JPS631395B2 - - Google Patents

Info

Publication number
JPS631395B2
JPS631395B2 JP58153901A JP15390183A JPS631395B2 JP S631395 B2 JPS631395 B2 JP S631395B2 JP 58153901 A JP58153901 A JP 58153901A JP 15390183 A JP15390183 A JP 15390183A JP S631395 B2 JPS631395 B2 JP S631395B2
Authority
JP
Japan
Prior art keywords
plating
current
current density
electrodes used
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58153901A
Other languages
Japanese (ja)
Other versions
JPS6046394A (en
Inventor
Kazuo Maehara
Shigeru Yamada
Yutaka Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15390183A priority Critical patent/JPS6046394A/en
Publication of JPS6046394A publication Critical patent/JPS6046394A/en
Publication of JPS631395B2 publication Critical patent/JPS631395B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属ストリツプの連続電気メツキにお
いて所定のメツキ層品質を確保しながらメツキ付
着量を所定の範囲とする操業方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an operating method for continuous electroplating of metal strips, which maintains a predetermined plating layer quality and keeps the plating coverage within a predetermined range.

従来技術 従来の連続電気メツキラインの操業において
は、メツキ電流は被メツキ材であるストリツプの
幅および速度とメツキ付着量との積に比例すると
いう関係に従つて設定され、この設定電流値で操
業中にメツキ付着量の実測結果にもとづいて設定
電流値を修正するという方法で行われていた。し
かして上記従来の操業においては、メツキ電流
は、ストリツプの通板方向に沿つて設置されてい
る複数個の各電極に供給される電流の合計値のみ
に着目して設定および修正がなされるものであつ
て、電極の電流密度を考慮したものではなかつ
た。しかしながら本発明者等の研究によれば、連
続電気メツキにおいて電極の電流密度はメツキ層
の品質(メツキ外観、メツキ密着性など)に影響
し、所定のメツキ層品質を得るための適正な電流
密度範囲が存在し、メツキ電流の設定にあたつて
電流密度を考慮することが不可欠であることが明
らかになつた。
Prior Art In the operation of a conventional continuous electric plating line, the plating current is set according to the relationship that it is proportional to the product of the width and speed of the strip to be plated and the amount of plating deposited, and the plating current is set at this set current value during operation. The method used was to modify the set current value based on the actual measurement results of the plating amount. However, in the conventional operation described above, the plating current is set and corrected by focusing only on the total value of the current supplied to each of the plurality of electrodes installed along the strip threading direction. However, the current density of the electrodes was not considered. However, according to research by the present inventors, the current density of the electrode in continuous electroplating affects the quality of the plating layer (plated appearance, plating adhesion, etc.), and the appropriate current density to obtain a predetermined plating layer quality has been found. It has become clear that a range exists and that it is essential to consider the current density when setting the plating current.

発明の目的 本発明は上記の知見にもとづき、所定の品質を
確保しつつ所定のメツキ付着量となるように適正
な電流密度を維持しつつ操業する方法を提供する
ことを目的とする。
Purpose of the Invention Based on the above findings, the present invention aims to provide a method for operating while maintaining an appropriate current density so that a predetermined plating amount is achieved while ensuring a predetermined quality.

発明の構成作用 この発明を達成するための本発明方法は、金属
ストリツプの連続電気メツキにおいて、メツキ電
流を、電極の使用数と一つの電極のストリツプ通
板方向の長さとストリツプ幅との積で除した値を
電流密度と定義し、メツキ層品質と関連させて電
流密度の適正範囲を予め定めておき、所定のメツ
キ付着量を得るに必要なメツキ電流値を算出し、
該算出したメツキ電流値から当該操業時の電極基
準使用数での電流密度を算出し、該算出した電流
密度が前記適正範囲内のときは前記基準使用数の
電極を使用してメツキし、前記算出した電流密度
が前記適正範囲を超えるときは電極の使用数を基
準使用数に対して増減してメツキするかまたはス
トリツプ速度の設定値を増減しかつ該増減したス
トリツプ速度設定値に対応したメツキ電流値を再
算出してメツキ電流設定値を修正してメツキする
ことを特徴とするものである。
Components and Functions of the Invention In the method of the present invention for achieving the present invention, in continuous electroplating of metal strips, the plating current is calculated as the product of the number of electrodes used, the length of one electrode in the strip passing direction, and the strip width. The divided value is defined as the current density, the appropriate range of current density is determined in advance in relation to the plating layer quality, and the plating current value necessary to obtain the predetermined plating amount is calculated,
The current density at the standard number of electrodes used during the operation is calculated from the calculated plating current value, and when the calculated current density is within the appropriate range, plating is performed using the standard number of electrodes used. If the calculated current density exceeds the above-mentioned appropriate range, increase or decrease the number of electrodes used relative to the standard number of electrodes used, or increase or decrease the set value of the stripping speed and perform plating corresponding to the increased or decreased set value of the stripping speed. This method is characterized in that plating is performed by recalculating the current value and correcting the plating current setting value.

