JP3519464B2 - Heat detector - Google Patents

Heat detector

Info

Publication number
JP3519464B2
JP3519464B2 JP23455494A JP23455494A JP3519464B2 JP 3519464 B2 JP3519464 B2 JP 3519464B2 JP 23455494 A JP23455494 A JP 23455494A JP 23455494 A JP23455494 A JP 23455494A JP 3519464 B2 JP3519464 B2 JP 3519464B2
Authority
JP
Japan
Prior art keywords
voltage
reference voltage
temperature
connection point
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23455494A
Other languages
Japanese (ja)
Other versions
JPH0894454A (en
Inventor
功 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP23455494A priority Critical patent/JP3519464B2/en
Publication of JPH0894454A publication Critical patent/JPH0894454A/en
Application granted granted Critical
Publication of JP3519464B2 publication Critical patent/JP3519464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、差動出力と定温出力を
行う熱感知器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat detector which outputs a differential output and a constant temperature output.

【0002】[0002]

【従来の技術】従来、この種の熱感知器としては、例え
ば図4に示すようなものが知られている。この熱感知器
は温度変化に追従して抵抗値が変化する、熱応答性の遅
いサーミスタ素子と熱応答性の速いサーミスタ素子を使
用することにより、監視区域内の温度が予め設定された
危険温度に達したとき発報する定温機能と、予め決めら
れた温度上昇率を超えて監視区域内の温度が急上昇した
場合を検出して発報する差動機能の両機能を備えてい
る。
2. Description of the Related Art Conventionally, as a heat sensor of this type, for example, one shown in FIG. 4 has been known. This thermal sensor uses a thermistor element with a slow thermal response and a thermistor element with a fast thermal response whose resistance value changes according to the temperature change. It has both a constant temperature function to issue a warning when the temperature reaches a certain level and a differential function to detect and issue a warning when the temperature in the monitored area suddenly rises above a predetermined rate of temperature rise.

【0003】図4において、1はプラスの接続端子、2
はマイナスの接続端子であり、これらの接続端子1,2
は中央監視室などに設置された受信機(図示せず)から
延設された伝送線路に接続され、伝送線路を介して受信
機から電源が供給されるとともに火災発報を返送するよ
うにしている。接続端子1,2間には図示しない定電圧
回路によって一定の電圧にされた電源電圧が供給されて
いる。
In FIG. 4, 1 is a positive connection terminal, 2
Is a negative connection terminal, and these connection terminals 1 and 2 are
Is connected to a transmission line extended from a receiver (not shown) installed in the central monitoring room, etc., so that power is supplied from the receiver via the transmission line and a fire alarm is returned. There is. A power supply voltage made constant by a constant voltage circuit (not shown) is supplied between the connection terminals 1 and 2.

【0004】3,4はともに温度上昇によって抵抗値が
減少する負の温度特性を有するサーミスタ素子であり、
一方のサーミスタ素子3は熱時定数が大きいので熱応答
性が遅く、他方のサーミスタ素子4は熱時定数が小さい
ので熱応答性が速い。熱応答性の遅いサーミスタ素子3
と熱応答性の速いサーミスタ素子4と抵抗5は直列に接
続され、直列回路6を構成している。
Reference numerals 3 and 4 are thermistor elements having a negative temperature characteristic in which the resistance value decreases as the temperature rises.
One of the thermistor elements 3 has a large thermal time constant, so that the thermal response is slow, and the other thermistor element 4 has a small thermal time constant, so that the thermal response is fast. Thermistor element 3 with slow thermal response
And the thermistor element 4 having a high thermal response and the resistor 5 are connected in series to form a series circuit 6.

【0005】また、抵抗7と抵抗8と抵抗9は直列に接
続され、基準電圧発生回路10を構成している。抵抗7
と抵抗8の接続点(C)においては、第1の基準電圧
(VC)を発生させ、抵抗8と抵抗9の接続点(B)に
おいては、第2の基準電圧(VB)を発生させる。
The resistors 7, 8 and 9 are connected in series to form a reference voltage generating circuit 10. Resistance 7
A first reference voltage (VC) is generated at the connection point (C) between the resistor 8 and the resistor 8, and a second reference voltage (VB) is generated at the connection point (B) between the resistor 8 and the resistor 9.

