JPS63139268A - System for searching wide frequency band noise source - Google Patents

System for searching wide frequency band noise source

Info

Publication number
JPS63139268A
JPS63139268A JP28695386A JP28695386A JPS63139268A JP S63139268 A JPS63139268 A JP S63139268A JP 28695386 A JP28695386 A JP 28695386A JP 28695386 A JP28695386 A JP 28695386A JP S63139268 A JPS63139268 A JP S63139268A
Authority
JP
Japan
Prior art keywords
signal
frequency
output
noise source
receiving sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28695386A
Other languages
Japanese (ja)
Inventor
Isao Kaneko
功 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28695386A priority Critical patent/JPS63139268A/en
Publication of JPS63139268A publication Critical patent/JPS63139268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To search a wide frequency band noise source and to measure the azimuth thereof by one receiving sensor, by constituting the title system of a frequency analyzing part, a phase comparing part, an integration part, a synthetic part and an RMS calculation part. CONSTITUTION:A frequency analyzing part 1 analyzes the frequencies of the NS signal 7 having directionality of COS theta, EW signal 8 having directionality of Sin theta and OMNI signal outputted from one receiving sensor A phase comparing part 2 respectively compares the phases of the frequency spectra of the NS signal 10, EW signal 11 and OMNI signal 12 subjected to frequency analysis and applies a positive code to the frequency spectra of the NS signal and EW signal 14 after frequency analysis when said phases are same and applies a negative code to said spectra when the phases are reverse. An integration part 3 integrates the output thereof at every frequency spectrum to obtain NS integral output 15 and EW integral output 16 and a synthetic part 4 synthesizes the results thereof over a definite frequency range. When the RMS of NS synthetic output 17 and EW synthetic output 18 is calculated by an RMS calculation part 5, the level 19 of a noise source and the approximate azimuth 20 thereof can be calculated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は受波センサによシ受信された音響信号を処理し
音源を探知する音源探知製置に用いられ特に音源が広周
波数帯域の雑音を発生する場合の探知に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is used in a sound source detection device that processes acoustic signals received by a wave receiving sensor and detects the sound source. Concerning the detection of occurrences.

〔従来の技術〕[Conventional technology]

従来仁の樵の広周波数帯域雑音源探知方式は第4図に示
すように2つの異なる位置に配置された受波器A28及
び受波器B29により受信された音源27t−第3図の
ように相関器23を通すことで探知してきた。受波セン
?A28及び受波器センサB29で受信される音響信号
は、それぞれ(1)式(2)式で表示される。。
Conventionally, the wide-frequency band noise source detection method of Jin-no-Komo detects a sound source 27t received by a receiver A28 and a receiver B29 placed at two different positions as shown in FIG. It was detected by passing it through the correlator 23. Receiving wave sensor? The acoustic signals received by A28 and receiver sensor B29 are expressed by equations (1) and (2), respectively. .

受波センサA 受信信号24=Nム(t) +5(t)
   (1)受波センサB 受信信号25 =N e(
t) +5(t) (t−τ)+1)式、(2)式にお
いて、Mム(り及びNa(りは海中雑音、5(t)は雑
音@270発生する雑音である。
Receiving sensor A receiving signal 24=Nmu(t) +5(t)
(1) Receiving sensor B receiving signal 25 =N e(
t) +5(t) (t-τ)+1) and (2), Mmu(ri) and Na(ri) are underwater noise, and 5(t) is the noise generated at 270.

8人(t)、NB(t)、5(t)は 雑音であシ相互
の相関性はない。また(2)式のτは雑音源27の発生
する雑音が受波センサA28と受波センサB29に到達
する時間差である。相関出力26は(3)弐になる。
8 people (t), NB (t), and 5 (t) are noise and have no correlation with each other. Further, τ in equation (2) is the time difference between when the noise generated by the noise source 27 reaches the wave receiving sensor A28 and the wave receiving sensor B29. The correlation output 26 becomes (3)2.

T 相関出力26=?  、(8人< t−1)+S (t
−i ) 1・(NB(t)+5(t−τ月dt   
(31(3)式において、積分時間゛i′を長くすると
相関のタイムラグ基がτに等しい時相関出力26は音源
27070発生雑音に近づきタイムラグjがτと異なる
ときは相関出力26は0に近づ〈従来の広周波数帯域雑
音源探知方式においては相関のタイムラグ!を変化させ
相関出力26のピークを検出することで雑音を発生する
音源270探知管行ってきた。
T Correlation output 26=? , (8 people < t-1) + S (t
−i ) 1・(NB(t)+5(t−τmonthdt
(In Equation 31 (3), when the integration time ゛i' is lengthened, the correlation output 26 approaches the noise generated by the sound source 27070 when the time lag base of the correlation is equal to τ, and when the time lag j is different from τ, the correlation output 26 approaches 0. In the conventional wide frequency band noise source detection method, a sound source 270 detector tube that generates noise by changing the correlation time lag and detecting the peak of the correlation output 26 has been used.