以下本発明を詳しく説明する。 The present invention will be explained in detail below.

電気メツキにおけるメツキ電流がストリツプの
幅および速度とメツキ付着量の積に比例すること
は前に述べたが、これを式で表わすと次式のよう
になる。
It was previously stated that the plating current in electroplating is proportional to the product of the strip width and speed and the amount of plating deposited, and this can be expressed as the following equation.

IA=Ic/η=W・V・C/η・1/k ……(1) ここで IA:所要メツキ電流〔A〕 Ic:計算メツキ電流〔A〕 η:電流効率 W:ストリツプの幅〔m〕 V:ストリツプの速度(ラインスピード)〔m/
sec〕 C:メツキ付着量〔g/m2〕 k(=K/F):電気化学当量〔g/クーロン〕 ただしFはフアラデー定数 Kはメツキ層の基準組成により定まる定数 従来のメツキ操業においては、メツキ付着量目
標値とストリツプ速度設定値を前記(1)式に代入し
て所要メツキ電流値を算出し、該算出したメツキ
電流値を設定していたのであるが、この際電極の
電流密度に関しては考慮は払われていなかつた。
本発明者等はメツキ層品質と電流密度との関係に
ついて研究した結果、種々の組成のメツキ浴のも
とでの電流密度とメツキ層品質との関係を明らか
にすることができ、目標のメツキ層品質を得るた
めの電流密度の適正範囲を得た。その1例を第1
図に示す。第1図は、亜鉛−鉄合金メツキの場合
で、メツキ浴組成がZnSO4・7H2O:120g/、
FeSO4・7H2O:100g/のときの電流密度の適
正範囲(図中太線枠内)をストリツプ速度との関
連で示したものである。本発明者等の研究によれ
ば、メツキ外観が良好となる電流密度の上限と下
限が存在し、またメツキ密着性が良好となる電流
密度の下限とストリツプ速度の下限とが存在し、
メツキ外観とメツキ密着性の両者を満足する範囲
が第1図の太線枠内で示すように得られる。
I A = Ic / η = W・V・C/η・1/k ...(1) where I A : Required plating current [A] Ic : Calculated plating current [A] η : Current efficiency W : Stripping current [A] Width [m] V: Strip speed (line speed) [m/
sec] C: Plating amount [g/m 2 ] k (=K/F): Electrochemical equivalent [g/coulomb] where F is Faraday's constant K is a constant determined by the standard composition of the plating layer In conventional plating operation The required plating current value was calculated by substituting the target plating adhesion amount and stripping speed setting value into the above equation (1), and the calculated plating current value was set.In this case, the current density of the electrode No consideration was given to this.
As a result of research on the relationship between plating layer quality and current density, the present inventors were able to clarify the relationship between current density and plating layer quality under plating baths of various compositions, and were able to clarify the relationship between plating layer quality and target plating layer quality. The appropriate range of current density to obtain the layer quality was obtained. The first example is
As shown in the figure. Figure 1 shows the case of zinc-iron alloy plating, and the plating bath composition is ZnSO 4 7H 2 O: 120g/,
The appropriate range of current density (within the thick line frame in the figure) when FeSO 4 .7H 2 O: 100 g/ is shown in relation to the stripping speed. According to the research of the present inventors, there are upper and lower limits of current density at which plating appearance is good, and there are also lower limits of current density and stripping speed at which plating adhesion is good.
A range that satisfies both plating appearance and plating adhesion is obtained as shown within the bold line frame in FIG.

