JPS63139216A - Oil surface detection system - Google Patents

Oil surface detection system

Info

Publication number
JPS63139216A
JPS63139216A JP28734586A JP28734586A JPS63139216A JP S63139216 A JPS63139216 A JP S63139216A JP 28734586 A JP28734586 A JP 28734586A JP 28734586 A JP28734586 A JP 28734586A JP S63139216 A JPS63139216 A JP S63139216A
Authority
JP
Japan
Prior art keywords
temperature
self
time
temp
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28734586A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tsuji
弘之 辻
Nobuhiro Yoshikawa
信浩 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28734586A priority Critical patent/JPS63139216A/en
Publication of JPS63139216A publication Critical patent/JPS63139216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To exclude errors due to the thermal diffusion coefficient of a temp.-sensitive element, by allowing the temp.-sensitive element to generate heat itself not only in the case of obtaining threshold value but also in the case of obtaining a comparing value. CONSTITUTION:At first, temp. is detected at a b-point. That is, the voltage VP at a P-point is converted to a digital value by an A/D converter 7 to be stored in RAM 9. When this detected temp. is the first one, the measurement of a time T2 is started and a transistor (TR) 4 is turned ON to allow a temp.-sensitive element 1 to begin to generate heat itself and the heat self-generation temp. of the temp.-sensitive element 1, that is, the voltage VP at the P-point to be converted to a digital value by the A/D converter 7 and predetermined operation is performed to convert said digital value to a threshold value. next, this threshold value is stored in RAM 9 and the measurement of a time T1 is started and, during this time, TR 4 is turned OFF to finish the self-generation of heat. After the elapse of the time T1, the same operation as that performed heretofore is performed and, when it is judged that the detected temp. is not the first one, the measurement of the time T2 is started and TR 4 is turned ON to allow the element 1 to start the self-generation of heat. After the waiting of the time T2, the voltage VP at the P-point, that is, the self-generation heat temp. is detected at an a-point to be converted to a digital value by the A/D converter 7 and this comparing value is compared with the threshold value previously stored. For example, when threshold value > comparing value is formed, it is judged that there is no oil.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、温度−抵抗特性を有する感温素子金利用し
、感温素子の気中と油中との熱放散係数の差異を利用し
て例えば冷凍機に用いられる圧縮機内の油面の位置を検
出する油面検出方式に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention utilizes a temperature-sensitive element made of gold having temperature-resistance characteristics, and utilizes the difference in heat dissipation coefficient between the temperature-sensitive element in air and oil. For example, the present invention relates to an oil level detection method for detecting the position of the oil level in a compressor used in a refrigerator.

〔従来の技術〕[Conventional technology]

第3図は従来の油面検出方式を説明するための回路図で
るる。同図において、1は油面検出位置に配置され、所
定の抵抗一温度特性t−有し、基準温度及び自己発熱時
の温度に応じ几゛成圧を発生する友めの例えばサーミス
タ等のような感温素子、2は電源vCCと接地間との間
で感温素子1に直列接続され基準!度検出時に用いられ
る第1分圧抵抗、3はそれらによる分圧点Pとトランジ
スタ4のコレクタ間に接続され自己発熱時に用いられる
第2分圧抵抗、4はエミッタを電源Vec K接続され
たトランジスタ、5は符号6〜10で示される要素から
構成され九マイクロコンピュータである。
FIG. 3 is a circuit diagram for explaining a conventional oil level detection method. In the figure, reference numeral 1 is placed at the oil level detection position, has a predetermined resistance-temperature characteristic t, and is a companion such as a thermistor that generates pressure according to the reference temperature and the temperature at the time of self-heating. Temperature sensing element 2 is connected in series with temperature sensing element 1 between the power supply vCC and ground and is used as a reference! The first voltage dividing resistor 3 is connected between the voltage dividing point P and the collector of the transistor 4 and is used during self-heating. 4 is the transistor whose emitter is connected to the power supply Vec K. , 5 is a nine microcomputer consisting of elements indicated by numerals 6 to 10.

6はトランジスタ40ペースに接続され次出力装置、7
は分圧点Pに接続され、P点の電圧でろる感温素子1の
出力電圧vpをアナロク/デジタル変換するアナログ/
デジタル変換器(以下、〜を変換器と略記する)、8t
i演算部、9はランダムアクセスメモリ(RAM)、1
0はリードオンメモリ(ROM)である。
6 is connected to the transistor 40 pace and the next output device, 7
is connected to the voltage dividing point P, and converts the output voltage vp of the temperature sensing element 1, which is affected by the voltage at the P point, from analog to digital.
Digital converter (hereinafter referred to as converter), 8t
i calculation unit, 9 random access memory (RAM), 1
0 is read-on memory (ROM).

