. For this reason, the blast furnace method has the disadvantage of high processing costs.

更に、強粘結炭は世界的に賦与量が少なく、しかもその
分布が地域的に偏っているため供給が不安定である。
Furthermore, the supply of strong coking coal is unstable because there is only a small amount of it available worldwide and its distribution is regionally uneven.

一方、シャフト炉による鉄鉱石の還元法は鉄鉱石をペレ
ット化する前処理を行うことが必要となり、また還元剤
、熱源として高価な天然ガス等を大量に消費するという
欠点がある。
On the other hand, the method of reducing iron ore using a shaft furnace requires pretreatment to pelletize the iron ore, and has the disadvantage that it consumes a large amount of reducing agent, expensive natural gas, etc. as a heat source.

このような従来の溶銑製造技術に代わるものとして、溶
融還元精練法が注目を浴びている。この方法で使用する
溶融還元炉は使用する原料に制約を受けることなく、よ
り小規模な設備により鉄系合金の溶湯を製造することを
目的として開発されたものである。
As an alternative to such conventional hot metal production technology, the smelting reduction scouring method is attracting attention. The smelting reduction furnace used in this method was developed for the purpose of producing molten iron-based alloys using smaller-scale equipment without being restricted by the raw materials used.

上述する溶融還元法の一例として本発明者は先に第4図
に示すフローで構成される方法を特願昭59〜1840
56号として提案している。
As an example of the above-mentioned melt reduction method, the present inventor previously proposed a method consisting of the flow shown in FIG.
It is proposed as No. 56.

この方法によるとき、次のようにして溶銑が製造される
。即ち鉄鉱石1及び石灰石2は流動層予熱炉3内で石炭
4と空気5との燃焼反応で生じた熱によって加熱される
。その結果、石灰石2 (CaCO2)は生石灰(Ca
b)となって流動層還元炉6に供給される。
According to this method, hot metal is produced as follows. That is, iron ore 1 and limestone 2 are heated in a fluidized bed preheating furnace 3 by heat generated by a combustion reaction between coal 4 and air 5. As a result, limestone 2 (CaCO2) becomes quicklime (CaCO2).
b) and is supplied to the fluidized bed reduction furnace 6.

流動層還元炉6内では流動状態の予熱鉱石及び生石灰に
石炭7及び酸素又は酸素含有ガスが吹き込まれる。この
石炭7は、流動層還元炉6内で予熱鉱石と熱交換し、ま
た酸素との反応による部分燃焼によって熱分解する。こ
れにより、石炭7は、還元性のガスを発生すると共に、
チャー9となる。
In the fluidized bed reduction furnace 6, coal 7 and oxygen or oxygen-containing gas are blown into the preheated ore and quicklime in a fluidized state. This coal 7 exchanges heat with the preheated ore in the fluidized bed reduction furnace 6 and is thermally decomposed by partial combustion due to reaction with oxygen. As a result, the coal 7 generates reducing gas, and
It becomes char 9.

他方、溶融還元炉10で発生したガス又はそのガスを脱
炭酸処理して得られる還元ガス11は、流動層還元炉6
からの燃料ガス12との熱交換によって700〜900
℃に昇温された後、流動層還元炉6に吹き込まれる。流
動層還元炉6に吹き込まれた還元ガス11は石炭7の熱
分解により生成した還元ガスと混合され、流動状態にあ
る高温の粉粒状鉄鉱石を還元し、還元*13を生成する
On the other hand, the gas generated in the melting reduction furnace 10 or the reducing gas 11 obtained by decarboxylating the gas is transferred to the fluidized bed reduction furnace 6.
700-900 by heat exchange with fuel gas 12 from
After being heated to 0.degree. C., it is blown into a fluidized bed reduction furnace 6. The reducing gas 11 blown into the fluidized bed reduction furnace 6 is mixed with the reducing gas generated by thermal decomposition of the coal 7, reduces the hot powdery iron ore in a fluidized state, and produces reduced *13.

