JPS63139042A - Manufacture of ceramic formed body - Google Patents

Manufacture of ceramic formed body

Info

Publication number
JPS63139042A
JPS63139042A JP61284714A JP28471486A JPS63139042A JP S63139042 A JPS63139042 A JP S63139042A JP 61284714 A JP61284714 A JP 61284714A JP 28471486 A JP28471486 A JP 28471486A JP S63139042 A JPS63139042 A JP S63139042A
Authority
JP
Japan
Prior art keywords
molded body
cerium
strength
lanthanum
ceramic molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61284714A
Other languages
Japanese (ja)
Inventor
伊藤 邦夫
伸行 柳原
田辺 美恵子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61284714A priority Critical patent/JPS63139042A/en
Publication of JPS63139042A publication Critical patent/JPS63139042A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルミン酸石灰を結合剤とするセラミック成形
体、特に触媒担体、セラミックバーナー。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a ceramic molded body using lime aluminate as a binder, particularly a catalyst carrier and a ceramic burner.

熱輻射体として有用なセラミック成形体の製造法に関す
るものである。
The present invention relates to a method for manufacturing a ceramic molded body useful as a heat radiator.

従来の技術 従来1アルミン酸石灰を結合剤として用いるセラミック
成形体は、特開昭61−156277号公報に記載され
ているように、アルミン酸石灰。
BACKGROUND ART Conventional Art 1 A ceramic molded body using lime aluminate as a binder is a lime aluminate as described in JP-A-61-156277.

溶融シリカ、二酸化チタンおよび有機成形助剤などを混
合し、水を加えて混練したものを所望の形状に押出して
成形される。その後、同化、養生。
Molten silica, titanium dioxide, an organic molding aid, etc. are mixed, water is added, and the mixture is kneaded and extruded into a desired shape. After that, assimilation and curing.

乾燥を施し、次いで熱処理により有機成形助剤を分解除
去したのち水を含浸して乾燥することにより得られるも
のであった。
It was obtained by drying, then heat treatment to decompose and remove the organic molding aid, impregnating with water and drying.

発明が解決しようとする問題点 上記従来の製造法により得られるセラミック成形体は、
最終工程である乾燥段階では強度を保持しているが、一
旦高温状態にさらされると急激に強度が低下するという
問題点があった。これは水を含浸することによりアルミ
ン酸石灰と他の材料の間に生じた結合が、高温下で容易
に切断されるためと考えられる。
Problems to be Solved by the Invention The ceramic molded body obtained by the above conventional manufacturing method is
Although it maintains its strength during the final drying stage, there is a problem in that once it is exposed to high temperatures, its strength rapidly decreases. This is thought to be because the bond formed between lime aluminate and other materials by impregnation with water is easily broken at high temperatures.

本発明はこのような問題点を解決するもので1高温で熱
処理後も十分な強度を有するセラミック成形体の製造法
を提供することを目的とする。
The present invention solves these problems and aims to provide a method for producing a ceramic molded body that has sufficient strength even after heat treatment at high temperatures.

問題点を解決するだめの手段 この問題点を解決するために本発明は、有機成形助剤の
分解除去工程後に1少なくともセリウムまたはランタン
の塩を溶液状で含浸し、次いで熱処理する工程を付加し
たものである。
Means for Solving the Problem In order to solve this problem, the present invention adds a step of impregnating at least a cerium or lanthanum salt in solution after the decomposition and removal step of the organic forming aid, and then heat-treating. It is something.

作用 300 ’C以上の温度で有機成形助剤を分解除去した
セラミック成形体は、第2図に示すように細孔容積かも
との2倍以上に増加する。特に孔径が5Qo八以下の、
いわゆるメン孔の占める容積が著しく増大する。この状
態下の成形体をセリウムまたはランタンの塩の溶液中に
浸漬し、細孔内にセリウムまたはランタンの塩を含浸す
る。次に熱処理することにより細孔内のセリウムまたは
ランタンの塩は、それぞれ酸化物になると共に細孔周囲
の成形体材料と強固に結合する。この結果成形体の強度
が著しく増大することになる。
The pore volume of the ceramic molded body whose organic molding aid has been decomposed and removed at a temperature of 300'C or more increases to more than twice its original pore volume, as shown in FIG. In particular, those with a pore diameter of 5Qo8 or less,
The volume occupied by the so-called menhole increases significantly. The molded body in this state is immersed in a solution of cerium or lanthanum salt to impregnate the pores with cerium or lanthanum salt. Next, by heat treatment, the cerium or lanthanum salts in the pores become oxides, respectively, and are firmly bonded to the molded body material surrounding the pores. As a result, the strength of the molded article increases significantly.

