JPS62297427A - Manufacture of reinforcement for fiber-reinforced metal - Google Patents

Manufacture of reinforcement for fiber-reinforced metal

Info

Publication number
JPS62297427A
JPS62297427A JP61141563A JP14156386A JPS62297427A JP S62297427 A JPS62297427 A JP S62297427A JP 61141563 A JP61141563 A JP 61141563A JP 14156386 A JP14156386 A JP 14156386A JP S62297427 A JPS62297427 A JP S62297427A
Authority
JP
Japan
Prior art keywords
fiber
alumina
silica
reinforcement
reinforced metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61141563A
Other languages
Japanese (ja)
Inventor
Tamotsu Tamaki
玉木 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Babcock Refractories Co Ltd
Original Assignee
Isolite Babcock Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Babcock Refractories Co Ltd filed Critical Isolite Babcock Refractories Co Ltd
Priority to JP61141563A priority Critical patent/JPS62297427A/en
Publication of JPS62297427A publication Critical patent/JPS62297427A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a reinforcement for fiber-reinforced metal superior in strength and accuracy of working to conventional ones, by subjecting an aqueous dispersed solution of inorganic binder containing amorphous alumina-silica fiber and organic binder to suction filtration method, to drying and forming, and further to heat treatment so that prescribed coefficient of mullite crystallization is attained. CONSTITUTION:The inorganic binder consisting of amorphous alumina-silica fiber and colloidal alumina or/and colloidal silica and the organic binder are dispersed into water. Then this dispersed solution is subjected to a suction filtration forming process and dried so that amorphous alumina-silica forming body having superior fiber entanglement can be obtained, which then is heat- treated under the conditions of 950-1,400 deg.C and 0.5hr so that coefficient of mullite crystallization in the fiber comes to >=15wt%. As a result, a fiber- reinforced metal which is inexpensive and well comparable in strength as compared with those prepared by using a reinforcement for fiber-reinforced metal in which reinforcement crystallized alumina fiber is used can be obtained.

Description

【発明の詳細な説明】 3発明の詳細な説明 〔産業上の利用分野〕 本発明は、アルミニウム、マグネシウム等の軽金属やそ
れらの軽金属合金中に埋設し繊維分化軽金属(以下FR
Mと云う)の補強体とするアルミナシリカ繊維成形体の
製造方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention provides fiber differentiated light metals (hereinafter referred to as FR) embedded in light metals such as aluminum and magnesium or their light metal alloys.
This invention relates to a method for producing an alumina-silica fiber molded body used as a reinforcing body for the invention (referred to as M).

〔従来の技術〕[Conventional technology]

短繊維セラミックファイバーを用いたF R:A用補強
体の場合は非晶質アルミナシリカ繊維、結晶質アルミナ
繊維及び結晶質アルミナシリカ繊維?、無機結合剤であ
るコロイダルアルミナやコロイダルシリカと乾燥強度ご
保持させる有機結合剤と共に水中に分散し、吸引成形し
、次いで200c位でほぼ24時間、充分に時間?かけ
て乾燥し、その後使用に適した寸法精度となるように研
削加工3施し、加工した成形体な加熱によって非晶質ア
ルミナシリカ繊維にムライトを生成しない、即ち成形体
が収縮して寸法が変化しないように700〜800Cで
加熱して無機結合剤を安定させると共に:g機機台合剤
除去して得ている。この補強体ζま、これ3丁度挿入で
きる大きさに形成された金型内にセットされ、高圧凝固
鋳造法?用いて軽金萬巾りこ鋳込まれ、FRMが得られ
ている。
In the case of reinforcement for FR:A using short ceramic fibers, are amorphous alumina-silica fibers, crystalline alumina fibers, and crystalline alumina-silica fibers? It is dispersed in water with an inorganic binder such as colloidal alumina or colloidal silica and an organic binder that maintains dry strength, and then suction molded at about 200c for about 24 hours. The molded product is heated to prevent mullite from forming in the amorphous alumina-silica fibers, that is, the molded product shrinks and its dimensions change. It is obtained by heating at 700 to 800C to stabilize the inorganic binder and removing the mixture. This reinforcing body ζ is set in a mold that is sized to fit exactly 3 pieces, and is cast using high-pressure solidification casting. FRM was obtained by casting the light metal using a multi-metal mold.