次に動作について説明する。第4図は、基準温度検知時
間と自己発熱時の温度検知時間のタイミングを示しtも
のでるり、T、は自己発熱状態から基準温度迄の回復時
間、T、は自己発熱に要する時間である。マイクロコン
ピュータ5の出力装置16から%HIレベルの信号が出
力されている間、トランジスタ4はOFFで、感温索子
1は基準温度迄回復する。この第4図のb点の時に基準
源Ql検知し、P点の電圧Vpが〜を変換器7によりデ
ジタル化され、このデジタル1viを用いて演算部8で
所定の演算が行われ閾値とされ、RAMQ内に格納され
る。
Next, the operation will be explained. Figure 4 shows the timing of the reference temperature detection time and the temperature detection time during self-heating, where T is the recovery time from the self-heating state to the reference temperature, and T is the time required for self-heating. . While the output device 16 of the microcomputer 5 outputs a %HI level signal, the transistor 4 is OFF and the temperature sensitive cable 1 recovers to the reference temperature. The reference source Ql is detected at point b in FIG. , stored in RAMQ.

次に、時間T!の間だけマイクロコンピュータ5の出力
装置6から%Lルベルの信号が出力され、この間トラン
ジスタ4がONとなシ、分圧抵抗3を通った大きな電流
が感温素子1會流れ、感温素子1が自己発熱する。この
状態で、時間T、の終りのa点の時に、P点の電圧Vp
がA/D変換器7によりデジタル化されて、演算部8に
取込まれる。演算部8はこの比較値とRAM9内に格納
されている上記閾値とを比較し、油枯湯の有無を判断す
る。
Next, time T! A signal of %L level is output from the output device 6 of the microcomputer 5 only during this period, and during this period, the transistor 4 is not ON, and a large current flows through the temperature sensing element 1 through the voltage dividing resistor 3. self-heats. In this state, at point a at the end of time T, the voltage Vp at point P
is digitized by the A/D converter 7 and taken into the calculation section 8. The calculation unit 8 compares this comparison value with the above-mentioned threshold value stored in the RAM 9, and determines the presence or absence of oil-dried hot water.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の油面検出方式は以上のようなので、自己発熱して
いない時の感温素子1から基準温度を検出し、この検出
電圧に基づき閾値を決定しているため、この閾値が感温
素子lの自己発熱時における熱放散係数と無関係となる
が、この閾値と比較する比較値は自己発熱時における感
温索子1から温度を検出して得ているので感温索子1の
熱放散係数に大きく左右され、これが比較値に誤差分と
して入る之め閾値との大きさの関係が逆転する場合があ
り、誤つ几判断をしてしまうなどの問題点があつ九。
As described above, the conventional oil level detection method detects the reference temperature from the temperature sensing element 1 when no self-heating is occurring, and determines the threshold value based on this detection voltage. Although this has nothing to do with the heat dissipation coefficient during self-heating, the comparison value compared with this threshold value is obtained by detecting the temperature from temperature-sensitive cord 1 during self-heating, so the heat dissipation coefficient of temperature-sensitive cord 1 The relationship between the magnitude and the threshold value may be reversed, leading to problems such as incorrect judgments.

この発明は上記のような問題点を解消する之めになされ
たもので、感温素子の自己発熱時における熱放散係数の
誤差分を排除できる油面検出方式を得ることを目的とす
る。
The present invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide an oil level detection method that can eliminate errors in the heat dissipation coefficient during self-heating of the temperature sensing element.

〔問題点を解決する几めの手段〕[Elaborate means to solve problems]

この発明に係る油面検出方式は、油の有無の検出用閾値
を得る几めに所定の温度−抵抗特性を有する感温素子を
自己発熱させるようにしたものである。
The oil level detection method according to the present invention causes a temperature sensing element having a predetermined temperature-resistance characteristic to self-heat in order to obtain a threshold value for detecting the presence or absence of oil.