また、流動層予熱炉3内に生成した生石灰14は、予熱
鉱石と共に流動層還元炉6に装入されて、流動層還元炉
6内にあるガスの脱硫を行う0次いで、該生石灰14は
、還元鉱13及びチャー9と共に流動層還元炉6から排
出される。
In addition, the quicklime 14 produced in the fluidized bed preheating furnace 3 is charged into the fluidized bed reduction furnace 6 together with the preheated ore, and the gas in the fluidized bed reduction furnace 6 is desulfurized.Then, the quicklime 14 is It is discharged from the fluidized bed reduction furnace 6 together with the reduced ore 13 and the char 9.

このようにして得られた還元鉱13、チャー9及び生石
灰14に対して、溶融還元炉10に於ける熱バランス上
必要な石炭、コークス等の炭材が外部から加えられ、混
練される0次いで、混合物は、ブリソケットマシン等の
塊成化装置15によってブリケット16に成型された後
、装入装置17によって溶融還元炉10に装入される。
To the reduced ore 13, char 9, and quicklime 14 obtained in this way, carbonaceous materials such as coal and coke necessary for the heat balance in the smelting reduction furnace 10 are added from the outside and kneaded. The mixture is formed into briquettes 16 by an agglomeration device 15 such as a brisket machine, and then charged into the smelting reduction furnace 10 by a charging device 17.

この溶融還元炉lOには、上吹きランス18から酸素1
9が浴に向かって吹き付けられると共に、底吹き羽口2
0から浴中に酸素及び炭材が吹き込まれている。そして
、ブリケット16に含まれている炭材、底吹き羽口20
から酸素と共に吹き込まれている炭材、装入装置17か
ら供給されたコークス21等の炭材は、上吹きランス1
8から供給された酸素と反応し、溶融還元炉10内に大
量の熱を発生する。この発生熱によって、ブリケント1
6中の還元鉱13が溶解し、還元が進行して溶銑となる
This melting reduction furnace lO is supplied with oxygen 1 from the top blowing lance 18.
9 is blown toward the bath, and the bottom blowing tuyere 2
Oxygen and carbonaceous material are blown into the bath from zero. Then, the charcoal material contained in the briquette 16, the bottom blowing tuyere 20
The carbonaceous material such as coke 21 supplied from the charging device 17 is blown in with oxygen from the top blowing lance 1.
It reacts with the oxygen supplied from 8 and generates a large amount of heat in the melting reduction furnace 10. Due to this generated heat, Brikent 1
The reduced ore 13 in 6 is dissolved, and the reduction progresses to become hot metal.

一方、還元鉱13中の脈石と炭材及び生石灰14とが反
応して、スラグ23が生成する。このスラグ23は溶融
還元炉10内に貯留し、時間が経過するにつれてその量
を増していく、そこで、該スラグ23を間欠的または連
続的に炉外に排出する。
On the other hand, the gangue in the reduced ore 13 reacts with the carbon material and the quicklime 14, and slag 23 is generated. This slag 23 is stored in the melting reduction furnace 10 and increases in amount as time passes, so the slag 23 is intermittently or continuously discharged outside the furnace.

(発明が解決しようとする問題点) このような溶融還元法においては、特にその開発過程か
らしても明らかなように、使用可能な原料の範囲の拡大
、熱回収の効率化、溶融還元炉に於ける精練反応の促進
を如何にして達成するかが今後の課題である。
(Problems to be solved by the invention) In this smelting reduction method, as is clear from the development process, it is important to expand the range of usable raw materials, improve the efficiency of heat recovery, and improve the smelting reduction furnace. The future challenge is how to accelerate the scouring reaction.

しかし、鉄鉱石還元装置に用いている高速流動層におい
て炉内での鉄鉱石の分布は炉高が高くなるほど希薄な状
態となる9gち第3回に示す如(、鉄鉱石の濃度を示す
空隙率は炉高の高さに従って指数関数的に激減する。
However, in the high-speed fluidized bed used in iron ore reduction equipment, the distribution of iron ore in the furnace becomes more dilute as the furnace height increases. The rate decreases exponentially with the height of the furnace.