非晶質アルミナシリカ繊維を使用した補強体ζま組成構
造上不安定であるため、鋳造時に軽金属溶湯と反応し、
反応物な繊維表面に生成して劣化し、FRMの耐摩耗性
を除いては金属の補強効果はあまり大きくない。
Reinforcement bodies using amorphous alumina-silica fibers are unstable due to their compositional structure, so they react with molten light metal during casting.
Metal is generated on the surface of reactant fibers and deteriorates, and the reinforcing effect of metal is not very large except for the wear resistance of FRM.

これに対し結晶質アルミナ繊維な使用した補強体は上記
のような問題はないが、繊維そのものが製造方法に由来
して非常に高価であり、また繊維そのものは硬いが脆い
ため、成形体にした場合強度が小さく、鋳造時の高圧に
より座屈、変形、割れ等が生ずることがある。
On the other hand, crystalline alumina fiber reinforcements do not have the above problems, but the fibers themselves are very expensive due to the manufacturing method, and the fibers themselves are hard but brittle, so it is difficult to make them into molded products. In this case, the strength is low, and buckling, deformation, cracking, etc. may occur due to the high pressure during casting.

この問題に対応するため、非晶質アルミナシリカ繊維を
900C以上で加熱処理して非晶質のアルミナシリカの
一部をムライト(3AlO・2SiO)結晶化し、この
部分結晶化アルミナシリカ繊維を用いて上記と同様にし
て補強体を作ることが行なわれている。
In order to deal with this problem, amorphous alumina-silica fibers are heat-treated at 900C or higher to crystallize part of the amorphous alumina-silica into mullite (3AlO/2SiO), and this partially crystallized alumina-silica fiber is used to The reinforcing body is made in the same manner as above.

この補強体は、強度が結晶質アルミナ繊維を用いたもの
より大きく鋳造時の高圧により金型内で座屈、変形等が
生じないし、これを用いたFRMは耐摩耗性、機械的性
質において、結晶質アルミナ繊維を補強体として用いた
ものにほぼ匹敵するものが得られる。この補強体の繊維
そのものは軽金属溶湯とは殆んど反応を生じないが、し
かし無機結合剤として使用している反応性に富むコロイ
ダルアルミナやフロイダルシリ力が高温の軽金属溶湯と
反応してFRMの機械的強度を低下せしめる。
This reinforcing material has greater strength than those using crystalline alumina fibers and does not buckle or deform within the mold due to high pressure during casting, and FRM using this material has excellent wear resistance and mechanical properties. A product almost comparable to that using crystalline alumina fibers as reinforcement can be obtained. The fibers of this reinforcing body hardly react with the light metal molten metal, but the highly reactive colloidal alumina and floidal silicate used as an inorganic binder react with the high temperature light metal molten metal, causing the FRM machine. reduce the strength of the target.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、補強体そのものの強度が上記従来法による補
強体より大きく、そのために取扱、加工等が容易であり
、溶湯金属との反応性も少なく強度の大きいFRMを、
安価に提供できるFRM用補強体の製造方法を提供する
ことを目的とする。
The present invention provides an FRM which has greater strength than the reinforcing body produced by the conventional method described above, is easy to handle, process, etc., has less reactivity with molten metal, and has high strength.
It is an object of the present invention to provide a method of manufacturing a reinforcing body for FRM that can be provided at low cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の目的を達するために、非晶質のアルミナ
シリカ繊維と、コロイダルアルミナ、フロイダルシリ力
の一方又は両方からなる無機結合剤と有機結合剤とを水
に分散し、これを吸引濾過法により成形して乾燥して非
晶質アルミナシリカ繊維成形体を得る工程と、前記工程
で得た非晶質アルミナシリカ成形体を、該繊維中のムラ
イト結晶化率が15重皿%以上となるように熱処理する
工程とを有する工程と、該工程を経た成形体ご加工する
工程とを有せしめたものである。
In order to achieve the above object, the present invention disperses amorphous alumina-silica fibers, an inorganic binder and an organic binder made of one or both of colloidal alumina and floidal silica fibers in water, and then disperses the dispersion in water using a suction filtration method. a step of molding and drying to obtain an amorphous alumina-silica fiber molded body; and a step of molding the amorphous alumina-silica fiber molded product obtained in the step so that the mullite crystallization rate in the fiber is 15% or more. The method includes a step of heat-treating as described above, and a step of processing the molded body that has undergone the step.

