JPH0231830B2 - - Google Patents

Info

Publication number
JPH0231830B2
JPH0231830B2 JP57021894A JP2189482A JPH0231830B2 JP H0231830 B2 JPH0231830 B2 JP H0231830B2 JP 57021894 A JP57021894 A JP 57021894A JP 2189482 A JP2189482 A JP 2189482A JP H0231830 B2 JPH0231830 B2 JP H0231830B2
Authority
JP
Japan
Prior art keywords
target
output
peak
signal
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57021894A
Other languages
Japanese (ja)
Other versions
JPS58139084A (en
Inventor
Shunichi Kohama
Toshio Chiba
Hisazumi Fukuoka
Susumu Matsuzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2189482A priority Critical patent/JPS58139084A/en
Publication of JPS58139084A publication Critical patent/JPS58139084A/en
Publication of JPH0231830B2 publication Critical patent/JPH0231830B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/86Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves with means for eliminating undesired waves, e.g. disturbing noises

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は船舶の航走音より周波数成分上の特徴
を抽出し特定の船舶の航走音を他と区別して検
出、追尾し得るパツシブソーナー信号処理方式に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a passive sonar signal processing system that extracts features on frequency components from the sound of a running ship and can detect and track the sound of a particular ship while distinguishing it from others.

従来のパツシブソーナー装置の概略構成を第1
図に示す。図中、1は受波器群、2は整相器、3
は自乗検波器、4はピーク検出器、5は表示器で
ある。受波器群1はN個の無指向性の音響−電気
変換器(受波器)を水中に空間的に配置してな
り、各受波器は受信信号X1(t)、X2(t)…XN
(t)を出力する。整相器2は上記受波器群1の
各受信信号Xi(t)に遅延線などにより空間的位
置関係に応じた遅延時間を与え、その後全受信信
号を加算して指向性ビームを形成し、方位ごとの
到来信号Yθ(t)を出力する如くなつている。自
乗検波器3は上記到来信号Yθ(t)に対して下記
(1)式に示す自乗検波を行ない、得られた短時間の
電力Pθ(t)を方位θの時刻tにおける信号強度
として出力する如くなつている。
The schematic configuration of the conventional passive sonar device is explained in the first part.
As shown in the figure. In the figure, 1 is a receiver group, 2 is a phaser, and 3
is a square law detector, 4 is a peak detector, and 5 is a display. The receiver group 1 consists of N omnidirectional acoustic-electric transducers (receivers) spatially arranged underwater, and each receiver receives received signals X 1 (t), X 2 ( t)…X N
(t) is output. The phaser 2 gives each received signal Xi(t) of the receiver group 1 a delay time according to the spatial positional relationship using a delay line, etc., and then adds all the received signals to form a directional beam. , and output an incoming signal Yθ(t) for each direction. The square law detector 3 calculates the following for the above arriving signal Yθ(t).
The square law detection shown in equation (1) is performed, and the obtained short-time power Pθ(t) is output as the signal strength at time t of the azimuth θ.

Pθ(t)=∫t t-TY2θ(t)dt ………(1) (ここで、Tは自乗検波器3の時定数である。) ピーク検出器4は方位ごとの信号強度Pθ(t)
から信号強度のピーク(極大)の方位θp(t)を
検出し、表示器5に表示する。
Pθ(t)=∫ t tT Y 2 θ(t)dt ………(1) (Here, T is the time constant of the square law detector 3.) The peak detector 4 calculates the signal strength Pθ( t)
The direction θp(t) of the peak (maximum) signal intensity is detected from the position and displayed on the display 5.

上記の如き構成において、時刻txで方位θxを
航行する船舶が水中に放射する航走音は受波器群
1にて受信され、整相器2で整相処理されて方位
θxの到来信号Yθx(tx)となり、これにより自乗
検波器3から出力される方位θxの信号強度Pθx
(tx)が大きくなり、ピーク検出器4にて方位θx
が検出され、表示器5に表示される。オペレータ
は表示器5に表示されたピーク方位θxに船舶の
存在を検知することができるとともに該ピーク方
位を時間的に追尾することによつて上記船舶の動
きを監視することができる。
In the above configuration, the navigation sound emitted into the water by a ship sailing in the azimuth θx at time tx is received by the receiver group 1, and phased by the phasing device 2 to signal the arrival signal Yθx in the azimuth θx. (tx), and as a result, the signal strength Pθx of the direction θx output from the square law detector 3
(tx) becomes large, and the peak detector 4 detects the direction θx.
is detected and displayed on the display 5. The operator can detect the presence of a ship at the peak azimuth θx displayed on the display 5, and can monitor the movement of the ship by temporally tracking the peak azimuth.