かかる研究結果にもとづいて本発明方法におい
ては、まづ前記したようなメツキ層品質と電流密
度との関係から電流密度の適正範囲を予め定めて
おき、前記(1)式によつて算出した所要メツキ電流
値から当該操業条件における電極基準使用数での
電流密度を次式 DK=1/100・IA/W・Ns・L ……(2) ここで DK:電流密度〔A/dm2〕 IA:所要メツキ電流〔A〕 W:ストリツプの幅〔m〕 Ns:電極基準使用数 L:1つの電極のストリツプ通板方向の長さ
〔m〕 により算出する。そして上記(2)式で算出した電極
基準使用数での電流密度が前記の適正範囲内であ
るときは基準使用数通りの数の電極を使用して操
業し、前記算出した電流密度が適正範囲の上限ま
たは下限を超えるときは電極の使用数の増減また
はストリツプ速度の増減とメツキ電流値の修正を
行う。
Based on such research results, in the method of the present invention, first, the appropriate range of current density is determined in advance from the relationship between the plating layer quality and current density as described above, and the required range calculated by the above equation (1) is determined in advance. From the plating current value, calculate the current density at the standard number of electrodes used under the operating conditions using the following formula: D K = 1/100・I A /W・Ns・L ……(2) Here, D K : Current density [A/dm 2 ] I A : Required plating current [A] W: Width of strip [m] Ns: Number of electrodes used L: Calculated from the length of one electrode in the strip running direction [m]. If the current density based on the standard number of electrodes used, calculated using equation (2) above, is within the appropriate range, the operation is performed using the same number of electrodes as the standard number of electrodes used, and the current density calculated above is within the appropriate range. If the upper or lower limit is exceeded, increase or decrease the number of electrodes used, increase or decrease the stripping speed, or modify the plating current value.

ここで電極使用数とストリツプ速度と電流密度
の関係についてさらに詳しく説明する。前出の(1)
式を(2)式に代入して整理すると DK=C/100・η・k・L・V/Ns……(3) となる。η、k、L、Cを一定とすると、電極使
用数Nsをパラメータとして電流密度DKとストリ
ツプ速度Vは比例関係となる。第1図に例示した
電流密度の適正範囲のなかで前記(3)式の関係を含
めた表わしたものが第2図である。
Here, the relationship between the number of electrodes used, stripping speed, and current density will be explained in more detail. Previous (1)
Substituting the equation into equation (2) and rearranging it, we get D K =C/100・η・k・L・V/Ns...(3). When η, k, L, and C are constant, the current density D K and the stripping speed V have a proportional relationship with the number of electrodes used Ns as a parameter. FIG. 2 shows the relationship expressed by equation (3) above within the appropriate range of current density illustrated in FIG. 1.

いま前記(2)式で算出した電流密度が第2図の適
正範囲内である場合(たとえばA点)はそのまま
の条件(使用電極数:11、ストリツプ速度:140
m/min)で操業し、適正範囲を超えたB点であ
る場合は使用電極数を11から12に増加して電流密
度が適正範囲内のB′点になるようにする。また
算出した電流密度がC点である場合は使用電極数
を12から11に減少して電流密度が適正範囲内の
C′点になるようにする。一方電極使用数がすでに
最大(または最小)のときは電流密度調整のため
に電極使用数を増加(または減少)することはで
きないので、この場合は電極使用数はそのままで
ストリツプ速度を下降(または上昇)させる。た
とえば算出した電流密度がD点である場合はスト
リツプ速度を下降させて電流密度が適正範囲内の
D′点になるようにし、かつこの場合は変更後の
ストリツプ速度に応じた所要メツキ電流値を再算
出してメツキ電流設定値も修正する。
If the current density calculated using equation (2) above is within the appropriate range in Figure 2 (for example, point A), then the conditions are the same (number of electrodes used: 11, stripping speed: 140).
m/min), and if point B exceeds the appropriate range, the number of electrodes used is increased from 11 to 12 to bring the current density to point B', which is within the appropriate range. Also, if the calculated current density is at point C, reduce the number of electrodes used from 12 to 11 to ensure that the current density is within the appropriate range.
Make it point C′. On the other hand, if the number of electrodes used is already at the maximum (or minimum), it is not possible to increase (or decrease) the number of electrodes used to adjust the current density, so in this case, the number of electrodes used remains the same and the stripping speed is decreased (or raise) For example, if the calculated current density is at point D, reduce the stripping speed until the current density is within the appropriate range.
In this case, the required plating current value is recalculated according to the changed stripping speed, and the plating current setting value is also corrected.