音源27C1万位は、受波センサA28と受波センサB
29の距離と相関のタイム2グtから求められる距@を
用いることで幾何学的に求められる。
The sound source 27C10,000 is the wave receiving sensor A28 and the wave receiving sensor B
It can be determined geometrically by using the distance @ determined from the distance of No. 29 and the time 2gt of the correlation.

〔発明が解決しようとする問題点〕 上述した従来の広周波数帯域雑音源探知方式は2つの異
なる位置から同時に受信された雑音源の雑音を相関処理
するため少なくとも2つの受波センナが必要で又その距
離はそれぞれに入る海中雑音O相関性がなくなる距離以
上で、かつ雑音源からの雑音が海中O伝搬において相関
性がなくならない距離以下に保たれる必要かめる。また
雑音源の方位は2つの受波センサの距離の関数となるた
めその距離を常時正確に把揖する必要があるという運用
上制限を持つ欠点がある。
[Problems to be Solved by the Invention] The conventional wide frequency band noise source detection method described above requires at least two receiver sensors to perform correlation processing on noise from noise sources received simultaneously from two different locations. The distance must be greater than the distance at which the correlation between the incoming underwater noises disappears, and less than the distance at which the noise from the noise source does not lose its correlation during underwater propagation. Furthermore, since the direction of the noise source is a function of the distance between the two wave receiving sensors, there is a drawback in that it is operationally limited in that the distance must be accurately determined at all times.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の広周波数帯域雑音源、探知方式は1つの受波セ
ンサから出力されるCO8θの指向性を有するNS信号
及びSinθの指向性を有するEW倍信号0MN1信号
を周波数分析する周波数分析後と周波数分析され九NS
及びEWi号と0MN1信号の各周波数スペクトルの位
相をそれぞれ比較し同相の場合は正、逆相の場合は負の
符号を周波数分析後のNS及びEWI号の各周波数スペ
クトルに付与する位相比較部とその出力を各周波数スペ
クトル毎に積分する検分部とその結果を一定の周波数範
囲にわたシ周波数スペクトルを合成する合成部とその出
力であるN81号の合成値とEV偽信号合成値のRMS
t−計算するRMS計算部を有している。
The wide frequency band noise source and detection method of the present invention is to frequency-analyze the NS signal with the directivity of CO8θ and the EW multiplied signal 0MN1 signal with the directivity of Sinθ output from one wave receiving sensor. Analyzed nine NS
and a phase comparison unit that compares the phases of the frequency spectra of the EWi signal and the 0MN1 signal and assigns a positive sign if they are in phase and a negative sign if they are in opposite phase to each frequency spectrum of the NS and EWI signals after frequency analysis. An inspection section that integrates the output for each frequency spectrum, a synthesis section that synthesizes the frequency spectra over a certain frequency range, and an RMS of the output of the N81 composite value and the EV false signal composite value.
It has an RMS calculation section that calculates t.

〔実施例〕〔Example〕

第1図は本発明の一実施例のブロック図である。 FIG. 1 is a block diagram of one embodiment of the present invention.

雑音を発生する雑音源21と受波センサ22が第2図の
ように配置されている場合受波センサ22のNS信号7
.EW信号8.0AaN1偽号9は(4)式、(5)式
、(6)式のように表現される。
When the noise source 21 that generates noise and the wave receiving sensor 22 are arranged as shown in FIG. 2, the NS signal 7 of the wave receiving sensor 22
.. The EW signal 8.0AaN1 false code 9 is expressed as in equations (4), (5), and (6).

NS信号? = NN 5(t) +5(t) CO8
θ    (4)EW信号8 =Nx璽t)+5(t)
 Sinθ     (5)とOMN1信号9=N□M
Nx(t)+5(t)       (61(4)式、
(5)式、(6)式においてNN5(を八Ngw(t)
、OoMsx(t)は海中雑音、5(t)は雑音源21
の発生する雑音であシθはmf源21の受波センサから
みた方位である。
NS signal? = NN 5(t) +5(t) CO8
θ (4) EW signal 8 = Nx t) + 5(t)
Sinθ (5) and OMN1 signal 9 = N□M
Nx(t)+5(t) (61(4) formula,
In equations (5) and (6), NN5(8Ngw(t)
, OoMsx(t) is underwater noise, 5(t) is noise source 21
θ is the direction seen from the wave receiving sensor of the mf source 21.