〔作用〕[Effect]

成形前に繊維をムライト処理すると、その時点で繊維が
絡み合ったま一硬化してしまうため水中に分散させると
さ、短かく折ってやらないと、均一な分散が出来ずにま
まこが出来てしまうが、非晶質のま\の繊維を水中に分
散させた場合は均=分散のために無理に折る必要が無い
ため折れて短かくなる率が少なく、結果的に繊維の絡み
合いの良い状態の成形体が得られる。このま\では非晶
質のアルミナシリカ繊維を用いた補強体と同じであるが
、成形体にしてから部分ムライト結晶化するように高温
で熱処理するので、この熱処理温度で繊維成形体は収縮
し無機結合剤は従前より一層安定化し繊維間がより強固
に結合される。このような成形と熱処理により、ムライ
ト化と同時に強度を向上させたものを切削加工して所要
の寸法精度に加工し、それをそのま\補強用成形体とし
て提供するようにしたので、加工精度が向上し、取扱い
も更に容易となる、。繊維間が強固に結合された強度の
大きい補強体を用いることによりFRMの強度を向上で
きる。
If the fibers are treated with mullite before molding, the fibers will become entangled and harden at that point, so when dispersing them in water, unless they are broken short, they will not be evenly dispersed and will form lumps. However, when amorphous fibers are dispersed in water, there is no need to forcefully break them to ensure even dispersion, so there is less chance of them breaking and becoming short, and as a result, the fibers are in a good state of entanglement. A molded body is obtained. This is the same as the reinforcement body using amorphous alumina-silica fibers, but since it is made into a molded body and then heat-treated at a high temperature to partially crystallize mullite, the fiber molded body will shrink at this heat treatment temperature. The inorganic binder is more stable than before, and the fibers are bonded more firmly. Through such molding and heat treatment, the material is made into mullite and its strength is improved, which is then machined to the required dimensional accuracy, and then provided as is as a reinforcing molded product, which improves processing accuracy. Improved performance and easier handling. The strength of the FRM can be improved by using a strong reinforcing body in which the fibers are firmly bonded.

ムライト化率は15重量%未満では、溶湯との反応性が
残りFRMとしたときのF RMの強度向上は認められ
ないので15重量%以上とする。
If the mullite conversion rate is less than 15% by weight, reactivity with the molten metal remains and no improvement in the strength of FRM is observed, so it is set to 15% by weight or more.

ムライト化のための熱処理温度並びに時間は、950〜
1400 C、0,5〜5時間で、アルミナ含有量の少
ないほど低温短時間で良く、アルミナ含有口の多いほど
高温長時間となる。同じアルミナ含有量の場合、同じム
ライト化率のものとするには低温で熱処理すれば長時間
、高温では短時間で良しゝ0 〔実施例〕 実施例1 重量%で、AIO47,3%、SiO52,3%、その
他年純物からなる非晶質のアルミナシリカ繊維5に9と
、有機結合剤を繊維に対して外割りで10重量%添加し
、フロイダルシリ力(固形分40重量%)を固形分1.
2に9320ookgの水中に分散した。これを吸引濾
過成形法により成形し、空隙率95容積%で、直径22
朋、厚さ12馴の大きさの成形体を得た。この成形体を
200 t:で24時間かけて乾燥した後、下記のよう
に加熱処理して部分ムライト化した。
The heat treatment temperature and time for mullite formation are from 950 to
At 1400 C for 0.5 to 5 hours, the lower the alumina content, the lower the temperature and the shorter time required, and the more alumina-containing openings, the longer the high temperature and longer time. In the case of the same alumina content, in order to obtain the same mullite conversion rate, heat treatment at a low temperature can be done for a long time, and at a high temperature, a short time is enough. Amorphous alumina-silica fibers consisting of 5% to 9% of other pure substances and 10% by weight of an organic binder are added to the fibers, and floidal silica (solid content 40% by weight) is added to the solids. Minute 1.
2 was dispersed in 9320 ookg of water. This was molded by a suction filtration molding method, with a porosity of 95% by volume and a diameter of 22
A molded article with a thickness of 12 mm was obtained. This molded body was dried at 200 t for 24 hours, and then heat-treated as described below to partially form mullite.

これらの物性を第1表に示す。These physical properties are shown in Table 1.