実施例 つぎに実施例について説明する。第3図は本発
明を実施するための装置構成の例を示す図であ
る。図において1はメツキ槽(本実施例では電気
亜鉛メツキ)であり、2−11,2−12,…
…,2−n1,2−n2は被メツキ材であるスト
リツプSを挾むかたちで配置された電極である。
3は各電極(図示していない整流器を含む)に対
してメツキ電流を分配する電流分配回路である。
4は設定器(もしくは上位計算機)5から設定さ
れるメツキ付着量目標値、ストリツプ幅、ストリ
ツプ速度設定値、使用電極数、ストリツプ速度下
限値と電流密度上限値および下限値、電流効率な
どの設定値および速度検出器6から入力されるス
トリツプ速度実測値を用いて(1)式および(2)式から
メツキ電流の初期設定値、電流密度を算出し、第
1図に示した電流密度適正範囲を許容限界として
該許容限界に入るように使用電極数の修正値また
はストリツプ速度の修正値とメツキ電流の修正値
を計算する演算回路である。7は演算回路4で算
出されたストリツプ速度修正値にもとづいてスト
リツプ速度を制御する速度制御回路である。
Example Next, an example will be described. FIG. 3 is a diagram showing an example of an apparatus configuration for implementing the present invention. In the figure, 1 is a plating tank (electrogalvanizing in this example), 2-11, 2-12,...
..., 2-n1, 2-n2 are electrodes arranged to sandwich the strip S, which is the material to be plated.
3 is a current distribution circuit that distributes plating current to each electrode (including a rectifier not shown).
Reference numeral 4 indicates settings such as the target value of plating adhesion, strip width, strip speed setting value, number of electrodes used, strip speed lower limit value, current density upper limit value and lower limit value, current efficiency, etc., which are set from the setting device (or host computer) 5. The initial setting value of the plating current and the current density are calculated from equations (1) and (2) using the measured value of the stripping speed input from the speed detector 6 and the appropriate current density range shown in Fig. 1. This is an arithmetic circuit that calculates a correction value for the number of electrodes used, a correction value for the stripping speed, and a correction value for the plating current so as to fall within the permissible limit. A speed control circuit 7 controls the strip speed based on the strip speed correction value calculated by the arithmetic circuit 4.