しかしながら、上記の如き装置では整相器2よ
り出力される方位ごとの到来信号に含まれる全周
波数成分の総和の信号強度でピークを検出してい
るため、近接した、あるいは同一方向に複数の船
舶が存在する場合、遠方を航行する船舶の小さい
信号強度は近くを航行する船舶の大きい信号強度
にマスキングされて、そのピーク方位が検知でき
なくなるという欠点があつた。
However, in the above device, the peak is detected based on the signal strength of the sum of all frequency components included in the incoming signal for each direction output from the phaser 2, so multiple ships in close proximity or in the same direction , the weak signal strength of a ship sailing far away is masked by the high signal strength of a ship sailing nearby, making it impossible to detect its peak direction.

第2図及び第3図は上記のようすを示したもの
で、第2図はピーク検出器4で検出されたピーク
方位の表示例、第3図a,b,c,dはそれぞれ
第2図の時点t1、t2、t3、t4における自乗検波器
3の出力の信号強度を示している。第2図におい
て、信号強度の大きいBという目標(船舶)が約
−22゜方位からプラス方向に、また信号強度の小
さいAという目標が約+10゜方位からマイナス方
向に航行している。これらの2つの目標はt1時点
では第3図aに示すように独立にピークが検出さ
れている。しかしt2時点になると目標Aと目標B
は方位上で接近し信号強度の小さい目標Aは第3
図bに示すように大きな信号強度Bの影響でピー
クが検出できなくなる。その後目標Aのピークは
t3時点で目標Bと交叉し、第3図cに示すt4時点
になるまで検出できない。その後t4時点から目標
Bの影響が少なくなりt5時点で再び第3図dに示
すように目標Aのピークは独立して検出されるよ
うになる。従つて第2図においてt2時点からt4
点まで目標Aのピーク方位はまつたく検出されな
い。
Figures 2 and 3 show the above situation. Figure 2 is a display example of the peak direction detected by the peak detector 4, and Figures a, b, c, and d are respectively shown in Figure 2. It shows the signal strength of the output of the square law detector 3 at times t 1 , t 2 , t 3 , and t 4 . In FIG. 2, a target B (ship) with a high signal strength is navigating in a positive direction from an approximately -22° azimuth, and a target A, a low signal strength, is navigating in a negative direction from an approximately +10° azimuth. As shown in FIG. 3a, peaks of these two targets are detected independently at time t1 . However, at time t 2 , goal A and goal B
Target A, which is close in direction and has low signal strength, is the third target.
As shown in Figure b, the peak cannot be detected due to the influence of the large signal strength B. After that, the peak of target A is
It intersects target B at time t 3 and cannot be detected until time t 4 shown in FIG. 3c. Thereafter, from time t4 , the influence of target B decreases, and at time t5 , the peak of target A is again detected independently, as shown in FIG. 3d. Therefore, in FIG. 2, the peak azimuth of target A is not detected at all from time t 2 to time t 4 .

本発明は上記従来の欠点を除去するため、各船
舶の航走音がそれぞれ個有の周波数スペクトル構
造を持つている点に着目して、船舶の航走音を複
数の受波器で受信し、各受波器出力を整相処理し
て方位ごとの到来信号に変換し、更に該方位ごと
の到来信号を複数の周波数スペクトル成分にそれ
ぞれ分析し、該分析結果より求められた特定の船
舶の航走音に固有の周波数スペクトル成分のうち
の少なくとも1つを方位ごとに加算処理し、これ
らの中で信号強度が極大の方位をピーク方位と決
定するようになしたもので、その目的とするとこ
ろは特定の船舶の航走音のみを検出、追尾し得る
パツシブソーナー信号処理方式を提供することに
ある。以下、図面について詳細に説明する。
In order to eliminate the above-mentioned conventional drawbacks, the present invention focuses on the fact that the sound of each ship has a unique frequency spectrum structure, and receives the sound of a ship using a plurality of receivers. , performs phasing processing on the output of each receiver and converts it into an incoming signal for each direction, and further analyzes the incoming signal for each direction into multiple frequency spectrum components, and calculates the frequency of a specific ship determined from the analysis results. At least one of the frequency spectrum components specific to navigation sound is added for each direction, and the direction with the maximum signal strength is determined as the peak direction. The object of the present invention is to provide a passive sonar signal processing method that can detect and track only the sound of a specific ship. The drawings will be described in detail below.