従ってこのような状態で鉄鉱石の還元を行っても鉄鉱石
と還元ガスの反応性が悪く還元速度ガス利用率が低く生
産設備規模が大になる欠点があった。
Therefore, even if iron ore is reduced under such conditions, the reactivity between the iron ore and the reducing gas is poor, the reduction rate is low, the gas utilization rate is low, and the scale of production equipment is increased.

そこで本発明では流動層還元炉自体の形状を変形させる
ことに流動層還元炉内の粒子の内部滞留量を増し、炉高
方向の粒子濃度を確保することにより高速流動反応を促
進させることとした。
Therefore, in the present invention, we decided to change the shape of the fluidized bed reduction furnace itself to increase the internal retention amount of particles in the fluidized bed reduction furnace, thereby promoting the high-speed fluid reaction by ensuring the particle concentration in the furnace height direction. .

、(問題点を解決するための手段) 本発明の鉄鉱石還元装置は、溶融還元法に使用する還元
鉱石を製造する設備に於いて、流動層還元炉に外部粒子
循環装置を付設し、該炉内を炉高方向に複数個の拡大縮
小部を設けたものである。
(Means for Solving the Problems) The iron ore reduction apparatus of the present invention includes an external particle circulation device attached to a fluidized bed reduction furnace in equipment for producing reduced ore used in the smelting reduction method. A plurality of enlargement/contraction parts are provided inside the furnace in the direction of the furnace height.

(作用) 本発明は上述のように構成し、流動層還元炉に粉鉱石・
石炭等の原料を装入し還元ガスをガス吹込みノズルから
吹込み原料粒子を高速流動化する。
(Function) The present invention is configured as described above, and the fluidized bed reduction furnace is equipped with powder ore.
A raw material such as coal is charged, and reducing gas is blown through a gas injection nozzle to fluidize the raw material particles at high speed.

粒子は還元ガスに同伴飛散し流動層炉内を高速流動する
が、流動層還元炉の炉高方向に複数個の拡大縮小部が設
けられており、この拡大部での渦流の発生により粒子の
下降流が増大され、粒子同志や壁と粒子の衝突、摩擦等
が生じ粒子の飛散速度にブレーキがかかる。
Particles are scattered along with the reducing gas and flow at high speed in the fluidized bed reactor, but the fluidized bed reduction reactor has multiple expansion/contraction sections in the furnace height direction, and the generation of vortices in these enlarged sections causes the particles to The downward flow is increased, causing collisions between particles and walls, friction, etc., and a brake is applied to the scattering speed of particles.

また拡大することにより、還元ガスの空塔速度が低下す
ることにより粒子の飛散速度が低下する為、流動層還元
炉に滞留する粒子の量が増大し、第3図点線に示す如く
空隙率の改善を図ることができる。
In addition, due to the expansion, the superficial velocity of the reducing gas decreases and the particle scattering rate decreases, so the amount of particles staying in the fluidized bed reduction furnace increases, and the porosity increases as shown by the dotted line in Figure 3. Improvements can be made.

また流動層還元炉6に縮小部、拡大部を形成することに
より粒子と還元ガスのスリップ速度が大となり、炉内の
空隙率の大幅な向上による粒子濃度増大とあいまりで、
高速流動還元反応を促進することができる。
In addition, by forming a reduced part and an enlarged part in the fluidized bed reduction furnace 6, the slip speed of particles and reducing gas increases, and the particle concentration increases due to a significant improvement in the porosity in the furnace.
It can promote fast flow reduction reaction.

(実施例) 以下本発明の一実施例を第1図に示す基本的構成の概略
図で詳述する。
(Example) An example of the present invention will be described in detail below with reference to a schematic diagram of the basic configuration shown in FIG.

流動層還元炉6の炉高方向に縮小部30、拡大部31を
形成する。
A reduced portion 30 and an enlarged portion 31 are formed in the furnace height direction of the fluidized bed reduction furnace 6.