【0006】基準電圧発生回路10で発生させた第1の
基準電圧(VC)は第1の比較器11のプラス入力端子
に入力し、熱応答性の遅いサーミスタ素子3と熱応答性
の速いサーミスタ素子4の間の接続点(A1)の電圧
(VA1)は第1の比較器11のマイナス入力端子に入
力する。温度が急速に上昇すると、図5のDに示すよう
に、接続点(A1)の電圧(VA1)は急速に低下す
る。電圧(VA1)が第1の基準電圧(VC)より低く
なると、第1の比較器11の出力は“H”レベルとな
り、予め決められた温度上昇率を超えて監視区域内の温
度が急上昇したことを検出して発報が行われる。
The first reference voltage (VC) generated by the reference voltage generation circuit 10 is input to the positive input terminal of the first comparator 11, and the thermistor element 3 having a slow thermal response and the thermistor having a fast thermal response are input. The voltage (VA1) at the connection point (A1) between the elements 4 is input to the negative input terminal of the first comparator 11. When the temperature rises rapidly, the voltage (VA1) at the connection point (A1) falls rapidly as shown in D of FIG. When the voltage (VA1) becomes lower than the first reference voltage (VC), the output of the first comparator 11 becomes "H" level, and the temperature in the monitored area suddenly rises beyond the predetermined temperature rise rate. When this is detected, an alarm is issued.

【0007】緩慢に温度が上昇する場合には、図6のE
に示すように、接続点(A1)の電圧(VA1)はゆる
やかに低下する。12は第2の比較器であり、第2の比
較器12のマイナス入力端子には基準電圧発生回路10
で発生させた第2の基準電圧(VB)が入力し、プラス
入力端子には熱応答性の速いサーミスタ素子4と抵抗5
の接続点(A)の電圧(VA)が入力する。
When the temperature rises slowly, E in FIG.
As shown in, the voltage (VA1) at the connection point (A1) gradually decreases. Reference numeral 12 is a second comparator, and the negative input terminal of the second comparator 12 has a reference voltage generating circuit 10
The second reference voltage (VB) generated in step 2 is input, and the thermistor element 4 and the resistor 5 with fast thermal response are input to the positive input terminal.
The voltage (VA) at the connection point (A) is input.

【0008】温度が急速に上昇すると、図5のFに示す
ように、接続点(A)の電圧(VA)は急速に上昇す
る。温度が緩慢に上昇する場合には、図6のGに示すよ
うに、接続点(A)の電圧(VA)は、ゆるやかに上昇
する。図5は温度上昇率が高い場合の差動出力と定温出
力を示す図である。図5において、前述したように、D
はサーミスタ素子3とサーミスタ素子4の接続点(A
1)の電圧(VA1)を示し、温度が急速に上昇すると
きは、電圧(VA1)は急速に低下する。電圧(VA
1)が抵抗7と抵抗8の接続点(C)の第1の基準電圧
(VC)より低下すると、第1の比較器11の出力は
“H”レベルとなり、差動出力が得られる。この場合に
は、予め決められた温度上昇率をこえて監視区域内の温
度が急上昇した場合を検出し、差動出力により発報が行
われる。
When the temperature rises rapidly, the voltage (VA) at the connection point (A) rises rapidly as shown in F of FIG. When the temperature rises slowly, the voltage (VA) at the connection point (A) rises slowly as shown in G of FIG. FIG. 5 is a diagram showing a differential output and a constant temperature output when the temperature rise rate is high. In FIG. 5, as described above, D
Is the connection point of the thermistor element 3 and the thermistor element 4 (A
1) shows the voltage (VA1), and when the temperature rises rapidly, the voltage (VA1) falls rapidly. Voltage (VA
When 1) becomes lower than the first reference voltage (VC) at the connection point (C) of the resistors 7 and 8, the output of the first comparator 11 becomes "H" level and a differential output is obtained. In this case, a case where the temperature in the monitored area suddenly rises beyond a predetermined rate of temperature rise is detected, and an alarm is issued by differential output.

【0009】前述したFはサーミスタ素子4と抵抗5の
接続点(A)の電圧(VA)を示し、電圧(VA)は温
度の急速な上昇により、急速に上昇していることを示し
ているが、第2の基準電圧(VB)を超えるタイミング
は差動出力より遅いことを示している。図6は温度上昇
率が低い場合の差動出力と定温出力を示す図である。
The above-mentioned F indicates the voltage (VA) at the connection point (A) between the thermistor element 4 and the resistor 5, and the voltage (VA) indicates that the temperature rises rapidly due to the rapid rise in temperature. Indicates that the timing of exceeding the second reference voltage (VB) is later than the differential output. FIG. 6 is a diagram showing a differential output and a constant temperature output when the temperature rise rate is low.