周波数分析部1ONS信号、EWm号及びとOMN1信
号の周波数分析出力は(7)、+a)、+97式となる
The frequency analysis output of the frequency analysis unit 1 ONS signal, EWm number, and OMN1 signal is expressed by formula (7), +a), +97.

NS崗波数分析出力10=NNsi(t)+5i(t)
CO8θ (力EW周波数分析出力11 =Nmwf(
t) 十S 1(t) S i nθ (8)OMN1
周波数分析出力12=NoMsxgt)+5i(t) 
 (9)(7)、(8)、(9)式においてNnai(
t″KNgwi(t)、NOMN 11(t)は、海中
雑音の1番目の周波数スペクトルであシ、5i(t)は
雑音源210発生する雑音の1番目の周波数スペクトル
である。
NS wave number analysis output 10=NNsi(t)+5i(t)
CO8θ (force EW frequency analysis output 11 = Nmwf(
t) 10S 1(t) S i nθ (8) OMN1
Frequency analysis output 12=NoMsxgt)+5i(t)
(9) In equations (7), (8), and (9), Nnai(
t″KNgwi(t), NOMN 11(t) is the first frequency spectrum of underwater noise, and 5i(t) is the first frequency spectrum of noise generated by the noise source 210.

位相比較部2ではNS周波数分析出力1O5EW周波数
分析出力11と0MN1周波数分析出力12の位相金そ
れぞれ谷スペクトラム毎に比較し、符号KNsi(t)
、Kxvi(t) t−付与する[asi(t)、Kg
wi(t)は同相の時は1逆相O時は−1である。
The phase comparator 2 compares the phases of the NS frequency analysis output 1O5EW frequency analysis output 11 and the 0MN1 frequency analysis output 12 for each valley spectrum, and obtains the symbol KNsi(t).
, Kxvi(t) t-give [asi(t), Kg
wi(t) is 1 when the phase is in-phase and -1 when the phase is out-of-phase.

位相比較部2の出力Fi(10) 、(11)式になる
The output Fi(10) of the phase comparator 2 is expressed by equation (11).

NS位相比較出力13=KNsi(t) 1Nssi(
t)十5i(t) cogθl   (10)十5i(
t) sinθ%   (11)位相比較部2の出力を
検分部3でNS、、EWそれぞれ積分すると出力は(1
2) 、 (13)式になる。
NS phase comparison output 13=KNsi(t) 1Nssi(
t) 15i(t) cogθl (10) 15i(
t) sin θ% (11) When the output of the phase comparator 2 is integrated by the detector 3 for NS, EW, the output is (1
2), it becomes equation (13).

NS積分出力1s=4J”:KNsi(t)lNNsi
(t)+5i(t)coai91 dt   (12)
EW積分出力16 =−ffoKxwi(t) l N
mwi(t)十5t(t) sin# l dt   
(13)この出力をさらに合成部4でN5SEWそれぞ
れ一定の鞠波数帯域にわたり合成すると出力は(14)
 。
NS integral output 1s=4J": KNsi(t)lNNsi
(t)+5i(t)coai91 dt (12)
EW integral output 16 = -ffoKxwi(t) l N
mwi(t) 15t(t) sin# l dt
(13) When this output is further synthesized in the synthesis section 4 over a constant frequency band for each N5SEW, the output is (14)
.

(15)になる。It becomes (15).

NS合成出力17=、Σ f、” Km s 1(t)
 l NN a 1(t)1L +5L(t)cos#%dt   (14)+5i(t
)sinθ1cit   (15)Σのり、uは合成す
る周波数帯域の下限周波数のスペクトル番号と上限周波
数のスペクトル番号金示す、ここで積分時間Ti長くし
合成するスペクトル数u−L十lt−大きくすると(1
4) (15)式は(16) (17)に近似される。
NS composite output 17=,Σ f,” Km s 1(t)
l NN a 1(t)1L +5L(t)cos#%dt (14)+5i(t
) sin θ1cit (15) Σ paste, u indicates the spectrum number of the lower limit frequency and the spectrum number of the upper limit frequency of the frequency band to be synthesized.Here, if the integration time Ti is lengthened and the number of spectra to be synthesized is increased u-L+lt-(1
4) Equation (15) is approximated by (16) and (17).