実施例 〔実施例1〕 アルミン酸石灰5Q重量部、溶融シリカ45重量部、二
酸化チタン5重量部に成形助剤としてカルボキシメチル
セルロース5電食部を加えて混合した。この混合粉体に
対し125重置部の水を加えて混練した材料をダイース
を用いてノゝニカム状に押出し成形した。次いで80’
Cの湯中で固化、養生させたのち12o′Cで乾燥した
。その成形体を300’Cで1時間処理したのち、それ
ぞれセリウム、ランタン、ジルコニウムおよびネオジウ
ムの各硝酸塩水溶液中に浸漬することによって、各金属
酸化物を成形体の見かけ体積当たり10g/l担持させ
た。次いでそれぞれを1ooo′Cで30分間熱処理し
た。
Examples [Example 1] 5 parts by weight of lime aluminate, 45 parts by weight of fused silica, and 5 parts by weight of titanium dioxide were mixed with 5 parts by weight of carboxymethyl cellulose as a molding aid. To this mixed powder, 125 parts of water was added and kneaded, and the material was extruded into a honeycomb shape using a die. Then 80'
After solidifying and curing in hot water at 12°C, it was dried at 12o'C. The molded body was treated at 300'C for 1 hour, and then immersed in aqueous nitrate solutions of cerium, lanthanum, zirconium, and neodymium, so that each metal oxide was supported at 10 g/l per apparent volume of the molded body. . Each was then heat treated at 100'C for 30 minutes.

得られたハニカム状セラミック成形体から乙5X7.6
 X 101nlI:I試験片(有効断面積o、24d
)を切り出し、圧縮試験機を用いて格子の垂直方向に一
定速度で荷重をかけ圧縮強度を測定した。各成形体につ
いて1oサンプルの圧縮強度を測定した時の平均値を表
1に示す。
From the obtained honeycomb-shaped ceramic molded body, Otsu 5×7.6
X 101nlI:I test piece (effective cross-sectional area o, 24d
) was cut out, and the compressive strength was measured by applying a load at a constant speed in the vertical direction of the grid using a compression testing machine. Table 1 shows the average value of the compressive strength of 10 samples of each molded body.

〔実施例2〕 実施例1と同様に300°Cで1時間処理して有機成形
助剤を分解除去した成形体を、それぞれセリウム、ラン
タン、ジルコニウムおよびネオジウムの各アルコキシド
のメタノール溶液中に浸漬し、各金属酸化物を成形体の
見かけ体積当たり101/e担持させた。次いでそれぞ
れを1000°Cで30分間熱処理した。得られたハニ
カム状セラミック成形体の圧縮強度を表1に示す。
[Example 2] Molded bodies treated at 300°C for 1 hour in the same manner as in Example 1 to decompose and remove organic molding aids were immersed in methanol solutions of cerium, lanthanum, zirconium, and neodymium alkoxides, respectively. , each metal oxide was supported at 101/e per apparent volume of the molded body. Each was then heat treated at 1000°C for 30 minutes. Table 1 shows the compressive strength of the obtained honeycomb-shaped ceramic molded body.

〔実施例3〕 実施例1と同様に300’Cで1時間処理して有機成形
助剤を分解除去した成形体をセリウムおよびネオジウム
のそれぞれの濃度を変化させた硝酸塩水溶液中に浸漬し
、各金属酸化物を成形体の見かけ体積当たり1〜20g
/lの範囲で担持させた。次いでそれぞれを1000°
Cで30分間熱処理した。得られたハニカム状セラミッ
ク成形体の圧縮強度を第1図に示す。
[Example 3] Molded bodies treated at 300'C for 1 hour to decompose and remove organic molding aids in the same manner as in Example 1 were immersed in nitrate aqueous solutions with varying concentrations of cerium and neodymium. 1 to 20 g of metal oxide per apparent volume of molded body
It was supported in the range of /l. Then each is 1000°
It was heat-treated at C for 30 minutes. The compressive strength of the obtained honeycomb-shaped ceramic molded body is shown in FIG.