第1図の実施例では流動層還元炉6の途中を拡大する構
成のもので、第2図の実施例では流動層還元炉6の途中
を縮小する構成のものである。
The embodiment shown in FIG. 1 has a structure in which the middle of the fluidized bed reduction furnace 6 is enlarged, and the embodiment in FIG. 2 has a structure in which the middle of the fluidized bed reduction furnace 6 is reduced.

なおこの実施例では各縮小部30の直径、或いは拡大部
31の直径を等しくしているがこれに限るものではなく
、漸次これらの径を拡大成いは縮小するものであっても
よい、またこの縮小部3o、拡大部31の大きさは特に
限定するものではないが、第1図の実施例においては、
縮小部30の方は直径d、高さh5拡大部31の直径D
、高さHとすると、D/d−1今一、h−d/2、D−
dの関係で形成している。また拡大角度は45°である
Note that in this embodiment, the diameters of the respective reduced portions 30 or the diameters of the enlarged portions 31 are made equal; however, the diameter is not limited to this, and these diameters may be gradually enlarged or reduced. Although the sizes of the reduced portion 3o and enlarged portion 31 are not particularly limited, in the embodiment shown in FIG.
The diameter of the reduced part 30 is d, the height is h5, and the diameter of the enlarged part 31 is D.
, the height is H, then D/d-1 Imaichi, h-d/2, D-
It is formed by the relationship d. Further, the enlargement angle is 45°.

なお流動層還元炉に付設する外部粒子循環装置の構成は
流動層還元炉6の上部に設けられている出口にサイクロ
ン32を接続し還元ガス11と同伴し飛散してきた細粒
子を捕捉している。
The configuration of the external particle circulation device attached to the fluidized bed reduction furnace is such that a cyclone 32 is connected to the outlet provided at the top of the fluidized bed reduction furnace 6 to capture the fine particles that are scattered along with the reducing gas 11. .

そしてサイクロン32の下部には捕捉した粒子を一時溜
めるホッパ33を介し流動層還元炉6に戻している。
The trapped particles are returned to the fluidized bed reduction furnace 6 through a hopper 33 in the lower part of the cyclone 32, which temporarily stores the captured particles.

一方流動層還元炉6の炉内には適宜位置にガス吹出し口
が形成され還元ガス11が導入されている。
On the other hand, gas outlets are formed at appropriate positions in the fluidized bed reduction furnace 6 to introduce reducing gas 11.

流動層還元炉6の炉内に還元ガス11を導入すると、還
元ガス11は、流動層還元炉6内に有する鉄鉱石は還元
ガスにより高速流動化される0粒子は還元ガスと同伴飛
散し、流動層内を高速流動するが流動層還元炉6には縮
小部30、拡大部31が形成されており、炉の断面面積
の変動により、拡大部の所での渦流発生と空塔ガス速度
の低下により粒子の濃度が改善されると共にこの渦流に
より還元ガスと粒子とのスリップ速度が増大し、鉄鉱石
と還元ガスの反応性が良く還元速度ガス利用率も高くな
る。
When the reducing gas 11 is introduced into the furnace of the fluidized bed reduction furnace 6, the iron ore contained in the fluidized bed reduction furnace 6 is fluidized at high speed by the reducing gas, and the zero particles are scattered together with the reducing gas. Although the fluidized bed flows at high speed, the fluidized bed reduction furnace 6 is formed with a contracting section 30 and an expanding section 31, and due to fluctuations in the cross-sectional area of the furnace, vortices are generated at the expanding section and the superficial gas velocity is reduced. The concentration of particles is improved by the reduction, and the slip velocity between the reducing gas and the particles is increased by this vortex flow, so that the reactivity between the iron ore and the reducing gas is improved and the reduction rate gas utilization rate is also increased.

上記スリップ速度とは空塔ガス速度と粒子上昇速度との
差をいう。
The above-mentioned slip velocity refers to the difference between the superficial gas velocity and the particle rising velocity.