第4図a,bは第3図の演算回路4における演
算フローの例を示すフローチヤートであり、第4
図aはメツキ電流の初期設定値の演算フローを示
し、第4図bは該設定値で操業中にストリツプ速
度の変動に応じてメツキ電流および/または電極
使用数を修正するときの演算フローを示す。第3
図の設定器5から与えられるストリツプ速度設定
値(VP)を(1)式のVに代入し、更にストリツプ
幅(W)とメツキ付着量目標値(C)と電気化学当量
(k)と電流効率(η)とを(1)式に代入して、所
要メツキ電流(IP)を算出する。つぎに第3図の
設定器5から与えられるストリツプ幅(W)と電
極の使用数(NP)と電極のストリツプ通板方向
長さ(L)を(2)式に、また、所要メツキ電流(IP)を
(2)式のIAに代入することにより、電流密度(DKP
を算出する。このDKPが第1図に示す電流密度最
適範囲内すなわちDKmin≦DKP≦DKmaxのときに
はメツキ電流(IP)を第3図の電流分配回路3に
設定する。電流分配回路3は各電極に総メツキ電
流を分配する。(2)式から算出した電流密度
(DKP)がDKP≦DKmaxの範囲を超えるときは(3)式
から得られる電極の使用数算出式 NPx=〔C/100・η・k・L・V/DK〕 ……(4) 但し、〔X〕はXを超えない整数 のDKにDKmaxを代入し、VにVPを代入して得ら
れる電極使用数NPxを修正設定値として第3図
の電流分配回路3に設定し、NPx個の電極に総
メツキ電流IPを分配する。またDKP≧DKminの範
囲を超えるときには(3)式から得られる電極使用数
算出式 NPx=〔C/100・η・k・L・V/DK〕+1……(5) のDKにDKminを代入し、VにVPを代入して得ら
れる電極使用数NPxを修正設定値として第3図
の電流分配回路3に設定する。
4a and 4b are flowcharts showing an example of the calculation flow in the calculation circuit 4 of FIG.
Figure a shows the calculation flow for the initial set value of the plating current, and Figure 4 b shows the calculation flow when modifying the plating current and/or the number of electrodes used according to fluctuations in the stripping speed during operation with the set value. show. Third
Substitute the strip speed setting value (V P ) given from the setting device 5 in the figure into V in equation (1), and then calculate the strip width (W), target plating amount (C), and electrochemical equivalent (k). The required plating current (I P ) is calculated by substituting the current efficiency (η) into equation (1). Next, the strip width (W) given from the setting device 5 in Fig. 3, the number of electrodes used (N P ), and the length of the electrode in the strip running direction (L) are expressed in equation (2), and the required plating current is ( IP )
By substituting I A in equation (2), the current density (D KP )
Calculate. When this D KP is within the optimum current density range shown in FIG. 1, that is, D K min≦D KP ≦D K max, the plating current (I P ) is set in the current distribution circuit 3 of FIG. 3. The current distribution circuit 3 distributes the total plating current to each electrode. When the current density (D KP ) calculated from equation (2) exceeds the range of D KP ≦D K max, the formula for calculating the number of electrodes used obtained from equation (3) N P x = [C/100・η・k・L・V/D K ] ...(4) However, [X] is the number N of electrodes used, which is obtained by substituting D K max for D K , which is an integer not exceeding X, and substituting V P for V. P x is set as a modified setting value in the current distribution circuit 3 of FIG. 3, and the total plating current I P is distributed to N P x electrodes. In addition, when the range of D KP ≧D K min is exceeded, the formula for calculating the number of electrodes used is obtained from equation (3) N P x = [C/100・η・k・L・V/D K ]+1...(5) The number of electrodes to be used N P x obtained by substituting D K min for D K and V P for V is set as a corrected setting value in the current distribution circuit 3 of FIG.

一方、電極使用数を修正する方法とは別にスト
リツプ速度を修正する方法がある。すなわち、電
流密度最適範囲、DKmin≦DKP≦DKmaxを超える
ときには(3)式から得られるストリツプ速度計算
式、 VPx=100・η・k・L/C・N・DK……(6) のDKにDKmax(あるいはDKP<DKminのときDK
min)を代入し、NにNPを代入して得られるス
トリツプ速度VPxを修正設定値として第3図の
速度制御回路7に設定すると同時に、(1)式のVに
VPxを代入して得られるメツキ電流IA(IPxと同
じ)を修正設定値として第3図の電流分配回路3
に設定する。この方法は第4図aのフローチヤー
トのA部をB部に置換すれば実現できる。
On the other hand, in addition to the method of modifying the number of electrodes used, there is a method of modifying the strip speed. In other words, when the current density exceeds the optimum range, D K min≦D KP ≦D K max, the strip speed calculation formula obtained from equation (3), V P x=100・η・k・L/C・N・D K ...(6), D K max (or D K when D KP < D K min )
At the same time, set the strip speed V P
Using the plating current I A (same as I P x) obtained by substituting V P x as the corrected setting value, use the current distribution circuit 3 in Figure 3.
Set to . This method can be realized by replacing part A of the flowchart of FIG. 4a with part B.

上記のメツキ電流の初期設定値の演算はストリ
ツプ幅、メツキ付着量目標値、ストリツプ速度設
定値のいづれか一つでも変つたらその都度行う。
The above-mentioned calculation of the initial set value of the plating current is performed each time any one of the strip width, the target value of the plating adhesion amount, and the set value of the stripping speed changes.