〔作用〕[Effect]

この発明における油面検出方式は、感温素子を自己発熱
させ、その温度に基づき閾IIを得ているのでそのr:
A値に感温素子の熱放散係数の依存性をも之せ、比較デ
ジタル値も自己発熱によりその熱放散係数の依存性をも
九せ、それら両値の比較に際して熱放散係数の影響によ
る誤差を取除くようにし友。
The oil level detection method in this invention causes the temperature sensing element to self-heat and obtains the threshold II based on the temperature, so that r:
Since the A value is dependent on the heat dissipation coefficient of the temperature sensing element, the comparative digital value also has a reduced dependence on its heat dissipation coefficient due to self-heating, and when comparing these two values, there is an error due to the influence of the heat dissipation coefficient. Try to remove your friend.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。この
発明の一実施例によるノ\−ドウエアは第3図の回路と
同じであるので同図を援用し、第1図はこの発明の一実
施例による動作を示すフローでるり、このグロダラムは
第3図のROMl0に内蔵され、演算部8により実行さ
れる。
An embodiment of the present invention will be described below with reference to the drawings. Since the node/ware according to an embodiment of the present invention is the same as the circuit shown in FIG. 3, this figure will be referred to, and FIG. It is built into the ROM10 shown in FIG. 3 and executed by the arithmetic unit 8.

次に、動作について説明する。感温素子1が自己発熱か
ら基準温度迄に至る回復時間で、及び自己発熱に要する
時間T2は第4図に示し几従来のものと同一であり、ス
テップ20において第4図のb点で基準温度の検知を行
う。すなわち、ステップ20でP点の電圧vpを〜を変
換器7に取込み、次ステツプ21でA/D変換器7を用
いてAろ変換を実行してデジタル化し、次ステツプ22
でこのデジタル値t−RAMQ内に格納する。このRA
MQ内に格納したデジタル値が初めてか否か、すなわち
検知温度が初めてか否かの判断をステップ23で行う。
Next, the operation will be explained. The recovery time for the temperature sensing element 1 to reach the reference temperature from self-heating, and the time T2 required for self-heating are shown in FIG. 4 and are the same as those of the conventional one. Detects temperature. That is, in step 20, the voltage vp at point P is taken into the converter 7, and in the next step 21, A/D conversion is performed using the A/D converter 7 to digitize it, and in the next step 22
This digital value is stored in t-RAMQ. This R.A.
In step 23, it is determined whether the digital value stored in the MQ is the first time, that is, whether the detected temperature is the first time.

初めての温度であれば、次ステツプ24において時間T
、の計測を開始し、トランジスタ4 ?ONにして感温
素子1の自己発熱を開始させる。ステップ25では時間
Ttが経過する迄待機し、待機後、次ステツプ26にお
いて自己発熱温すなわちP点の電圧Vpを検知してA/
D変換器7に取込み、次ステツプ27でAろ変換器7に
よりA/p変換してデジタル値とし、ステップ28でこ
のデジタル値に基づき所定の演算を行って閾値に変換す
る0次に、ステップ29でこの閾値をRAMe内に格納
し、次ステツプ30で時間Tiの計測を開始し、この間
トランジスタ4をOFFにしステラ7”31で自己発熱
を終了させ、ステップ32で時間T1が経過する迄待機
する。
If it is the first temperature, the time T is set in the next step 24.
, starts measuring transistor 4? Turn it on to start self-heating of the temperature sensing element 1. In step 25, the system waits until the time Tt has elapsed, and after waiting, in the next step 26, the self-heating temperature, that is, the voltage Vp at point P is detected, and the A/
The data is taken into the D converter 7, and in the next step 27, it is A/p converted by the A filter converter 7 to become a digital value, and in step 28, a predetermined calculation is performed based on this digital value to convert it into a threshold value. In step 29, this threshold value is stored in RAMe, and in the next step 30, the measurement of time Ti is started. During this time, the transistor 4 is turned off to end the self-heating at Stella 7" 31, and in step 32, the process waits until time T1 has elapsed. do.

時間T、経過後はステップ20に戻り、ステップ20〜
向22迄上記動作と同じ動作を行い、ステップ23にお
いて初めての温度でないと否定判断しtら次ステツプ3
3に移る。
After time T has elapsed, return to step 20, and step 20~
The same operation as above is performed up to step 22, and in step 23 a negative judgment is made that it is not the first temperature, and then step 3
Move on to 3.

ステップ33において時間T、の計測を開始し、次ステ
ツプ34でトランジスタ4fcONにして感温素子1の
自己発熱を開始させ、ステップ35で時間T、が経過す
る迄待機する。時間で!待機後、ステップ36において
第4図のa点でP点の電圧vpすなわち自己宛熱温を検
知して〜を変換器7に取込み、ステップ37でA/D変
換器7によりA/p変換を実行する。次に、ステップ3
8でこのA/D変換儀である比較イ直と共にRAM9内
に格納し友上記閾値との大小を比較する。例えば、閾値
〉比較値であれば、油無しと判断したステツプ42に進
み、閾値く比較値であれば、油有シと判断したステツプ
39に進む。
In step 33, measurement of time T is started, and in next step 34, transistor 4fc is turned on to start self-heating of temperature sensing element 1, and in step 35, the process waits until time T has elapsed. In time! After waiting, in step 36, the voltage vp at point P in FIG. Execute. Next, step 3
In step 8, this A/D converter is stored in the RAM 9 together with a comparison value, and the magnitude is compared with the above threshold value. For example, if the threshold value is greater than the comparison value, the process proceeds to step 42 where it is determined that there is no oil, and if the threshold value is less than the comparison value, the process proceeds to step 39 where it is determined that there is oil.