【0010】図6において、前述したGは接続点(A)
の電圧(VA)を示し、電圧(VA)は温度が緩慢に上
昇する場合にはゆっくり上昇する。電圧(VA)が第2
の基準電圧(VB)を超えると、第2の比較器12は出
力が“H”レベルとなり、定温出力が得られる。監視区
域内の温度が予め設定された危険温度、例えば60度に
達したことを検出し、定温出力により発報が行われる。
In FIG. 6, the above-mentioned G is a connection point (A).
The voltage (VA) is shown, and the voltage (VA) rises slowly when the temperature rises slowly. The voltage (VA) is the second
When the voltage exceeds the reference voltage (VB), the output of the second comparator 12 becomes "H" level and a constant temperature output is obtained. It is detected that the temperature in the monitoring area has reached a preset dangerous temperature, for example, 60 degrees, and the alarm is issued by the constant temperature output.

【0011】前述したEは接続点(A1)の電圧(VA
1)を示し、電圧(VA1)は温度が緩慢に上昇するた
め、ゆっくり低下する。図6は電圧(VA1)が第1の
基準電圧(VC)より低下して差動出力が行われるタイ
ミングは定温出力より遅れることを示している。
The above E is the voltage (VA) at the connection point (A1).
1), the voltage (VA1) decreases slowly because the temperature rises slowly. FIG. 6 shows that the timing at which the voltage (VA1) becomes lower than the first reference voltage (VC) and differential output is performed is later than the constant temperature output.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の熱感知器にあっては、図7に示すように、サ
ーミスタ素子2個分の個体のバラツキによって接続点
(A)の電圧(VA)が点線で示すように、変化するた
め、第2の基準電圧(VB)と交差する定温点がずれ、
矢印Hに示すような定温点の誤差が生じる。
However, in such a conventional heat detector, as shown in FIG. 7, the voltage (VA) at the connection point (A) is varied due to the variation of the individual two thermistor elements. ) Changes as indicated by the dotted line, the constant temperature point intersecting the second reference voltage (VB) is displaced,
An error of the constant temperature point as shown by the arrow H occurs.

【0013】また、温度上昇率の違いによって(VA
A)に示すように電圧(VA)が変化するため、矢印
(I)で示すような定温点に対する誤差が生じる。本発
明は、このような従来の問題点に鑑みてなされたもので
あって、定温動作における誤差を小さくし、定温出力の
精度を向上させることができる熱感知器を提供すること
を目的とする。
Further, due to the difference in temperature rise rate (VA
Since the voltage (VA) changes as shown in (A), an error occurs with respect to the constant temperature point as shown by the arrow (I). The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a heat sensor capable of reducing an error in constant temperature operation and improving accuracy of constant temperature output. .

【0014】[0014]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、熱応答性が遅い第1の温度検出素子と熱
応答性が速い第2の温度検出素子と抵抗を直列に接続し
た直列回路と、第1の基準電圧発生手段で発生した第1
の基準電圧と、前記第1の温度検出素子と前記第2の温
度検出素子の接続点の電圧が入力する第1の比較器と、
前記第1の温度検出素子と前記第2の温度検出素子の接
続点の電圧に比例した第2の基準電圧と、前記第2の温
度検出素子と前記抵抗の接続点の電圧が入力する第2の
比較器を備えている。
In order to achieve the above object, according to the present invention, a first temperature detecting element having a slow thermal response, a second temperature detecting element having a fast thermal response, and a resistor are connected in series. And the first series voltage generated by the first reference voltage generating means.
And a first comparator to which the voltage at the connection point between the first temperature detection element and the second temperature detection element is input,
A second reference voltage that is proportional to the voltage at the connection point between the first temperature detection element and the second temperature detection element, and a second reference voltage that is input at the voltage at the connection point between the second temperature detection element and the resistor Equipped with a comparator.

【0015】また、本発明は、前記第1の温度検出素子
と前記第2の温度検出素子の接続点に接続されたバッフ
ァアンプと該バッファアンプに直列に接続された一対の
抵抗よりなる第2の基準電圧発生手段によって前記第2
の基準電圧を発生させる。また、本発明で用いる前記一
対の抵抗の抵抗値が十分大きいときは、前記バッファア
ンプを不要とした。
Further, according to the present invention, a buffer amplifier connected to a connection point of the first temperature detecting element and the second temperature detecting element, and a second pair of resistors connected in series to the buffer amplifier. By the reference voltage generating means of
Generates the reference voltage of. Further, when the resistance value of the pair of resistors used in the present invention is sufficiently large, the buffer amplifier is not necessary.

【0016】また、本発明は、前記第2の基準電圧をA
/D変換器の基準電圧Vref として入力するとともに、
前記第2の温度検出素子と前記抵抗の接続点の電圧を前
記A/D変換器に入力するようにした。
In the present invention, the second reference voltage is set to A
Input as the reference voltage Vref of the / D converter,
The voltage at the connection point between the second temperature detecting element and the resistor is input to the A / D converter.