第  1  表 A加熱処理せず      0   95  3.2B
 1000C0,5時間   11   95   4
.3C100OC1時間    20   94  8
.5D 1250C2時間    55   93  
9.7K 1400C3時間    75   92 
 9.にれに対し予めムライト化率20重量%に熱処理
したバルク乙水中に分散し有機結合剤を繊維に対し外割
りで10重量%使用し同様に成形し乾燥した空隙率94
%の成形体Fの圧縮強さは3.5臀伯2であった。
Table 1: No heat treatment 0 95 3.2B
1000C0.5 hours 11 95 4
.. 3C100OC1 hour 20 94 8
.. 5D 1250C2 hours 55 93
9.7K 1400C 3 hours 75 92
9. The filtrate was dispersed in bulk water which had been heat-treated to a mullite ratio of 20% by weight, and an organic binder was used in an amount of 10% by weight relative to the fibers, and the porosity was 94% by molding and drying in the same manner.
The compressive strength of the compact F was 3.5 mm2.

以上のA〜Fの成形体ご、夫々直径20mm、厚さ10
πmに切削加工した結果、夫々の寸法精度は第2表に示
す結果のものとなった。Fは加工後800Cで2時間焼
成して有機結合剤を除去したものである。
The above molded bodies A to F each have a diameter of 20 mm and a thickness of 10 mm.
As a result of cutting to πm, each dimensional accuracy was as shown in Table 2. F is obtained by firing at 800C for 2 hours after processing to remove the organic binder.

第  2  表 BODEF 二fi   O,20,10,10,10,10,2上
記A −Fの試料を金型内に挿入し、780 cのアル
ミニウム溶湯を1ooo1w/nの圧力で注入し、凝固
完了まで加圧を続け、FRM:i得た。夫々の曲げ強さ
ご第3表に示す。
Table 2 BODEF 2fi O, 20, 10, 10, 10, 10, 2 Insert the samples A - F above into the mold, inject 780 c molten aluminum at a pressure of 1001 w/n, and complete solidification. Pressure was continued until FRM:i was obtained. The bending strength of each is shown in Table 3.

第  3  表 Ckqy論) ABCD:EF 常温 35 37 45 45 43 35250tl
’  25 28 35 36 34 25またA12
0395重皿%、5i025重量%組成の結晶質アルミ
ナ繊維を用い試料Fと同様にして得た空隙率94%の成
形体の圧縮強さi:il 、 2 ’9/C/n、加工
晴夏士0.2 ff1fi、 It’ RM (7)曲
げ強さは常温38 kq7twb 、250 C29臀
餉であった。
Table 3 Ckqy theory) ABCD:EF Room temperature 35 37 45 45 43 35250tl
' 25 28 35 36 34 25 also A12
Compressive strength of a molded body with a porosity of 94% obtained in the same manner as Sample F using crystalline alumina fibers with a composition of 0395% by weight and 5i025% by weight: i:il, 2'9/C/n, processed in fine summer (7) The bending strength was 38 kq7twb at room temperature and 250 C29 buttock.

〔発明の効果〕〔Effect of the invention〕

本発明製造法によれば、従来より強度が大きく加工精度
の良いF RM用補強体が得られ、これ分補強体とした
FRMも、結晶化アルミナ繊維の捕強体を使用したちの
シこ比し安価で強度も劣らないものが得られる。
According to the manufacturing method of the present invention, a reinforcing body for FRM with greater strength and better machining accuracy than before can be obtained, and the FRM used as a reinforcing body can also be made by using a reinforcing body made of crystallized alumina fibers. It is possible to obtain a product that is cheaper and has comparable strength.

Claims (1)