NS合成出力中K  eo11θ    (16)EV
合成出カキK  sin#      (17)NS合
成出力17とEV合成出力181kRMS計算部7でR
MSt−計算すると雑音源レベル19として(18)式
が出力される RMS出力中Jbで=5j戸]7石石百百^g = K
Kは雑音源21の雑音5(t)、積分時間T1合成スペ
クトル数u−L+lによシ定まる定数でID締音源21
がない場合、・及び雑音源21が有していない周波数帯
域のスペクトルを合成する場合蝶0に近似される。
During NS synthesis output K eo11θ (16) EV
Combined output K sin# (17) NS combined output 17 and EV combined output 181 kRMS calculation unit 7 R
MSt - When calculated, equation (18) is output as a noise source level of 19. Jb during RMS output = 5j doors] 7 stones 100 g = K
K is a constant determined by the noise 5(t) of the noise source 21, the integration time T1, the number of synthesized spectra u-L+l, and the ID tightening sound source 21.
When there is no noise source 21, and when the spectrum of the frequency band that the noise source 21 does not have is synthesized, it is approximated to butterfly 0.

父方付計算部8で合成部4の出力から雑音源O近似方位
19を求める。
A noise source O approximation direction 19 is obtained from the output of the synthesis section 4 in a paternal calculation section 8 .

(16)式(17)式の符号によシ象限金決定し、象限
内の方位Δθは(19)式で求める。
The quadrant is determined based on the signs of equations (16) and (17), and the orientation Δθ within the quadrant is determined using equation (19).

象限とΔθによシ雑音源の近似方位キθを決定する。Based on the quadrant and Δθ, determine the approximate azimuth θ of the noise source.

〔考案の効果〕[Effect of idea]

以上説明したように本発明は1つの受波センサによ)広
周波数帯域雑音源の探知及び方位の測定が可能となるた
め複数の受波センナを必要とせずに運用ができる効果が
ある。
As explained above, the present invention has the advantage that it is possible to detect a wide frequency band noise source and measure the direction using one receiving sensor, so that it can be operated without requiring a plurality of receiving sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
本発明によシ探知を行う場合の音源及び指向性ソノグイ
の配置図、第3図社従来の方式のブロック図、第4図は
従来の方式により探知を行う場合Ot源及びソノグイの
配置図である。 l・・・・・・周波数分析部、2・・・・・・位相比較
部、3・・・・・・検分部、4・・・・・・合成部、5
・・・・・・RMS計算部、6・・・・・・方位計算部
、7・・・・・・NS信号、8・・・・、、EW傷信号
9・・・・−0MN1信号、10・・・・・・NS周波
数分析出力、11・・・・・・EW周波数分析出力、1
2・・・・・・・・・0MN11i1波数分析出力、1
3・・・・・・N8位相比救出力、14・・・・・・E
W位相比較出力、15・・・・・・NS積分出力、16
・・・・・・i!Jw積分出力、17・・・・・・NS
合成出力、1g・・・・・・EW合成出力、19・・・
・・・雑音源レベル、20・・・・・・雑音源近似方位
、21・・・・・・雑音源、22・・・・・・受波セン
サ、23−−−−−・相関器、24・・・・・・受波セ
ンサA受信信号、25・・・・・・受波センサB受信信
号、26・・・・・・相関出力、27・・・・・・雑音
源、28−−−−・・受波センサA、29・・・・・・
受波センサB。 代塩入 弁理士  内 原   竺 ”′・、メく・ \lノ′ 荀2図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a layout diagram of a sound source and a directional sonograph when detecting objects according to the present invention, Fig. 3 is a block diagram of a conventional method; FIG. 4 is a diagram showing the arrangement of an Ot source and a sonograph when detection is performed using a conventional method. l... Frequency analysis section, 2... Phase comparison section, 3... Verification section, 4... Synthesis section, 5
... RMS calculation section, 6 ... Direction calculation section, 7 ... NS signal, 8 ..., EW flaw signal 9 ... -0MN1 signal, 10...NS frequency analysis output, 11...EW frequency analysis output, 1
2・・・・・・・・・0MN11i1 wave number analysis output, 1
3...N8 phase ratio rescue power, 14...E
W phase comparison output, 15...NS integral output, 16
...i! Jw integral output, 17...NS
Combined output, 1g...EW combined output, 19...
... Noise source level, 20 ... Noise source approximate direction, 21 ... Noise source, 22 ... Wave receiving sensor, 23 ... Correlator, 24... Receiving sensor A received signal, 25... Receiving sensor B receiving signal, 26... Correlation output, 27... Noise source, 28- ---... Receiving sensor A, 29...
Receiving sensor B. Yoshioiri Patent Attorney Uchihara Jiku"', Meku, \lノ'