油無しと判断した場合、ステップ42で油無しリレーを
動作させる几めの制御信号を出力し、一連の動作を終了
する。
If it is determined that there is no oil, a detailed control signal to operate the oil-free relay is output in step 42, and the series of operations is completed.

油有りと判断し几場合、ステップ39で時間T。If it is determined that there is oil, time T is reached in step 39.

の計測を開始し、ステップ40でこの間トランジスタ4
jtOFFにし感温素子1の自己発熱を終了させ、ステ
ップ41で時間T+が経過する迄待機する。時間TI待
機後、次ステツプ20に戻り上記動作を繰返す。
The measurement of transistor 4 is started, and in step 40, the transistor 4 is
jtOFF, the self-heating of the temperature sensing element 1 is ended, and in step 41, the process waits until time T+ has elapsed. After waiting for the time TI, the process returns to the next step 20 and repeats the above operation.

なお、上記動作において求められ九閾値に、a点でのも
のを求めたがこの他にも自己発熱の時間T、の間に径異
なる温度の初期通過が初期起動から短期間であるので感
@累子1が油中に存在する時の谷分圧値により谷々決定
してもよい。又、める一定期間例えば時間T!内に通過
しなかつ几温匿がある場合は、他の温度に相当する自己
発熱温度のデータから感温素子1の熱放散係数を求め、
予めROMl0内に格納され九プログラムによる処理に
従ってその温度に対する閾値が求められる。以上によっ
て定められ九閾値は以後変更されることなく用いられる
In addition, the nine threshold values obtained in the above operation were obtained at point a, but there are also other values, since the initial passage of temperatures with different diameters during the self-heating time T is a short period from the initial startup. The trough may be determined based on the trough partial pressure value when the resistor 1 is present in oil. Also, a certain period of time, for example, time T! If the heat dissipation coefficient of the temperature sensing element 1 is determined from the self-heating temperature data corresponding to other temperatures,
The threshold value for that temperature is determined in accordance with the processing by the program stored in the ROM10 in advance. The nine threshold values determined above will be used without change thereafter.

第2因の線図は感温素子1としてNTCサーミスタを用
いた時の自己発熱時の温度に対するサーミスタ′域圧を
示し、直iLtはサーミスタが油中に存在し之場合、L
*Fiサーミスタが空気中に存在した場合、L、は各温
度の初期通過時の値より求められた各閾値を示す。この
図から明らかなように各温度点で、L+の電圧値(油中
)ンL8の電圧値(閾値)〉L!の電圧値(油無しの空
気中)となる。
The diagram for the second factor shows the pressure in the thermistor's range with respect to the temperature at the time of self-heating when an NTC thermistor is used as the temperature sensing element 1, and the line iLt is L when the thermistor is in oil.
*When the Fi thermistor exists in the air, L indicates each threshold value determined from the value at the initial passage of each temperature. As is clear from this figure, at each temperature point, the voltage value of L+ (in oil) and the voltage value of L8 (threshold value)>L! voltage value (in air without oil).