なお本設備は溶融還元用還元鉱石の製造に用いられるも
のに限ったものでなく、例えば還元ガス11を転炉ガス
やコークス炉ガス等の還元ガス或いは、改良した還元ガ
スを用いて、本設備で鉄鉱石を還元し、高炉へ供給使用
することも可能である。
Note that this equipment is not limited to those used for producing reduced ore for smelting reduction. It is also possible to reduce iron ore and supply it to a blast furnace.

(発明の効果) 上述したように、本発明においては、流動層還元炉内に
縮小部、拡大部が形成されていることより、流動層還元
炉内の鉄鉱石の内部循環量が改善され、及び炉内の還元
ガス11と粒子のスリップ速度の増大と相まって、高速
流動還元反応を促進させることができ、還元の効率化の
促進が図れ、高反応率、ガス利用率向上によりコンパク
トな還元設備を提供出来る等価れた効果を有する。
(Effects of the Invention) As described above, in the present invention, since the reduction part and the enlargement part are formed in the fluidized bed reduction furnace, the internal circulation amount of iron ore in the fluidized bed reduction furnace is improved. Coupled with an increase in the slip speed of the reducing gas 11 and particles in the furnace, it is possible to promote a high-speed flow reduction reaction, promoting reduction efficiency, and creating a compact reduction equipment with a high reaction rate and improved gas utilization rate. It has an equivalent effect that can provide the following.

また高炉法に利用した場合、高炉の生産性向上および焼
結設備・コークス炉設備等の付帯設備の小型化が図れる
Furthermore, when used in a blast furnace method, it is possible to improve the productivity of the blast furnace and to downsize ancillary equipment such as sintering equipment and coke oven equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的構成を示す説明図、第2図は本
発明の他の実施例を示す説面図、第3図は流動層還元炉
の炉高の高さと鉄鉱石の分布を示す空隙率を示す図、第
4図は本発明者等が先に提案した溶融還元法の概略を示
した説明図である。 6は流動層還元炉、11は還元ガス、30は縮小部、3
1は拡大部、32はサイクロン、33はホッパ。 矛1 図       矛2図 矛3図 1空晴Q5 欠4目 忙護 手続補正書 昭和62年1月13日 特許庁長官 黒 1)明 雄 殿 1、事件の表示  特願昭61−286600号2、発
明の名称 鉄鉱石流動層還元装置 3、補正をする者 事件との関係  特許出願人 (665)新日本製鐵株式会社 4、代理人 東京都港区虎ノ門1−1−18 5、補正の対象 明細暑中特許請求の範囲の欄 6、補正の内容 別紙記載の通り 補  正   の   内   容 出願番号  特願昭61−286600号明細書中特許
請求の範囲を以下の通り補正する。 r特許請求の範囲
Fig. 1 is an explanatory diagram showing the basic configuration of the present invention, Fig. 2 is an explanatory diagram showing another embodiment of the invention, and Fig. 3 is the height of the furnace height of the fluidized bed reduction furnace and the distribution of iron ore. FIG. 4 is an explanatory diagram showing an outline of the melt reduction method previously proposed by the present inventors. 6 is a fluidized bed reduction furnace, 11 is a reducing gas, 30 is a reduction section, 3
1 is an enlarged part, 32 is a cyclone, and 33 is a hopper. Spear 1 Picture Spear 2 Picture Spear 3 Picture 1 Sora Q5 Missing 4 Eyes Amended Document for Busy Procedures January 13, 1985 Commissioner of the Patent Office Black 1) Akio Tono 1, Indication of Case Patent Application No. 1986-286600 2 , Title of the invention: Iron ore fluidized bed reduction device 3, Person making the amendment Relationship to the case Patent applicant (665) Nippon Steel Corporation 4, Agent 1-1-18 Toranomon, Minato-ku, Tokyo 5, Amendment Contents of the Amendment As stated in Column 6 of the Scope of Claims in the Target Specification, Contents of Amendment Application Number: Japanese Patent Application No. 61-286600 The scope of claims in the specification is amended as follows. rClaims