【0017】[0017]

【作用】このような構成を備えた本発明の熱感知器によ
れば、第1の温度検出素子と第2の温度検出素子の接続
点の電圧に比例する第2の基準電圧をつくり、この第2
の基準電圧と、第2の温度検出素子と抵抗の接続点の電
圧を比較して、定温出力を得るようにしたため、温度検
出素子の個体のバラツキによる誤差は2個分から1個分
に減少し、また、温度上昇率の違いによる誤差もなくな
り、定温出力の精度を向上させることができる。
According to the heat sensor of the present invention having such a configuration, the second reference voltage proportional to the voltage at the connection point between the first temperature detecting element and the second temperature detecting element is generated, Second
Since the reference voltage and the voltage at the connection point of the second temperature detecting element and the resistor are compared to obtain a constant temperature output, the error due to the variation in the individual temperature detecting elements is reduced from two to one. Further, the error due to the difference in the temperature rise rate is eliminated, and the accuracy of constant temperature output can be improved.

【0018】また、第2の基準電圧をA/D変換器の基
準電圧として入力し、第2の温度検出素子と抵抗の接続
点の電圧をA/D変換器に入力するようにしたため、定
温出力されるディジタル値の精度を向上させることがで
きる。
Further, since the second reference voltage is input as the reference voltage of the A / D converter and the voltage at the connection point of the second temperature detecting element and the resistor is input to the A / D converter, the constant temperature is maintained. The accuracy of the output digital value can be improved.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1および図2は本発明の一実施例を示す図であ
る。図1は本発明の一実施例を示す回路図である。図1
において、21はプラスの接続端子、22はマイナスの
接続端子であり、これらのプラスの接続端子21とマイ
ナスの接続端子22は、中央監視室などに設置された受
信機(図示せず)から延設された伝送線路に接続され、
また、接続端子21,22内に図示しない定電圧回路に
よってつくり出された一定の電圧が電源電圧として供給
されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are views showing an embodiment of the present invention. FIG. 1 is a circuit diagram showing an embodiment of the present invention. Figure 1
, 21 is a plus connection terminal, 22 is a minus connection terminal, and these plus connection terminal 21 and minus connection terminal 22 are extended from a receiver (not shown) installed in a central monitoring room or the like. Connected to the established transmission line,
In addition, a constant voltage generated by a constant voltage circuit (not shown) is supplied to the connection terminals 21 and 22 as a power supply voltage.

【0020】23は温度上昇によって抵抗値が減少する
負の温度特性を有する第1のサーミスタ素子(第1の温
度検出素子)であり、第1のサーミスタ素子23は熱時
定数が大きいので熱応答性が遅い特性を有する。24は
同じく温度上昇によって抵抗値が減少する負の温度特性
を有する第2のサーミスタ素子(第2の温度検出素子)
であり、第2のサーミスタ素子24は熱時定数が小さい
ので熱応答性が速い特性を有する。
Reference numeral 23 is a first thermistor element (first temperature detecting element) having a negative temperature characteristic in which the resistance value decreases as the temperature rises. Since the first thermistor element 23 has a large thermal time constant, it has a thermal response. It has the property of slow sex. Reference numeral 24 is a second thermistor element (second temperature detecting element) having a negative temperature characteristic in which the resistance value also decreases with temperature rise.
Since the second thermistor element 24 has a small thermal time constant, it has a characteristic of quick thermal response.

【0021】第1のサーミスタ素子23と第2のサーミ
スタ素子24と抵抗25は直列に接続され、直列回路2
6を構成している。27は第1の基準電圧発生手段とし
ての第1の基準電圧発生回路であり、直列に接続された
抵抗28と抵抗29より構成される。第1の基準電圧発
生回路27は、抵抗28と抵抗29の接続点(C)にお
いて第1の基準電圧(VC)を発生させる。
The first thermistor element 23, the second thermistor element 24 and the resistor 25 are connected in series, and the series circuit 2
6 is composed. Reference numeral 27 denotes a first reference voltage generating circuit as a first reference voltage generating means, which is composed of a resistor 28 and a resistor 29 connected in series. The first reference voltage generation circuit 27 generates a first reference voltage (VC) at the connection point (C) of the resistors 28 and 29.