第4図は本発明方式の一実施例を示すパツシブ
ソーナー装置の概略構成図で、図中第1図と同一
構成部分は同一符号をもつて表わす。すなわち1
は受波器群、2は整相器、4はピーク検出器、5
は表示器、6は狭帯域分析器、7はスペクトル撰
択加算器、8は表示選択スイツチである。
FIG. 4 is a schematic diagram of a passive sonar apparatus showing an embodiment of the present invention, and the same components as those in FIG. 1 are designated by the same reference numerals. i.e. 1
is a receiver group, 2 is a phaser, 4 is a peak detector, 5
is a display, 6 is a narrowband analyzer, 7 is a spectrum selection adder, and 8 is a display selection switch.

狭帯域分析器6は高速フーリエ変換法などを利
用して、方位ごとの到来信号Yθ(t)から更に複
数の周波数ごとの短時間のパワースペクトル密度
Pθ(f、t)を計算し、方位θの時刻tにおける
周波数ごとの信号強度として出力する如くなつて
いる。スペクトル選択加算器7は方位・周波数ご
とに分解された信号強度Pθ(f、t)から、追
尾・監視しようと意図する目標Aに特徴的な周波
数成分のみをオペレータの指示により選択し、下
記(2)式に示すように方位ごとに集計してその結果
をPθA(t)として出力する。
The narrowband analyzer 6 uses the fast Fourier transform method to further calculate short-term power spectrum densities for each frequency from the incoming signal Yθ(t) for each direction.
Pθ(f, t) is calculated and output as signal strength for each frequency at time t of azimuth θ. The spectrum selection adder 7 selects only the frequency components characteristic of the target A to be tracked and monitored from the signal strength Pθ(f, t) decomposed for each direction and frequency according to the operator's instructions, and performs the following ( 2) As shown in the formula, the calculations are totaled for each direction and the results are output as Pθ A (t).

A(t)= 〓fA Pθ(f、t) ………(2) (ここで、fAは目標Aに特徴的な周波数の集合で
ある。) ピーク検出器4は上記目標Aに関する方位ごと
の信号強度PθA(t)からピークの方位θAp(t)
を検出し表示器5に表示する如くなつている。表
示選択スイツチ8はオペレータの指示による表示
選択信号に従つて表示器5に表示する情報を、ピ
ーク検出器4の出力(側)とするか、狭帯域分
析器6の出力(側)とするかを選択するもので
ある。
A (t) = 〓 fA Pθ (f, t) ......(2) (Here, f A is a set of frequencies characteristic of target A.) The peak detector 4 detects the orientation with respect to target A. From signal strength Pθ A (t) to peak direction θ A p(t)
is detected and displayed on the display 5. The display selection switch 8 determines whether the information to be displayed on the display 5 is the output (side) of the peak detector 4 or the output (side) of the narrowband analyzer 6 in accordance with the display selection signal instructed by the operator. This is the choice.

次に従来例と同一の目標の航行状況下における
上記装置の使用方法及び動作を説明する。第5図
はピーク検出器4で検出されたピーク方位の表示
例、第6図a,b,cはそれぞれ第5図の時点
t1、t2、t3におけるスペクトル選択加算器7の出
力の信号強度、第7図a,bはそれぞれ時点t1
おける方位θA、θBの狭帯域分析器6の出力を示し
ている。なお、ここで狭帯域分析器6の周波数分
解能は全信号帯域の1/15とし各帯域の中心周波数
をf1、f2…f15と仮定する。
Next, the method of use and operation of the above device under the same target navigation conditions as in the conventional example will be explained. Fig. 5 is an example of displaying the peak direction detected by the peak detector 4, and Fig. 6 a, b, and c are each at the time points shown in Fig. 5.
The signal intensities of the outputs of the spectrum selective adder 7 at times t 1 , t 2 and t 3 , and FIGS. There is. It is assumed here that the frequency resolution of the narrowband analyzer 6 is 1/15 of the total signal band, and the center frequencies of each band are f 1 , f 2 , . . . f 15 .