つぎに操業中のメツキ電流の修正値の演算は、
前記初期設定値のメツキ電流で操業中に、たとえ
ば100ms毎に、第3図の速度検出器6から入力
される速度実測値(Va)を前記(1)式のVに代入
して所要メツキ電流の修正値(IP)を算出する。
一方その時点での実際の電極使用数(Na)をNs
に代入し、速度実測値(Va)をVに代入して、
電流密度DKPを算出する。そして算出した電流密
度DKPが電流密度最適範囲、DKmin≦DKP≦DK
max内のときは、所要メツキ電流の修正値(IP
を設定し、範囲を超える場合には、初期設定の場
合と同様な手順で修正設定値(NPx)を算出し
設定する。
Next, the calculation of the correction value of plating current during operation is as follows:
During operation with the plating current at the initial setting value, for example, every 100 ms, the actual speed value (Va) inputted from the speed detector 6 in FIG. Calculate the corrected value (I P ) of
On the other hand, the actual number of electrodes used at that time (Na) is Ns
and substitute the actual speed measurement value (Va) to V,
Calculate the current density D KP . The calculated current density D KP is the optimum current density range, D K min≦D KP ≦D K
When within max, corrected value of required plating current (I P )
is set, and if it exceeds the range, calculate and set the corrected setting value (N P x) using the same procedure as the initial setting.

かくして電流密度の範囲を考慮したメツキ電流
の設定と修正が行われる。また、メツキ電流に許
容限界があるときでも上記と組合わせて算出すれ
ば電流密度の範囲とメツキ電流許容限界も含めた
メツキ電流の設定と修正ができる。
In this way, the plating current is set and modified in consideration of the current density range. Further, even when there is an allowable limit for plating current, by calculating in combination with the above, it is possible to set and modify the plating current including the range of current density and the allowable limit for plating current.

発明の効果 以上述べたごとく本発明方法はストリツプの連
続電気メツキにおいてメツキ層の品質(メツキ外
観やメツキ密着性など)に影響を与える電流密度
適正範囲を考慮してメツキ電流を設定し、また範
囲を超えるときは電極使用数を修正またはストリ
ツプ速度を修正するものであるから、所定のメツ
キ品質を確保しながら、メツキ付着量を所定の範
囲に制御することができる。
Effects of the Invention As described above, the method of the present invention sets the plating current in consideration of the appropriate range of current density that affects the quality of the plating layer (plating appearance, plating adhesion, etc.) in continuous electroplating of strips. If the number of electrodes used is exceeded, the number of electrodes used or the stripping speed is adjusted, so the amount of plating deposited can be controlled within a predetermined range while ensuring a predetermined plating quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電流密度の適正範囲の例を示す図、第
2図は電流密度適正範囲内での電極使用数の修
正、ストリツプ速度の修正の方法を説明するため
の図、第3図は本発明の実施例における装置構成
を示す図、第4図a,bは本発明における制御フ
ローの具体例を示すフローチヤートである。 1はメツキ槽、2−1〜2−n2は電極、3は
電流分配回路、4は演算回路、5は設定器(もし
くは計算機)、6は速度検出器、7は速度制御回
路。
Figure 1 is a diagram showing an example of the appropriate range of current density, Figure 2 is a diagram to explain how to modify the number of electrodes used and the stripping speed within the appropriate range of current density, and Figure 3 is a diagram of the book. FIGS. 4a and 4b are flowcharts showing a specific example of the control flow in the present invention. 1 is a plating tank, 2-1 to 2-n2 are electrodes, 3 is a current distribution circuit, 4 is an arithmetic circuit, 5 is a setting device (or calculator), 6 is a speed detector, and 7 is a speed control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 金属ストリツプの連続電気メツキにおいて、
メツキ電流を、電極の使用数と一つの電極のスト
リツプ通板方向の長さとストリツプ幅との積で除
した値を電流密度と定義し、メツキ層品質と関連
させて該電流密度の適正範囲を予め定めておき、
所定のメツキ付着量を得るに必要なメツキ電流値
を算出し、該算出したメツキ電流値から当該操業
時の電極基準使用数での電流密度を算出し、該算
出した電流密度が前記適正範囲内のときは前記基
準使用数の電極を使用してメツキし、前記算出し
た電流密度が前記適正範囲を超えるときは電極の
使用数を基準使用数に対して増減してメツキする
かまたはストリツプ速度の設定値を増減しかつ該
増減したストリツプ速度設定値に対応したメツキ
電流値を再算出してメツキ電流設定値を修正して
メツキすることを特徴とする連続電気メツキ方
法。
1. In continuous electroplating of metal strips,
The current density is defined as the plating current divided by the product of the number of electrodes used, the length of one electrode in the strip passing direction, and the strip width, and the appropriate range of the current density is determined in relation to the quality of the plating layer. Determine in advance,
Calculate the plating current value necessary to obtain a predetermined plating amount, calculate the current density at the standard number of electrodes used during the operation from the calculated plating current value, and ensure that the calculated current density is within the appropriate range. In this case, plate using the standard number of electrodes used, and if the calculated current density exceeds the appropriate range, increase or decrease the number of electrodes used or change the stripping speed. A continuous electroplating method characterized by increasing or decreasing a set value and recalculating a plating current value corresponding to the increased or decreased stripping speed set value to correct the plating current set value and plating.
JP15390183A 1983-08-23 1983-08-23 Continuous electroplating method Granted JPS6046394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15390183A JPS6046394A (en) 1983-08-23 1983-08-23 Continuous electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15390183A JPS6046394A (en) 1983-08-23 1983-08-23 Continuous electroplating method