【0022】30は第1の比較器であり、第1の比較器
30のプラス入力端子には第1の基準電圧(VC)が入
力し、マイナス入力端子には第1のサーミスタ素子23
と第2のサーミスタ素子24の接続点(A1)の電圧
(VA1)が入力する。接続点(A1)の電圧(VA
1)は、温度上昇率が高いときは、図5のDに示すよう
に、急速に低下し、温度上昇率が低いときは、図6のE
に示すように、ゆるやかに低下する。
Reference numeral 30 is a first comparator. The first reference voltage (VC) is input to the positive input terminal of the first comparator 30, and the first thermistor element 23 is input to the negative input terminal.
And the voltage (VA1) at the connection point (A1) of the second thermistor element 24 is input. Voltage at connection point (A1) (VA
In 1), when the temperature rise rate is high, as shown in D of FIG. 5, it rapidly decreases, and when the temperature rise rate is low, E of FIG.
As shown in, it gradually decreases.

【0023】温度上昇率が高いときは、電圧(VA1)
は急速に低下し、第1の基準電圧(VC)より低くなる
と、第1の比較器30の出力は“H”レベルとなり、差
動出力が得られる。すなわち、予め決められた温度上昇
率を超えて監視区域内の温度が急上昇したことを検出
し、発報が行われる。これが差動機能である。
When the temperature rise rate is high, the voltage (VA1)
Rapidly decreases and becomes lower than the first reference voltage (VC), the output of the first comparator 30 becomes "H" level, and a differential output is obtained. That is, it is detected that the temperature in the monitored area has risen sharply beyond the predetermined rate of temperature rise, and an alarm is issued. This is the differential function.

【0024】31は第2の基準電圧発生手段としての第
2の基準電圧発生回路であり、バッファアンプ32と抵
抗33と抵抗34を直列に接続した直列回路により構成
される。バッファアンプ32の入力側は、第1のサーミ
スタ素子23と第2のサーミスタ素子24の接続点(A
2)に接続され、出力側には抵抗33と抵抗34が直列
に接続されている。接続点(A2)の電圧はバッファア
ンプ32に入力し、バッファアンプ32によって同電位
の電圧に変換された後に、その電圧は抵抗33と抵抗3
4により分圧される。この分圧された電圧が第2の基準
電圧となる。すなわち、抵抗33と抵抗34の接続点
(B1)の電圧が第2の基準電圧(VB1)となる。第
2の基準電圧発生回路31は、第1のサーミスタ素子2
3と第2のサーミスタ素子24の接続点(A2)の電圧
に比例した第2の基準電圧(VB1)をつくり出す。
Reference numeral 31 denotes a second reference voltage generating circuit as a second reference voltage generating means, which is composed of a series circuit in which a buffer amplifier 32, a resistor 33 and a resistor 34 are connected in series. The input side of the buffer amplifier 32 has a connection point (A) between the first thermistor element 23 and the second thermistor element 24.
The resistor 33 and the resistor 34 are connected in series on the output side. The voltage at the connection point (A2) is input to the buffer amplifier 32, converted into a voltage of the same potential by the buffer amplifier 32, and then the voltage is applied to the resistors 33 and 3.
It is divided by 4. This divided voltage becomes the second reference voltage. That is, the voltage at the connection point (B1) between the resistors 33 and 34 becomes the second reference voltage (VB1). The second reference voltage generating circuit 31 includes the first thermistor element 2
The second reference voltage (VB1) proportional to the voltage at the connection point (A2) between the third thermistor element 24 and the third thermistor element 24 is generated.

【0025】35は第2の比較器であり、第2の比較器
35のマイナス入力端子には第1のサーミスタ素子23
と第2のサーミスタ素子24の接続点(A2)の電圧に
比例した第2の基準電圧(VB1)が入力し、プラス入
力端子には第2のサーミスタ素子24と抵抗25の接続
点(A)の電圧(VA)が入力する。第2の基準電圧
(VB1)は、図2のJに示され、第1のサーミスタ素
子23と第2のサーミスタ素子24の接続点(A2)の
電圧が低下すると、その電圧低下に比例して、図2のK
に示すように、低下する。
Reference numeral 35 is a second comparator, and the negative input terminal of the second comparator 35 has a first thermistor element 23.
And a second reference voltage (VB1) proportional to the voltage at the connection point (A2) between the second thermistor element 24 and the second thermistor element 24 are input, and the connection point (A) between the second thermistor element 24 and the resistor 25 is input to the positive input terminal. Voltage (VA) is input. The second reference voltage (VB1) is shown by J in FIG. 2, and when the voltage at the connection point (A2) between the first thermistor element 23 and the second thermistor element 24 decreases, it is proportional to the voltage decrease. , K in Figure 2
As shown in.