〔比較例〕[Comparative example]

実施例1と同様に300 ’Cで1時間処理して有機成
形助剤を分解除去した成形体を直ちに1000°Cで3
0分間熱処理した。
Similar to Example 1, the molded body was treated at 300°C for 1 hour to decompose and remove the organic molding aid, and then immediately heated at 1000°C for 3 hours.
Heat treatment was performed for 0 minutes.

表    1 表1に示すようにセリウム酸化物を担持したセラミック
成形体は比較例の未担持品に比べ、実施例1の場合で約
44%、実施例2の場合で約50%圧縮強度が増大する
。ランタン酸化物の担持てもほぼ同程度の効果がみられ
る。これに対しジルコニウムあるいはネオジウムの酸化
物を担持した成形体の強度はあまり未担持品と変わらな
い。
Table 1 As shown in Table 1, the compressive strength of the ceramic molded body supported with cerium oxide increased by approximately 44% in the case of Example 1 and by approximately 50% in the case of Example 2, compared to the unsupported product of the comparative example. do. Approximately the same effect can be seen in supporting lanthanum oxide. On the other hand, the strength of molded bodies supported with zirconium or neodymium oxides is not much different from that of unsupported molded bodies.

第1図は本発明の一実施例としてセリウムおよびネオジ
ウム酸化物の担持量を1〜209 / lの範囲で変化
させた時の成形体の圧縮強度を示す。
FIG. 1 shows, as an example of the present invention, the compressive strength of a molded article when the amount of supported cerium and neodymium oxides was varied in the range of 1 to 209/l.

セリウム酸化物を担持させた場合1 7g/1以上で圧
縮強度が増大しはじめ、1 ’4/1以上では頭打ちの
状態となる。一方ネオジウム酸化物を担持した場合は1
担持量を増しても圧縮強度の大幅な増大は認められない
。同様にランタンの酸化物を担持してもセリウムの場合
と同様強度が向上する。
When cerium oxide is supported, the compressive strength begins to increase at 17 g/1 or more, and reaches a plateau at 1'4/1 or more. On the other hand, when neodymium oxide is supported, 1
No significant increase in compressive strength was observed even when the loading amount was increased. Similarly, supporting lanthanum oxide also improves the strength as in the case of cerium.

この様にセリウムまたはランタンの酸化物を担持した時
圧縮強度が大幅に向上する理由は、有機成形助剤の分解
除去後に生ずる微小細孔(メン孔)にまでセリウムまた
はランタンの塩が入り込み、次の熱処理工程でセラミッ
ク成形体を構成する他の材料と強固に結合するだめと考
えられる。これに対し、ジルコニウムあるいはネオジウ
ムの酸化物を担持した場合、これらの塩が微小細孔に均
質に入りにくいために強度が大きく増大しないものと思
われる。セリウム酸化物をある一定量以上担持しても強
度が頭打ちとなるのは、微小細孔にセリウム塩が充てん
されたのち、さらにセリウム量を増しても微小細孔の外
表面に付着するだけであり、強度には関係してこないた
めと考えられる。
The reason why the compressive strength is greatly improved when supporting cerium or lanthanum oxides is that the cerium or lanthanum salts penetrate into the micropores (pores) that are formed after the organic forming aid is decomposed and removed. This is thought to be due to the fact that it forms a strong bond with the other materials that make up the ceramic molded body during the heat treatment process. On the other hand, when oxides of zirconium or neodymium are supported, it is thought that the strength does not increase significantly because these salts do not easily enter the micropores homogeneously. The reason why the strength reaches a plateau even if more than a certain amount of cerium oxide is supported is that after the micropores are filled with cerium salt, even if the amount of cerium is further increased, it simply adheres to the outer surface of the micropores. This is thought to be because it is not related to strength.

したがって、とくにセリウムとランタンが担体強度の向
上に有効に働くので、当然これらの混合物を用いても同
じ効果が期待できる。
Therefore, since cerium and lanthanum are particularly effective in improving the strength of the carrier, it is natural that the same effect can be expected even if a mixture of these is used.