まず初期状態においてスペクトル選択加算器7
の選択周波数fAとしてすべての周波数、すなわち
(f1、f2…f15)を指定し、表示選択スイツチ8を
側とすると、スペクトル選択加算器7は方位ご
との全周波数帯域信号の総和を出力することにな
る。この状態を時点t0からt1まで保つとピーク検
出器4は目標A及びBの両方を従来例と同様に検
出し、第5図に示す如く表示器5に表示する。
First, in the initial state, the spectrum selection adder 7
When all frequencies, that is, (f 1 , f 2 ... f 15 ) are specified as the selection frequency f A of It will be output. When this state is maintained from time t0 to time t1 , the peak detector 4 detects both targets A and B in the same manner as in the conventional example, and displays them on the display 5 as shown in FIG.

オペレータは上記表示器5の表示内容より付近
に2つの目標A、Bの存在を知る。そこで時点t1
において、表示選択スイツチ8で、側を選択す
るように表示選択信号を送出し、目標Aの方位θA
の周波数スペクトル及び目標Bの方位θBの周波数
スペクトル、すなわち第7図のa及びbを表示器
5に表示する。
The operator knows the existence of two targets A and B nearby from the display contents on the display 5. So at time t 1
, the display selection switch 8 sends out a display selection signal to select the side, and the direction θ A of the target A is determined.
The frequency spectrum of the target B and the frequency spectrum of the azimuth θ B of the target B, that is, a and b in FIG. 7 are displayed on the display 5.

方位θAとθBは、スペクトル選択加算器7の時刻
t1における出力を示す第6図のaから、互いの信
号のもれがない程度に方位上で離れており、また
目標A及びB以下に付近航行目標が認められない
ことから、第7図a及びbは、それぞれ目標Aと
Bの放射している航走音のスペクトルと考えられ
る。
The directions θ A and θ B are the times of the spectrum selection adder 7.
From a in Figure 6, which shows the output at t 1 , they are far enough apart in terms of direction that there is no leakage of each other's signals, and there are no nearby navigation targets below targets A and B, so Figure 7 a and b are considered to be spectra of the traveling sounds emitted by targets A and B, respectively.

時点t1以後、目標Aを追尾・監視したいと意図
した場合、目標Bは、それ以後、目標Aを追尾・
監視するための妨害となる。したがつて、オペレ
ータは目標Bになく目標Aにのみ特徴的なスペク
トルとして第7図aとbから、f2とf7を選択し、
時点t1以後、選択周波数fAとして(f2、f7)を指
示し、同時に再び表示選択スイツチ8に側を選
択するよう指示する。
If the intention is to track/monitor target A after time t 1 , target B will track/monitor target A from then on.
It becomes a hindrance to monitoring. Therefore, the operator selects f 2 and f 7 from FIG. 7 a and b as spectra characteristic only of target A but not of target B,
After time t1 , ( f2 , f7 ) is designated as the selection frequency fA , and at the same time, the display selection switch 8 is again commanded to select the side.

スペクトル選択加算器7では以後、方位ごとの
信号強度のうち周波数f2、f7のスペクトルのみを
ピーク検出器4に出力する。従つて時点t2、t3
は第6図b,cに示すように目標Aの信号のみが
現われ、目標Aのピーク方位のみが検出され、第
5図に示す如く表示器5には目標Aの方位軌跡が
表示される。また、この目標Aの方位軌跡は、目
標Bの影響が周波数軸上で分離されているため、
目標Bの方位軌跡と交叉する時刻t3(第2図参照)
においても消滅しない。
Thereafter, the spectrum selection adder 7 outputs only the spectra of frequencies f 2 and f 7 of the signal strength for each direction to the peak detector 4. Therefore, at times t 2 and t 3 , only the signal of target A appears as shown in FIGS. The azimuth trajectory will be displayed. In addition, since the influence of target B is separated on the frequency axis, the azimuth trajectory of target A is
Time t 3 when it intersects the azimuth trajectory of target B (see Figure 2)
It does not disappear even in