【0026】また、第2のサーミスタ素子24と抵抗2
5の接続点(A)の電圧(VA)は、図2のLに示すよ
うに、温度の上昇に応じて上昇し、また、温度上昇の違
いにより、Mに示すように、上昇率は低下する。次に、
動作を説明する。温度が急速に上昇する温度上昇率が高
いときは、第1のサーミスタ素子23と第2のサーミス
タ素子24の接続点(A1)の電圧(VA1)は、図5
のDに示すように、急速に低下する。電圧(VA1)が
第1の基準電圧(VC)より低下すると、第1の比較器
30の出力は“H”レベルとなり、差動出力が得られ
る。
In addition, the second thermistor element 24 and the resistor 2
The voltage (VA) at the connection point (A) of No. 5 rises as the temperature rises, as shown by L in FIG. 2, and due to the difference in temperature rise, the rate of rise decreases as shown by M. To do. next,
The operation will be described. When the temperature rise rate at which the temperature rises rapidly is high, the voltage (VA1) at the connection point (A1) between the first thermistor element 23 and the second thermistor element 24 is as shown in FIG.
As shown in D of FIG. When the voltage (VA1) becomes lower than the first reference voltage (VC), the output of the first comparator 30 becomes "H" level and a differential output is obtained.

【0027】この場合には、予め決められた温度上昇率
を超えて監視区域内の温度が急上昇したことを検出し、
差動出力により、発報が行われる。次に、第2のサーミ
スタ素子23と抵抗24の接続点(A)の電圧(VA)
は、図2のLに示され、第1のサーミスタ素子23と第
2のサーミスタ素子24の接続点(A2)の電圧に比例
した第2の基準電圧(VB1)は、図2のJに示され、
電圧(VA)が第2の基準電圧(VB1)を超えると、
第2の比較器25の出力は“H”レベルとなり、60度
の定温出力が得られる。
In this case, it is detected that the temperature in the monitored area suddenly rises beyond a predetermined rate of temperature rise,
An alarm is issued by the differential output. Next, the voltage (VA) at the connection point (A) between the second thermistor element 23 and the resistor 24.
Is indicated by L in FIG. 2, and the second reference voltage (VB1) proportional to the voltage at the connection point (A2) between the first thermistor element 23 and the second thermistor element 24 is indicated by J in FIG. Is
When the voltage (VA) exceeds the second reference voltage (VB1),
The output of the second comparator 25 becomes "H" level, and a constant temperature output of 60 degrees is obtained.

【0028】この場合、第2の基準電圧(VB1)とし
て、第1のサーミスタ素子23と第2のサーミスタ素子
24の接続点(A2)の電圧に比例する電圧を第2の基
準電圧(VB)として用いているので、熱応答性が遅い
第1のサーミスタ素子23の個体のバラツキによるずれ
がなくなり、熱応答性の速い第2のサーミスタ素子24
の個体のバラツキによるずれのみとなる。したがって、
サーミスタ素子1個分の個体のバラツキによるずれ(誤
差)は、矢印Nに示すように小さくなる。
In this case, as the second reference voltage (VB1), a voltage proportional to the voltage at the connection point (A2) between the first thermistor element 23 and the second thermistor element 24 is used as the second reference voltage (VB). Since the first thermistor element 23 having a slow thermal response has no deviation due to variations in the individual, the second thermistor element 24 having a fast thermal response can be eliminated.
The difference is due to the variation of the individual. Therefore,
The deviation (error) due to the variation of one thermistor element is small as shown by arrow N.

【0029】一方、温度上昇率の違いにより、電圧(V
A)が図2のMに示すように変化した場合には、第2の
基準電圧(VB1)も第1のサーミスタ素子23と第2
のサーミスタ素子24の接続点(A2)の電圧に比例し
て、図2のKに示すように変化する。したがって、Mと
Kの交点Oにおいて、60度の定温出力が得られる。こ
のように、温度上昇率が違う場合でも60度で定温出力
が得られ、発報温度は変化しない。その結果、定温出力
の精度を向上させることができる。
On the other hand, the voltage (V
When A) changes as shown by M in FIG. 2, the second reference voltage (VB1) also changes to the first thermistor element 23 and the second reference voltage (VB1).
2 in proportion to the voltage at the connection point (A2) of the thermistor element 24, as shown by K in FIG. Therefore, at the intersection O of M and K, a constant temperature output of 60 degrees can be obtained. Thus, even if the temperature rise rate is different, a constant temperature output can be obtained at 60 degrees, and the alarm temperature does not change. As a result, the accuracy of constant temperature output can be improved.