発明の効果 以上のように、本発明によれば、有機成形助剤を分解除
去後に少なくともセリウムやランタン塩を溶液状で含浸
し、次いで熱処理するという簡単な工程により、セラミ
ック成形体の強度を増大させることができるという効果
が得られる。
Effects of the Invention As described above, according to the present invention, the strength of a ceramic molded body can be increased by a simple process of impregnating at least cerium or lanthanum salt in solution after decomposing and removing an organic molding aid, and then heat-treating. This has the effect of being able to do this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセリウムとネオジウムの各酸化物の担持量とセ
ラミック成形体の圧縮強度との関係を示す図、第2図は
セラミック成形体の熱処理温度と細孔容積との関係を示
す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 全Lwi化物の担ト午量 (g/)) 第2図 熱温 理逼崖 (゛す
Figure 1 is a diagram showing the relationship between the supported amount of each oxide of cerium and neodymium and the compressive strength of the ceramic molded body, and Figure 2 is a diagram showing the relationship between the heat treatment temperature and pore volume of the ceramic molded body. . Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2: Thermal temperature of all Lwi compounds (g/)

Claims (1)

【特許請求の範囲】[Claims]  アルミン酸石灰を結合剤とするセラミック成形体にお
いて、有機成形助剤を分解除去したのち少なくともセリ
ウムまたはランタンの塩を溶液状で含浸し、次いで熱処
理することを特徴とするセラミック成形体の製造法。
A method for producing a ceramic molded body using lime aluminate as a binder, which comprises decomposing and removing an organic molding aid, impregnating at least a cerium or lanthanum salt in solution, and then heat-treating.
JP61284714A 1986-11-28 1986-11-28 Manufacture of ceramic formed body Pending JPS63139042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284714A JPS63139042A (en) 1986-11-28 1986-11-28 Manufacture of ceramic formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284714A JPS63139042A (en) 1986-11-28 1986-11-28 Manufacture of ceramic formed body

Publications (1)

Publication Number Publication Date
JPS63139042A true JPS63139042A (en) 1988-06-10

Family

ID=17682028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284714A Pending JPS63139042A (en) 1986-11-28 1986-11-28 Manufacture of ceramic formed body

Country Status (1)

Country Link
JP (1) JPS63139042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169090A (en) * 2007-01-12 2008-07-24 Sharp Corp Reinforced porous honeycomb structure and sintered reinforced honeycomb structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169090A (en) * 2007-01-12 2008-07-24 Sharp Corp Reinforced porous honeycomb structure and sintered reinforced honeycomb structure

Similar Documents

Publication Publication Date Title
CA2071942C (en) Sol-gel process for glass and ceramic articles
JP2959683B2 (en) Method for producing high-purity alumina fiber molded body
KR100294428B1 (en) Catalyst and process for the production thereof
DE60008920T2 (en) MONOLITHIC OBJECTS MADE OF ALPHA ALUMINUM OXIDE WITH CONTROLLED POROSITY AND SOL-GEL PROCESS FOR THEIR PRODUCTION
JPS63139042A (en) Manufacture of ceramic formed body
JP3094148B2 (en) Manufacturing method of lightweight refractory
JP2002526370A5 (en)
CN110655389A (en) Honeycomb ceramic with mesoporous nano alumina as matrix and preparation method thereof
JPH11147707A (en) Activated carbon honeycomb structure and its production
JPH1111928A (en) Production of silica gel and production of dehumidifying element
JPS6120508B2 (en)
JPS62113781A (en) Manufacture of ceramic sintered body
CN1330608C (en) Method for processing organic foam pattern plate for the preparation of porous ceramic
CN114560716B (en) Forsterite honeycomb body, preparation method and application thereof
JPS62297427A (en) Manufacture of reinforcement for fiber-reinforced metal
JPH0641819A (en) Alumina based fiber and its production
KR100407661B1 (en) Fabrication method of complex-shape refractory material using aluminosilicate fiber
JPH0627003B2 (en) Method for producing ceramic powder
JPH05319949A (en) Production of alumina based fiber formed product
JPH0450276B2 (en)
JPH0535111B2 (en)
JPS59116176A (en) Manufacture of ceramic sintered body
JPH0664981A (en) Method for removing sodium from expandable porous ceramic form
JPS6244506A (en) Manufacture of porous sintered body of stainless steel powder
JPH0891825A (en) Inorganic molding aid and production of catalyst for removal of nox using the same