なお、上記実施例において、自己発熱時間t’ Ttと
して共通としたが異ならしめてもよい。
In the above embodiments, the self-heating time t' Tt is common, but may be different.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば閾値を得る場合にも比
較値を得る場合にも感温素子を自己発熱させるようにし
友ので、感温素子自身の熱放散係数による誤差がそれら
両fiiiを比較する際に取除かれ、誤差による誤動作
を防止でき、精度の高いものが得られるという効果があ
る。
As described above, according to the present invention, the thermosensor is made to self-heat both when obtaining a threshold value and when obtaining a comparison value, so that the error due to the heat dissipation coefficient of the thermosensor itself affects both fiii. It is removed during comparison, which has the effect of preventing malfunctions due to errors and obtaining highly accurate results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す動作フロー図、第2
図は自己宛熱温に対する電圧値及び閾値を示す線図、第
3図は油検出装置を示す回路図、第4図は自己発熱時間
と基準温度迄の回復時間を示すタイミング図である。 図中、1・・・感m累子、2,3・・・分圧抵抗、4・
・・トランジスタ、6・・・出力装置、7・・・A/p
変換器、8・・・演算部、9・・・RAM%lO・・・
ROM。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is an operation flow diagram showing one embodiment of the present invention, and FIG.
FIG. 3 is a circuit diagram showing the oil detection device, and FIG. 4 is a timing diagram showing the self-heating time and the recovery time to the reference temperature. In the figure, 1...sensor m resistor, 2, 3... voltage dividing resistor, 4...
...Transistor, 6...Output device, 7...A/p
Converter, 8... Arithmetic unit, 9... RAM%lO...
ROM. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 油面検出位置に配置され、所定の抵抗−温度特性を有す
る感温素子と、該感温素子を通電により自己発熱させる
ための発熱手段と、上記感温素子の温度としての上記感
温素子にかゝる電圧をデジタル化するアナログ/デジタ
ル変換器とを有し、第1の時間間隔内で上記感温素子の
温度に対応した基準デジタル値に基づき油の有無の検知
用閾値を得、第2の時間間隔内で自己発熱時の上記感温
素子の温度に対応した比較用デジタル値を得、上記閾値
と上記比較用デジタル値の大小を比較して油の有無を検
出する油面検出方式において、上記第1の時間間隔内に
上記感温素子を自己発熱させることを特徴とする油面検
出方式。
A temperature sensing element disposed at an oil level detection position and having a predetermined resistance-temperature characteristic, a heating means for causing the temperature sensing element to self-heat by energization, and a temperature of the temperature sensing element as a temperature of the temperature sensing element. and an analog/digital converter that digitizes the voltage, and obtains a threshold value for detecting the presence or absence of oil based on a reference digital value corresponding to the temperature of the temperature sensing element within a first time interval; An oil level detection method that detects the presence or absence of oil by obtaining a comparison digital value corresponding to the temperature of the temperature sensing element during self-heating within the time interval of 2, and comparing the magnitude of the comparison digital value with the threshold value. An oil level detection method characterized in that the temperature sensing element self-heats within the first time interval.
JP28734586A 1986-12-01 1986-12-01 Oil surface detection system Pending JPS63139216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28734586A JPS63139216A (en) 1986-12-01 1986-12-01 Oil surface detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28734586A JPS63139216A (en) 1986-12-01 1986-12-01 Oil surface detection system

Publications (1)

Publication Number Publication Date
JPS63139216A true JPS63139216A (en) 1988-06-11

Family

ID=17716168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28734586A Pending JPS63139216A (en) 1986-12-01 1986-12-01 Oil surface detection system

Country Status (1)

Country Link
JP (1) JPS63139216A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037482A1 (en) * 2016-08-23 2018-03-01 三菱電機株式会社 Liquid level detection device, heat pump system, and liquid level detection method
JP2020529010A (en) * 2017-07-27 2020-10-01 ワトロー エレクトリック マニュファクチュアリング カンパニー Sensor system and integrated heater-sensor for measuring and controlling the performance of the heater system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037482A1 (en) * 2016-08-23 2018-03-01 三菱電機株式会社 Liquid level detection device, heat pump system, and liquid level detection method
JPWO2018037482A1 (en) * 2016-08-23 2019-04-04 三菱電機株式会社 Liquid level detection device, heat pump system, and liquid level detection method
JP2020529010A (en) * 2017-07-27 2020-10-01 ワトロー エレクトリック マニュファクチュアリング カンパニー Sensor system and integrated heater-sensor for measuring and controlling the performance of the heater system

Similar Documents

Publication Publication Date Title
JPS63139216A (en) Oil surface detection system
JP3369933B2 (en) Water detection method
JPH0444529B2 (en)
JPS62198435U (en)
JPH071468B2 (en) Heating temperature control device
JPS631535B2 (en)
JPH01143948A (en) Boiling detecting device
JPH0311707Y2 (en)
JPS59125354A (en) Display device of residual hot water quantity of water heater
JPS62142519A (en) Temperature controller of heating cooker
JP3400332B2 (en) Electric water heater
JPH02149225A (en) Electric water heater
JPS59141910A (en) Rice cooker
JPH0333994B2 (en)
JP3519464B2 (en) Heat detector
JP3243271B2 (en) Temperature control device
JPH0252487B2 (en)
JPH0378224U (en)
JPS6126012B2 (en)
JPS60119999A (en) Controller of dryer
JPH01114785A (en) Infrared-ray detecting device
JPS59229123A (en) Timer for air conditioner
JPS59137527U (en) Bathtub with alarm device
JPH038919Y2 (en)
JPS61104144A (en) Control device for engine