【0030】次に、図3は本発明の他の実施例を示す図
である。本実施例においては、アナログ信号の定温出力
をデジタル信号に変換している。図3において、第2の
サーミスタ素子24と抵抗26の接続点(A)の電圧
(VA)をCPU36内に設けたA/D変換器37に入
力し、第1のサーミスタ素子23と第2のサーミスタ素
子24の接続点(A2)の電圧に比例する接続点(B
1)の第2の基準電圧(VB1)をA/D変換器37の
基準電圧(Vref )としている。
Next, FIG. 3 is a diagram showing another embodiment of the present invention. In this embodiment, the constant temperature output of the analog signal is converted into a digital signal. In FIG. 3, the voltage (VA) at the connection point (A) between the second thermistor element 24 and the resistor 26 is input to the A / D converter 37 provided in the CPU 36, and the first thermistor element 23 and the second thermistor element 23 are connected. A connection point (B) proportional to the voltage at the connection point (A2) of the thermistor element 24.
The second reference voltage (VB1) of 1) is used as the reference voltage (Vref) of the A / D converter 37.

【0031】従来においては、基準電圧(Vref )は一
定、例えば5Vであり、この5Vに対して、256ビッ
トを割り当ててA/D変換出力を得ていた。本実施例に
おいては、基準電圧(Vref )は、第1のサーミスタ素
子23と第2のサーミスタ素子24の接続点(A2)の
電圧に比例して変化する。例えば、基準電圧(Vref )
が3Vに変化すると、この3Vに対して256ビットを
割り当ててA/D変換を行う。
Conventionally, the reference voltage (Vref) is constant, for example, 5V, and 256 bits are allocated to this 5V to obtain the A / D conversion output. In this embodiment, the reference voltage (Vref) changes in proportion to the voltage at the connection point (A2) between the first thermistor element 23 and the second thermistor element 24. For example, reference voltage (Vref)
Is changed to 3V, 256 bits are allocated to this 3V and A / D conversion is performed.

【0032】したがって、デジタル変換された定温出力
は、誤差が小さく、精度が良い。
Therefore, the digitally converted constant temperature output has a small error and a high accuracy.

【0033】[0033]

【発明の効果】以上説明してきたように、本発明によれ
ば、熱応答性が遅い第1の温度検出素子と熱応答性が速
い第2の温度検出素子の接続点に比例した第2の基準電
圧をつくり、この第2の基準電圧と第2の温度検出素子
と抵抗の接続点の電圧を比較して定温出力を得るように
したため、定温出力の精度を向上させることができる。
As described above, according to the present invention, the second temperature detection element proportional to the connection point of the first temperature detection element having a slow thermal response and the second temperature detection element having a fast thermal response. Since the reference voltage is generated and the constant temperature output is obtained by comparing the second reference voltage with the voltage at the connection point of the second temperature detecting element and the resistor, the accuracy of the constant temperature output can be improved.

【0034】また、第2の基準電圧をA/D変換器の基
準電圧として入力し、第2の温度検出素子と抵抗の接続
点の電圧をA/D変換器に入力した場合には、定温出力
として精度が良いデジタル値を得ることができる。
When the second reference voltage is input as the reference voltage of the A / D converter and the voltage at the connection point between the second temperature detecting element and the resistor is input to the A / D converter, the constant temperature is maintained. It is possible to obtain an accurate digital value as an output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す回路図FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】定温出力の説明図[Fig. 2] Illustration of constant temperature output

【図3】本発明の他の実施例を示す回路図FIG. 3 is a circuit diagram showing another embodiment of the present invention.

【図4】従来例を示す回路図FIG. 4 is a circuit diagram showing a conventional example.

【図5】温度上昇率が高いときの動作説明図FIG. 5 is an operation explanatory diagram when the temperature rise rate is high.

【図6】温度上昇率が低いときの動作説明図FIG. 6 is an operation explanatory diagram when the temperature rise rate is low.

【図7】問題点を説明する説明図FIG. 7 is an explanatory diagram explaining a problem.

【符号の説明】[Explanation of symbols]

21,22:接続端子 23:第1のサーミスタ素子(第1の温度検出素子) 24:第2のサーミスタ素子(第2の温度検出素子) 25,28,29,33,34:抵抗 26:直列回路 27:第1の基準電圧発生回路(第1の基準電圧発生手
段) 30:第1の比較器 31:第2の基準電圧発生回路(第2の基準電圧発生手
段) 32:バッファアンプ 35:第2の比較器 36:CPU 37:A/D変換器
21, 22: Connection terminal 23: First thermistor element (first temperature detecting element) 24: Second thermistor element (second temperature detecting element) 25, 28, 29, 33, 34: Resistor 26: Series Circuit 27: First reference voltage generation circuit (first reference voltage generation means) 30: First comparator 31: Second reference voltage generation circuit (second reference voltage generation means) 32: Buffer amplifier 35: Second comparator 36: CPU 37: A / D converter