Claims (1)

【特許請求の範囲】[Claims] 水中に存在する広周波数帯域雑音源を探知する方式にお
いて、1つの受波センサから出力されるCOSQの指向
性を有するNS信号及びSinθの指向性を有するEW
信号と無指向性のOMN1信号を周波数分析する周波数
分赤部と周波数分析されたNS及び信号EW信号とOM
N1信号の各周波数スペクトルの位相をそれぞれ比較し
同相の場合は正、逆相の場合は負の符号を周波数分析後
のNS及びEW信号の各周波数スペクトルに付与する位
相比較部とその出力を各周波数スペクトル毎に積分する
検分部とその結果を一定の周波数範囲にわたり周波数ス
ペクトルを合成する合成部とその出力であるNS信号の
合成値とEW信号の合成値のRMSを計算するRMS計
算部により構成されることを特徴とする広周波数帯域雑
音源探知方式。
In a method for detecting broadband noise sources existing underwater, an NS signal with a COSQ directionality and an EW signal with a Sinθ directionality are output from one wave receiving sensor.
Frequency analysis of signal and omnidirectional OMN1 signal Frequency division Red part and frequency analyzed NS and signal EW signal and OM
A phase comparator section compares the phases of each frequency spectrum of the N1 signal and assigns a positive sign if the phase is the same, and a negative sign if the phase is opposite to each frequency spectrum of the NS and EW signals after frequency analysis. Consists of an inspection section that integrates each frequency spectrum, a synthesis section that synthesizes the results into a frequency spectrum over a certain frequency range, and an RMS calculation section that calculates the RMS of the outputs of the combined value of the NS signal and the combined value of the EW signal. A wide frequency band noise source detection method characterized by:
JP28695386A 1986-12-01 1986-12-01 System for searching wide frequency band noise source Pending JPS63139268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28695386A JPS63139268A (en) 1986-12-01 1986-12-01 System for searching wide frequency band noise source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28695386A JPS63139268A (en) 1986-12-01 1986-12-01 System for searching wide frequency band noise source

Publications (1)

Publication Number Publication Date
JPS63139268A true JPS63139268A (en) 1988-06-11

Family

ID=17711091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28695386A Pending JPS63139268A (en) 1986-12-01 1986-12-01 System for searching wide frequency band noise source

Country Status (1)

Country Link
JP (1) JPS63139268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9764921B2 (en) 2012-04-27 2017-09-19 Maschinenbau Oppenweiler Binder Gmbh & Co. Kg Folding pocket device for a buckle folding machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9764921B2 (en) 2012-04-27 2017-09-19 Maschinenbau Oppenweiler Binder Gmbh & Co. Kg Folding pocket device for a buckle folding machine

Similar Documents

Publication Publication Date Title
US5432862A (en) Frequency division, energy comparison, source detection signal processing system
GB1395599A (en) Receiver for the determination of the direction of received wave energy
JPS63139268A (en) System for searching wide frequency band noise source
US20060119514A1 (en) Radio signal direction finder
JP2919350B2 (en) Signal detection method
JP2845220B2 (en) Sound source direction detection device
JP2007174206A (en) Receiver equipment, and its received signal processing method
JP3489626B2 (en) Passive sonar device
JP2865079B2 (en) Pulse radar receiver
JPH0231830B2 (en)
FR2433800A1 (en) SPEECH DISCRIMINATOR AND RECEIVER HAVING SUCH A DISCRIMINATOR
JPS63265183A (en) Apparatus for searching wide frequency band noise source
JP2560396B2 (en) Wide frequency band noise source power spectrum detection method
JP2005049123A (en) Signal processor
JPS6010190A (en) Mutual signal processing system for passive sonar
JP2964752B2 (en) Radio wave detector
RU2249831C2 (en) Device for optimal filtering of phase-manipulated signals
JPS56155875A (en) Receiver for monopulse measuring angle
JPH04157383A (en) Measuring apparatus of azimuth
JP2682248B2 (en) Direction detection device
JPH02268282A (en) Wide frequency band bearing discrimination type acoustic homing apparatus
JP2953434B2 (en) Distance measuring method and apparatus in secondary radar tracking control
JPH0378676A (en) Bearing detector
JPS5844990B2 (en) radio angle measurement device
JPH02231589A (en) Wide frequency band type direction finding device