このように上記実施例によれば、方位だけでな
く狭帯域分析器6及びスペクトル選択加算器7に
よる周波数上での信号分離能力を有しているた
め、全周波数帯域で信号強度の大きい目標Bのよ
うな妨害目標が付近に多数存在する場合でも追尾
しようとする目標が、他の妨害目標にない個有の
スペクトルを有していれば、これを連続的に追
尾・監視できる。
As described above, according to the above embodiment, since the narrow band analyzer 6 and the spectrum selection adder 7 have the ability to separate signals not only in the direction but also in the frequency range, the target B has a large signal strength in the entire frequency band. Even if there are many interfering targets nearby, if the target to be tracked has a unique spectrum that other interfering targets do not have, it can be continuously tracked and monitored.

以上説明したように本発明によれば、船舶の航
走音を複数の受波器で受信し、各受波器出力を整
相処理して方位ごとの到来信号に変換し、更に該
方位ごとの到来信号を複数の周波数スペクトル成
分にそれぞれ分析し、該分析結果より求められた
特定の船舶の航走音に固有の周波数スペクトル成
分のうちの少なくとも1つを方位ごとに加算処理
し、これらの中で信号強度が極大の方位をピーク
方位と決定するようになしたため、受信エリア内
に複数の船舶(目標)が混在している場合でもそ
の方位が異なればそれぞれの目標に対応するスペ
クトル成分を特定することができ、従つて、その
方位を検出できるとともに、特定の目標が信号強
度よりの大きな他の目標と交差するような場合で
も該特定の目標が発する航走音のみを他の目標か
らの航走音にマスクされることなく検出でき、そ
の方位を連続的に検出、追尾できる等の利点があ
る。
As explained above, according to the present invention, the navigation sound of a ship is received by a plurality of receivers, the output of each receiver is subjected to phasing processing and converted into an incoming signal for each direction, and then the sound of a ship is received for each direction. The incoming signal is analyzed into a plurality of frequency spectrum components, and at least one of the frequency spectrum components unique to the running sound of a particular ship determined from the analysis results is added for each direction, and these Since the direction where the signal strength is maximum is determined as the peak direction, even if there are multiple ships (targets) in the reception area, if the directions are different, the spectral components corresponding to each target can be calculated. Therefore, its direction can be detected, and even if a specific target intersects with another target whose signal strength is higher, only the navigation sound emitted by the specific target can be heard from other targets. It has the advantage that it can be detected without being masked by the sound of the ship, and its direction can be continuously detected and tracked.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の説明に供するもので、第1図は
従来のパツシブソーナー装置の概略構成図、第2
図は第1図の装置の表示出力の説明図、第3図
a,b,c,dは第1図の装置の自乗検波器の出
力の説明図、第4図乃至第7図は本発明方式の一
実施例を示すもので、第4図は本発明方式による
パツシブソーナー装置の概略構成図、第5図は第
4図の装置のピーク検出器表示出力の説明図、第
6図a,b,cは第4図の装置のスペクトル選択
加算器の出力の説明図、第7図は第4図の装置の
狭帯域分析器の出力の説明図である。 1……受波器群、2……整相器、4……ピーク
検出器、5……表示器、6……狭帯域分析器、7
……スペクトル選択加算器、8……表示選択スイ
ツチ。
The drawings are for explaining the present invention, and FIG. 1 is a schematic configuration diagram of a conventional passive sonar device, and FIG.
The figure is an explanatory diagram of the display output of the device in FIG. 1, FIGS. 3 a, b, c, and d are explanatory diagrams of the output of the square law detector of the device in FIG. 1, and FIGS. 4 to 7 are illustrations of the invention. 4 shows a schematic configuration diagram of a passive sonar device according to the method of the present invention, FIG. 5 is an explanatory diagram of the peak detector display output of the device in FIG. 4, and FIG. 6 a, b , c is an explanatory diagram of the output of the spectrum selective adder of the apparatus of FIG. 4, and FIG. 7 is an explanatory diagram of the output of the narrow band analyzer of the apparatus of FIG. 4. DESCRIPTION OF SYMBOLS 1... Receiver group, 2... Phaser, 4... Peak detector, 5... Display device, 6... Narrowband analyzer, 7
...Spectrum selection adder, 8...Display selection switch.