Publications (2)

Publication Number Publication Date
JPS6046394A JPS6046394A (en) 1985-03-13
JPS631395B2 true JPS631395B2 (en) 1988-01-12

Family

ID=15572581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15390183A Granted JPS6046394A (en) 1983-08-23 1983-08-23 Continuous electroplating method

Country Status (1)

Country Link
JP (1) JPS6046394A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046392A (en) * 1983-08-23 1985-03-13 Nippon Steel Corp Continuous electroplating method
JPS61231200A (en) * 1985-04-04 1986-10-15 Mitsubishi Electric Corp Control device for calculating plating current
JP5506212B2 (en) * 2009-03-05 2014-05-28 新日鉄住金エンジニアリング株式会社 Electroplating current control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932172A (en) * 1972-07-26 1974-03-23
JPS58130300A (en) * 1982-01-28 1983-08-03 Toshiba Corp Control device for electroplating
JPS6046392A (en) * 1983-08-23 1985-03-13 Nippon Steel Corp Continuous electroplating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932172A (en) * 1972-07-26 1974-03-23
JPS58130300A (en) * 1982-01-28 1983-08-03 Toshiba Corp Control device for electroplating
JPS6046392A (en) * 1983-08-23 1985-03-13 Nippon Steel Corp Continuous electroplating method

Also Published As

Publication number Publication date
JPS6046394A (en) 1985-03-13

Similar Documents

Publication Publication Date Title
JPS631395B2 (en)
JPH01119699A (en) Method and apparatus for adjusting partial current in electrolytic bath
JPS631394B2 (en)
JPH0233800B2 (en) RENZOKUDENKIMETSUKINIOKERUMETSUKIDENRYUSEIGYOHOHO
JPS60245799A (en) Method for controlling amount of plating deposited
KR100527332B1 (en) Method and device for coating a metal strip
JPH0447040B2 (en)
CN106498483A (en) A kind of electroplating technological parameter inter-linked controlling method
JPH02277795A (en) Method for controlling iron content of plating film
JP3240898B2 (en) Control method of continuous plating
JPS6111230Y2 (en)
DE3033894C2 (en) Build-up welding process for the variable alloying of the transition zones and device for controlling this process
JPS63293200A (en) Electroplating method
Popov et al. Some aspects of current density distribution in electrolytic cells I: Dendritic growth of cadmium at the cathode edge in galvanostatic electrodeposition
JPS61221400A (en) Method for controlling electroplating deposition
JPH04107296A (en) Apparatus for continuously electroplating steel strip
JP3178373B2 (en) Continuous electroplating method and equipment
KR20000075792A (en) Method and device for coating a metal strip
JPS592115Y2 (en) Continuous single-sided electroplating equipment for metal strips
KR101088132B1 (en) CONTROL METHOD AND DEVICE OF IONS CONCENTRATION IN Zn-Ni ELECTROPLATING SOLUTION
JPH0336291A (en) Method for preventing current leakage for electrolytic cell
JPS62205299A (en) Adjusting method for current density of electrode for electroplating
JPH05287584A (en) Continuous electroplating method
JP3303548B2 (en) Plating test equipment
JPH01195297A (en) Continuous galvanizing method