【特許請求の範囲】[Claims] (1)非晶質のアルミナシリカ繊維と、コロイダルアル
ミナ、コロイダルシリカの一方又は両方からなる無機結
合剤と、有機結合剤とを水に分散し、吸引濾過法により
成形し、次いで乾燥して非晶質アルミナシリカ繊維成形
体を得る工程と、前記工程で得た非晶質アルミナシリカ
繊維成形体を、該繊維中のムライト結晶化率が15重量
%以上となるように熱処理する工程と、該工程を経た成
形体を加工する工程とを有することを特徴とする繊維強
化金属用補強体の製造方法。
(1) Amorphous alumina-silica fibers, an inorganic binder consisting of one or both of colloidal alumina and colloidal silica, and an organic binder are dispersed in water, formed by suction filtration, and then dried to form a a step of obtaining a crystalline alumina-silica fiber molded body; a step of heat-treating the amorphous alumina-silica fiber molded body obtained in the above step so that the mullite crystallization rate in the fiber is 15% by weight or more; 1. A method for manufacturing a reinforcing body for fiber-reinforced metal, comprising the step of processing a molded body that has undergone the process.
JP61141563A 1986-06-17 1986-06-17 Manufacture of reinforcement for fiber-reinforced metal Pending JPS62297427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61141563A JPS62297427A (en) 1986-06-17 1986-06-17 Manufacture of reinforcement for fiber-reinforced metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61141563A JPS62297427A (en) 1986-06-17 1986-06-17 Manufacture of reinforcement for fiber-reinforced metal

Publications (1)

Publication Number Publication Date
JPS62297427A true JPS62297427A (en) 1987-12-24

Family

ID=15294881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61141563A Pending JPS62297427A (en) 1986-06-17 1986-06-17 Manufacture of reinforcement for fiber-reinforced metal

Country Status (1)

Country Link
JP (1) JPS62297427A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018139A1 (en) * 1993-02-02 1994-08-18 Lanxide Technology Company, Lp Novel methods for making preforms for composite formation processes
JPH09256833A (en) * 1996-03-22 1997-09-30 Ibiden Co Ltd Silencer for internal combustion engine
US6358628B1 (en) 1993-05-13 2002-03-19 Toyota Jidosha Kabushiki Kaisha Slide member made of an aluminum alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111970A (en) * 1982-12-17 1984-06-28 トヨタ自動車株式会社 Manufacture of reinforcing material formed body for manufacture of composite material
JPS59113139A (en) * 1982-12-17 1984-06-29 Toyota Motor Corp Production of reinforced material molding for producing composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111970A (en) * 1982-12-17 1984-06-28 トヨタ自動車株式会社 Manufacture of reinforcing material formed body for manufacture of composite material
JPS59113139A (en) * 1982-12-17 1984-06-29 Toyota Motor Corp Production of reinforced material molding for producing composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018139A1 (en) * 1993-02-02 1994-08-18 Lanxide Technology Company, Lp Novel methods for making preforms for composite formation processes
US5667742A (en) * 1993-02-02 1997-09-16 Lanxide Technology Company, Lp Methods for making preforms for composite formation processes
US6358628B1 (en) 1993-05-13 2002-03-19 Toyota Jidosha Kabushiki Kaisha Slide member made of an aluminum alloy
JPH09256833A (en) * 1996-03-22 1997-09-30 Ibiden Co Ltd Silencer for internal combustion engine

Similar Documents

Publication Publication Date Title
US4948766A (en) Rigid mullite=whisker felt and method of preparation
JP4658068B2 (en) Method for suppressing reaction between molten metal and heat-resistant material
US6506502B2 (en) Reinforcement preform and metal matrix composites including the reinforcement preform
JPS6341965B2 (en)
JPS60246264A (en) Manufacture of silicon carbide material
JP3094148B2 (en) Manufacturing method of lightweight refractory
JPS62297427A (en) Manufacture of reinforcement for fiber-reinforced metal
GB1602027A (en) Method for removing cores
JPH0645477B2 (en) Oxygen-nitrogen glass composition, its precursor and its application in the preparation of glassy ceramics and composites
JPH0564692B2 (en)
JP2002053366A (en) Low temperature firing/solidification process of kaolin- type powder
JP3082952B2 (en) Manufacturing method of preform for composite material
JP3094149B2 (en) Manufacturing method of lightweight refractory
JP2002241869A (en) Method for manufacturing metal/ceramic composite material
JP2952069B2 (en) Method for producing Si3N4 coated aluminum borate whisker and preform
JPH09202670A (en) Porous ceramic-reinforced metal-based composite material and its production
JPS59141463A (en) Heat resistant material
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
JP2614045B2 (en) Method for producing alkali metal titanate fiber reinforced composite material
JPH0780815A (en) Fiber molded piece for reinforced metal and production thereof
JPS6369929A (en) Production of fibrous formed body for reinforcement
JPH04351262A (en) Production of preform for fiber reinforced metal-based composite material
JPH06182524A (en) Production of preform
JPH04333536A (en) Production of whisker preform
JPH0315522B2 (en)