Claims (1)

【特許請求の範囲】[Claims] 1 船舶の航走音を複数の受波器で受信し、各受
波器出力を整相処理して方位ごとの到来信号に変
換し、更に該方位ごとの到来信号を複数の周波数
スペクトル成分にそれぞれ分析し、該分析結果よ
り求められた特定の船舶の航走音に固有の周波数
スペクトル成分のうちの少なくとも1つを方位ご
とに加算処理し、これらの中で信号強度が極大の
方位をピーク方位と決定するようになしたことを
特徴とするパツシブソーナー信号処理方式。
1. Receive the sound of a ship running with multiple receivers, process the output of each receiver to convert it into an incoming signal for each direction, and then convert the incoming signal for each direction into multiple frequency spectrum components. At least one of the frequency spectrum components unique to the running sound of a particular ship determined from the analysis results is added for each direction, and the direction with the maximum signal strength is peaked. A passive sonar signal processing method characterized by determining direction.
JP2189482A 1982-02-13 1982-02-13 Passive soner signal processing system Granted JPS58139084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189482A JPS58139084A (en) 1982-02-13 1982-02-13 Passive soner signal processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189482A JPS58139084A (en) 1982-02-13 1982-02-13 Passive soner signal processing system

Publications (2)

Publication Number Publication Date
JPS58139084A JPS58139084A (en) 1983-08-18
JPH0231830B2 true JPH0231830B2 (en) 1990-07-17

Family

ID=12067809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189482A Granted JPS58139084A (en) 1982-02-13 1982-02-13 Passive soner signal processing system

Country Status (1)

Country Link
JP (1) JPS58139084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114750U (en) * 1990-03-12 1991-11-26

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056276A (en) * 1983-09-07 1985-04-01 Mitsubishi Electric Corp Airplane discriminating apparatus
JPS6118885A (en) * 1984-07-06 1986-01-27 Tech Res & Dev Inst Of Japan Def Agency Multiple targets display processor
JP6536211B2 (en) * 2015-06-23 2019-07-03 日本電気株式会社 Target direction calculation device, target direction calculation method, and target direction calculation program
JP6772672B2 (en) * 2016-08-26 2020-10-21 沖電気工業株式会社 Display device and display method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922155A (en) * 1972-06-16 1974-02-27
JPS5524688A (en) * 1978-08-11 1980-02-21 Furuno Electric Co Ltd Directional beam generator
JPS5611373A (en) * 1979-07-11 1981-02-04 Tech Res & Dev Inst Of Japan Def Agency Sonar signal display processing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922155A (en) * 1972-06-16 1974-02-27
JPS5524688A (en) * 1978-08-11 1980-02-21 Furuno Electric Co Ltd Directional beam generator
JPS5611373A (en) * 1979-07-11 1981-02-04 Tech Res & Dev Inst Of Japan Def Agency Sonar signal display processing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114750U (en) * 1990-03-12 1991-11-26

Also Published As

Publication number Publication date
JPS58139084A (en) 1983-08-18

Similar Documents

Publication Publication Date Title
US7106656B2 (en) Sonar system and process
US5481505A (en) Tracking system and method
US4885590A (en) Blind speed elimination for dual displaced phase center antenna radar processor mounted on a moving platform
JPH0231830B2 (en)
US4998224A (en) System for providing improved reverberation limited sonar performance
US6654315B1 (en) Sonar display system and method
JPH0313550B2 (en)
US20060241914A1 (en) Subarray matching beamformer apparatus and method
JP2000088942A (en) Method for discriminating left/right of bistatic sonar
JPH037822Y2 (en)
Barger Sonar systems
US6885612B2 (en) Panoramic audio device for passive sonar
JP2647041B2 (en) Passive sonar signal processing method
JP2770814B2 (en) Active sonar device
JP2648689B2 (en) Underwater sound source direction detection device
RU2793149C1 (en) Small-sized direction finder of hydroacoustic signals
KR102219341B1 (en) Appatus and method for multipath interference cancellations in reference channel of passive coherent location sytems based on fm signals
JPH02176400A (en) Guiding device for airframe
JPH0288984A (en) Active sonar device
JPH031099A (en) Guiding device for airframe
JPS61151487A (en) Sonar apparatus
JPH0273182A (en) Transmission and reception controller
JPH03282390A (en) Active sonar device
Alsup Adaptive beam forming for active sonar
JP2610315B2 (en) Passive sonar device