Claims (1)

【特許請求の範囲】[Claims] 還元鉱石を製造する設備に於いて、流動層還元炉に外部
粒子循環装置を付設し、該炉内を炉高方向に複数個の拡
大縮小部を設けたことを特徴とする鉄鉱石流動層還元装
置。
A fluidized bed reduction of iron ore, which is a facility for producing reduced ore, characterized in that a fluidized bed reduction furnace is equipped with an external particle circulation device, and a plurality of expansion/contraction sections are provided in the furnace height direction. Device.
JP28660086A 1986-12-03 1986-12-03 Iron ore fluidized bed reduction device Expired - Lifetime JPH0637660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28660086A JPH0637660B2 (en) 1986-12-03 1986-12-03 Iron ore fluidized bed reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28660086A JPH0637660B2 (en) 1986-12-03 1986-12-03 Iron ore fluidized bed reduction device

Publications (2)

Publication Number Publication Date
JPS63140020A true JPS63140020A (en) 1988-06-11
JPH0637660B2 JPH0637660B2 (en) 1994-05-18

Family

ID=17706511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28660086A Expired - Lifetime JPH0637660B2 (en) 1986-12-03 1986-12-03 Iron ore fluidized bed reduction device

Country Status (1)

Country Link
JP (1) JPH0637660B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506614A (en) * 1990-07-13 1993-09-30 エイ.アフルストロム コーポレーション Method and apparatus for treating gases and/or solid substances in a circulating fluidized bed reactor
WO1996029435A1 (en) * 1995-03-17 1996-09-26 Voest-Alpine Industrieanlagenbau Gmbh Process for reducing ore fines and arrangement for carrying out the process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506614A (en) * 1990-07-13 1993-09-30 エイ.アフルストロム コーポレーション Method and apparatus for treating gases and/or solid substances in a circulating fluidized bed reactor
WO1996029435A1 (en) * 1995-03-17 1996-09-26 Voest-Alpine Industrieanlagenbau Gmbh Process for reducing ore fines and arrangement for carrying out the process
AT405942B (en) * 1995-03-17 1999-12-27 Voest Alpine Ind Anlagen METHOD FOR REDUCING FINE ORE AND SYSTEM FOR IMPLEMENTING THE METHOD

Also Published As

Publication number Publication date
JPH0637660B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
CA1337921C (en) Method and apparatus for reduction of material containing metal oxide
CA1050765A (en) Method for making steel
US4874427A (en) Methods for melting and refining a powdery ore containing metal oxides
US3607224A (en) Direct reduction of iron ore
EP2176614B1 (en) Process and plant for reducing solids containing iron oxide
US5069716A (en) Process for the production of liquid steel from iron containing metal oxides
JPS63140020A (en) Fluidized bed reducing device for iron ore
EP0618302A1 (en) Metallurgical processes and appartus
JPS6311609A (en) Prereduction device for iron ore
JPS63140019A (en) Fluidized bed reduction device for iron ore
JPS63143211A (en) Iron ore fluid bed reduction apparatus
JPS62228870A (en) Out-of-core circulator for fluidized-bed spare reducing furnace
JPS6311610A (en) Prereduction device for iron ore
JPH01162711A (en) Smelting reduction method
JPH024909A (en) Smelting reduction method for powdered ore
JPS63140018A (en) Fluidized bed reduction device for iron ore
JPH0689389B2 (en) Fluidized bed reduction method for ores
JPS62228882A (en) Iron ore spare reducing device
JPS6311611A (en) Prereduction device for iron ore
JP2502976B2 (en) Iron ore preliminary reduction device
JPH0723495B2 (en) Operation method of smelting reduction furnace
JPS62228881A (en) Iron ore spare reducing device
JPS62228879A (en) Iron ore spare reducing device
JPS62228873A (en) Preheated core shifter to fluidized-bed spare reducing furnace
JPS62228872A (en) Iron ore spare reducing device