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱応答性が遅い第1の温度検出素子と熱応
答性が速い第2の温度検出素子と抵抗を直列に接続した
直列回路と、 第1の基準電圧発生手段で発生した第1の基準電圧と、
前記第1の温度検出素子と前記第2の温度検出素子の接
続点の電圧が入力する第1の比較器と、 前記第1の温度検出素子と前記第2の温度検出素子の接
続点の電圧に比例した第2の基準電圧と、前記第2の温
度検出素子と前記抵抗の接続点の電圧が入力する第2の
比較器を備えたことを特徴とする熱感知器。
1. A series circuit in which a first temperature detecting element having a slow thermal response, a second temperature detecting element having a fast thermal response, and a resistor are connected in series, and a first circuit generated by a first reference voltage generating means. 1 reference voltage,
A first comparator to which a voltage at a connection point between the first temperature detection element and the second temperature detection element is input, and a voltage at a connection point between the first temperature detection element and the second temperature detection element And a second comparator to which a second reference voltage proportional to the input voltage and a voltage at the connection point of the second temperature detection element and the resistor are input.
【請求項2】前記第1の温度検出素子と前記第2の温度
検出素子の接続点に接続されたバッファアンプと該バッ
ファアンプに直列に接続された一対の抵抗よりなる第2
の基準電圧発生手段によって前記第2の基準電圧を発生
させることを特徴とする請求項1記載の熱感知器。
2. A second amplifier comprising a buffer amplifier connected to a connection point between the first temperature detecting element and the second temperature detecting element, and a pair of resistors connected in series to the buffer amplifier.
2. The heat sensor according to claim 1, wherein the second reference voltage is generated by the reference voltage generating means.
【請求項3】前記一対の抵抗の抵抗値が十分大きいとき
は、前記バッファアンプを不要としたことを特徴とする
請求項2記載の熱感知器。
3. The heat sensor according to claim 2, wherein the buffer amplifier is not necessary when the resistance value of the pair of resistors is sufficiently large.
【請求項4】前記第2の基準電圧をA/D変換器の基準
電圧Vrefとして入力するとともに、前記第2の温度
検出素子と前記抵抗の接続点の電圧を前記A/D変換器
に入力したことを特徴とする請求項1乃至3のいずれか
記載の熱感知器。
4. The second reference voltage is input as a reference voltage Vref of an A / D converter, and the voltage at the connection point between the second temperature detecting element and the resistor is input to the A / D converter. Any of claims 1 to 3 characterized in that
Heat detector according to.
JP23455494A 1994-09-29 1994-09-29 Heat detector Expired - Fee Related JP3519464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23455494A JP3519464B2 (en) 1994-09-29 1994-09-29 Heat detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23455494A JP3519464B2 (en) 1994-09-29 1994-09-29 Heat detector

Publications (2)

Publication Number Publication Date
JPH0894454A JPH0894454A (en) 1996-04-12
JP3519464B2 true JP3519464B2 (en) 2004-04-12

Family

ID=16972849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23455494A Expired - Fee Related JP3519464B2 (en) 1994-09-29 1994-09-29 Heat detector

Country Status (1)

Country Link
JP (1) JP3519464B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5540241B2 (en) * 2009-10-02 2014-07-02 イマジニアリング株式会社 Heat flux measuring device and heat flux measuring method

Also Published As

Publication number Publication date
JPH0894454A (en) 1996-04-12

Similar Documents

Publication Publication Date Title
EP0404479B1 (en) Device for measuring displacement
JP3231887B2 (en) Heat detector
JP3519464B2 (en) Heat detector
JPH0432617Y2 (en)
JP3575573B2 (en) Thermal air flow meter
JPH10148557A (en) Flow rate sensor circuit, and method for adjusting its sensor output
JP2946907B2 (en) Temperature measuring device
JP3410562B2 (en) Temperature / wind speed measurement device
JP3210875B2 (en) Compensated fire detector
JPS5839397A (en) Compensation type spot sensor
JPH06109506A (en) Heating element type air flowmeter
JPH06265565A (en) Current speed detector for gas
JPH08226862A (en) Sensor and method for performing temperature compensation for measuring-range fluctuation in sensor thereof
JPH0663800B2 (en) Heater temperature control circuit
JP2000214030A (en) Pressure sensor circuit
JP2003097990A (en) Thermal flowmeter
JP3227084B2 (en) Air flow measurement device
JPH02109384A (en) Optical-output stabilizing apparatus for semiconductor laser
JP2002176327A (en) Method and device for detecting excessive negative offset of sensor
JPS61247977A (en) Clog detector for filter
JPS62170829A (en) Temperature detection circuit
JPH07139985A (en) Thermal air flow measuring instrument
JP3116128B2 (en) Fire detector
CN116046090A (en) Control circuit of thermal gas flow sensor
JPS62235834A (en) Optical input level detection circuit for optical receiver

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees