JPS63138789A - Manufacture of thermoelectric material - Google Patents

Manufacture of thermoelectric material

Info

Publication number
JPS63138789A
JPS63138789A JP61284275A JP28427586A JPS63138789A JP S63138789 A JPS63138789 A JP S63138789A JP 61284275 A JP61284275 A JP 61284275A JP 28427586 A JP28427586 A JP 28427586A JP S63138789 A JPS63138789 A JP S63138789A
Authority
JP
Japan
Prior art keywords
plane
thermoelectric material
orientation
rolling
angletri
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61284275A
Other languages
Japanese (ja)
Inventor
Takuji Okumura
卓司 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP61284275A priority Critical patent/JPS63138789A/en
Publication of JPS63138789A publication Critical patent/JPS63138789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To mass-produce a thermoelectric material having a high performance index at low cost by a method wherein a plastic deformation is given so that its orientation property has a crystalline orientation having a superior performance index. CONSTITUTION:Bi2Te3 pulverized in -325 mesh is molded into a C.I.P and thereafter, the C.I.P is sintered at 400 deg.CX1H and is further heated to 500 deg.C and a hot rolling is performed to obtain a cube 1. When the X-ray diffraction of each surface after the rolling, that is, the respective X-ray diffractions of a plane 1a, end surfaces 1b and side surfaces 1c are measured, (006) and (0015) appear on the plane 1a and (110) becomes stronger on the end surfaces 1b and the side surfaces 1c. Accordingly, an orientation, with which a 'rt. angletri' direction coincides in a pushing-out direction, is through to be generated by rolling. Thereby, if a current is passed through in parallel to the plane 1a to a thermoelectric material, there is the same effect as that at a time when a current is passed through in the single crystal 'rt. angletri' direction and a high Z can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ペルチェ効果を利用する電子冷却用モジュー
ルの脚部材料あるいは、ゼーベック効果を利用する発電
用モジュールの脚部材料等の熱電材料の製造方法に関す
るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to thermoelectric materials such as leg materials for electronic cooling modules that utilize the Peltier effect or leg materials for power generation modules that utilize the Seebeck effect. This relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

上記熱電材料としては菱面体構造のものかあり、これは
Bi−Ta系、Bi−54系などが広く知られている。
The thermoelectric materials mentioned above include those having a rhombohedral structure, and Bi-Ta series, Bi-54 series, and the like are widely known.

これらの系は一般に性能指数Z(このZは熱電材料の性
能を示す数値でZミα2・4、ただしα:ゼーベック定
数、σ:電気伝導度、K:熱伝導度)が結晶方向によっ
て違うことが知られている(例えば、秋田、小野寺,他
、NationatTechF&ical Repor
t  第9巻第1号)第5図に伍・T4系の原子配列を
示す。この図において、trJor&aL  方向(以
下これを’/ tri’方向と記す)とこの“/ tr
i”方向と垂直方向(以下これを1土tri”方向と記
す)では結晶の結合形態が違うため、″/ tri”方
向のZと、l tri’方向のZに差があると説明され
ている。なお第5図において、六方晶系の単位格子中に
示さ糟濾線は菱面晶系の単位格子に相対する。黒丸が7
’g、白丸がBiを表わす。
These systems generally have a figure of merit Z (Z is a numerical value that indicates the performance of thermoelectric materials, and is α2/4, where α: Seebeck constant, σ: electrical conductivity, K: thermal conductivity) differs depending on the crystal direction. is known (for example, Akita, Onodera, et al., NationatTechF&ical Report
(Vol. 9, No. 1) Figure 5 shows the atomic arrangement of the 5/T4 system. In this figure, the trJor&aL direction (hereinafter referred to as the '/tri' direction) and this '/tr
It is explained that because the bonding forms of the crystals are different in the i'' direction and the vertical direction (hereinafter referred to as the 1-tri'' direction), there is a difference between Z in the ``/tri'' direction and Z in the l tri'' direction. There is. In FIG. 5, the diaphragm lines shown in the hexagonal unit cell are opposed to the rhombohedral unit cell. The black circle is 7
'g, white circles represent Bi.

上記材料はブリッジマン法や、ゾーンメルト法により単
結晶あるいは結晶方向の揃った一方向凝固組織の結晶に
製造されている。
The above-mentioned materials are manufactured into single crystals or crystals with a unidirectionally solidified structure with uniform crystal directions by the Bridgman method or the zone melt method.

またそのZは、Bi−Ta系でビ上tri’方向の方が
優れており、B1m5h  系では’/ tri ”の
方が優れている。
Also, regarding Z, the bi-tri' direction is better in the Bi-Ta system, and the '/tri' direction is better in the B1m5h system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の技術で示したブリッジマン法や、ゾーンメル
ト法は、生産性が悪く、分留りも低いため、コストが高
くなり、用途が限定されるという問題があった。
The Bridgman method and the zone melt method shown in the above-mentioned conventional techniques have poor productivity and low fractionation, resulting in high costs and limited applications.

ま友コスト高の問題を解決するため粉末冶金の手法で代
替しようという試みがなされたが。
In order to solve the problem of high costs, an attempt was made to replace it with powder metallurgy.

粉末冶金では″/ trs”方向と1工tri”方向が
ランダムな多結晶体となるため、Zはブリッジマン法や
ゾーンメルティング法で作製された結晶より小さいとい
う問題があつ危。
In powder metallurgy, a polycrystalline material with random "/trs" and 1-tri" directions is formed, so there is a risk that Z is smaller than crystals produced by the Bridgman method or zone melting method.

〔問題点を解決する穴めの手段〕[Measures to solve problems]

本発明は上記のことにかんがみなされたもので、高い性
能指数を有する熱電材料を安価に量産できるようセした
熱電材料の製造方法を提供しようとするもので、菱面体
構造を有する熱電材料の製造方法において、性能指数の
優れた結晶方位に配向性を持つように塑性変形を与える
工程を少なくとも1つ含む製造方法とした。
The present invention has been made in view of the above, and aims to provide a method for manufacturing thermoelectric materials that enables mass production of thermoelectric materials having a high performance index at low cost. The manufacturing method includes at least one step of applying plastic deformation so that the crystal orientation has an excellent figure of merit.

〔作 用〕[For production]

塑性変形により層性変形方向に1土trL”方向が一致
する配向が生じる。
Due to plastic deformation, an orientation occurs in which the direction of trL'' coincides with the direction of layered deformation.

〔実施例〕〔Example〕

本発明の実施例を以下に説明する。 Examples of the present invention will be described below.

実施例1 一325メツシュに粉砕しfe、Bi、Ta@をC,1
,P(コールドアイμカーイック九り)成形後、400
℃×IEで焼結した。さらに500℃に加熱し熱間圧延
を行ない第1図に示すような立方体1を得た。圧端後の
各面、すなわち、平面!a、端面IA。
Example 1 Grind fe, Bi, Ta@C,1 to 325 mesh
, P (cold eye μ caric nine) after molding, 400
It was sintered at ℃×IE. It was further heated to 500° C. and hot rolled to obtain a cube 1 as shown in FIG. Each surface after the pressure end, that is, a plane! a, end surface IA.

側面ICのそれぞれのX線回折を測定したところ、平面
1αでは第2図Aに、端面1bでは第2図に)に、側面
ICでは第2図(qに示すような結果となつ次。
When the X-ray diffraction of each side IC was measured, the results were as shown in Fig. 2A for the plane 1α, as shown in Fig. 2 for the end face 1b), and as shown in Fig. 2 (q) for the side IC.

実施例2 実施例IK示した圧延工程のかわりに、押出し加工を行
ない第3図に示すような円柱体2を得九。押出し成形後
円柱体2の側面2αと端面2bのX線回折を測定したと
ころ、側面2aでは第4図(ロ)に示すようになった。
Example 2 Instead of the rolling process shown in Example IK, extrusion was carried out to obtain a cylindrical body 2 as shown in FIG. When X-ray diffraction was measured on the side surface 2α and end surface 2b of the cylindrical body 2 after extrusion molding, the results were as shown in FIG. 4(b) on the side surface 2a.

比較例1 第5図で示すBi!Tりの単結晶の最密面3のxN回折
(Cuターゲツ)fα、線)を測足し次ところ第6図に
示すようになった。
Comparative Example 1 Bi! shown in FIG. The xN diffraction (Cu target) fα, line) of the close-packed surface 3 of the T single crystal was measured, and the results were as shown in FIG.

比較例2 −325 ) ツシュに粉砕したHzITa@をC,1
,p成形後400℃×IBで焼結した。焼結体を第7図
に示すように、2cIx角の立方体4となるように無歪
切断し、これの平面4α、端面4A、側面4Cのそれぞ
れのX線回折を測定したところ、平面4αでは第8図に
)に、端面4bでは第8図(ロ)に、側面4cでは第8
図0に示すような結果となつ次。
Comparative Example 2-325) C,1
After molding, it was sintered at 400°C x IB. As shown in Fig. 7, the sintered body was cut without strain into a cube 4 with a 2cIx angle, and the X-ray diffraction of each of its plane 4α, end surface 4A, and side surface 4C was measured. 8(b) on the end surface 4b, and 8(b) on the side surface 4c.
The result is as shown in Figure 0.

上記実施例及び比較例において、比較例1の実験結果を
示す第6図では横軸に回折角2θ、縦軸にX線回折強度
を示したものである。Cuターゲットによるにα、を用
いた時の回折角と面間隔の関係は既知であるので、各ピ
ークの面間隔を求め、更に別表に示すB*、 TりのA
STMカードの数値によシ各ピークの面指数を求めた結
果もカッコ内に付記されてφる。この比較例1では単結
晶の最密面3を測定しているので、回折結果には面指数
(006)、(0015)といつ九最密面からの反射し
か記録されていない。
In the above Examples and Comparative Examples, FIG. 6 showing the experimental results of Comparative Example 1 shows the diffraction angle 2θ on the horizontal axis and the X-ray diffraction intensity on the vertical axis. Since the relationship between the diffraction angle and the interplanar spacing when α is used for a Cu target is known, the interplanar spacing of each peak is determined, and then B* and A of T shown in the attached table are calculated.
The results of determining the plane index of each peak based on the values on the STM card are also added in parentheses. In Comparative Example 1, the closest-packed plane 3 of the single crystal was measured, so the diffraction results recorded only plane indices (006), (0015) and reflections from the closest-packed plane.

比較例2の実験結果では別表のASTMカードに示され
ている回折強度が強い面の反射(015)、(+010
)、(+10)、(205)等が記録されている。
In the experimental results of Comparative Example 2, the reflection of the surface with strong diffraction intensity shown in the attached ASTM card (015), (+010
), (+10), (205), etc. are recorded.

これは測定面には特に特定の面が存在しない状態である
ことを示しており、測定した各3面とも同様な結果であ
るから、製作された焼結体は第9図に示すように、極め
てランダムな結晶配向をもつ多結晶体であると結論づけ
られる。
This indicates that there is no particular surface on the measurement surface, and since the results are the same for each of the three surfaces measured, the produced sintered body is as shown in Figure 9. It is concluded that it is a polycrystalline body with extremely random crystal orientation.

実施例1に示すように圧延を行なうと、平面1aには(
006)、(0015)があられれ、端面1bと側面I
Cには(110)が強くなっている。第10図は(00
6)、(0015)、(+ 10)の面を示す。
When rolling is performed as shown in Example 1, the plane 1a has (
006), (0015), end face 1b and side face I
C has a strong (110). Figure 10 shows (00
6), (0015), and (+10) planes are shown.

従って圧延することにより、押出し方向に1土tri”
方向が一致する配向が第11図に示すように生じている
と思われる。
Therefore, by rolling, 1 soil tri” in the extrusion direction
It appears that alignment with matching directions occurs as shown in FIG.

熱電材料としては平面1αに平行に通電すれば単結晶の
1工tri”方向に通電したときと同様の効果があり、
高いZが得られる。
As a thermoelectric material, when current is applied parallel to the plane 1α, it has the same effect as when electricity is applied in the 1× direction of a single crystal.
High Z can be obtained.

実施例2でも同様に押出し方向に1土tri”方向が一
致する配向性が生じている(第12図)。
Similarly, in Example 2, an orientation in which the 1/3'' direction coincides with the extrusion direction occurs (FIG. 12).

熱電材料としては押出方向と平行に通電すれば高い2が
得られる。
As a thermoelectric material, a high value of 2 can be obtained by applying current parallel to the extrusion direction.

圧処、押出しプロセス以外でも一軸方向に塑性変形を与
えれば同様の効果が得られる。ま九個の菱面体構造をも
っ熱電材料(BiSb等)でも効果がある。
Similar effects can be obtained by applying plastic deformation in a uniaxial direction in processes other than pressure treatment and extrusion processes. Thermoelectric materials (such as BiSb) having nine rhombohedral structures are also effective.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高い性能指数を有する熱電材料を安価
に量産できる。
According to the present invention, thermoelectric materials having a high figure of merit can be mass-produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図は第1.第2実施例にて得られ喪成形体
を示す斜視図、第2図に)、(B)、(Qは第1の実施
例にて得られ次成形体の各面のX1m回折線図、第4図
(イ)、(ロ)は第2の実施例にて得られ次成形体の各
面のX線回折線図、第5図はBit T gs O単M
 晶O’ilA 式図、fg6図バー’t(7)Xi1
1回折線図、第7図は従来の成形法により成形された成
形体の斜視図、第8図に)、(ロ)、(qは従来の成形
体の各面のX線回折線図、第9図、第10図、第11図
、第12図v喚叫づ1は各成形体の結晶配向性を示す模
式図である。
Figures 1 and 3 are 1. A perspective view showing the molded body obtained in the second example, Fig. 2), (B), (Q is an X1m diffraction diagram of each surface of the molded body obtained in the first example, Figures 4 (a) and (b) are X-ray diffraction diagrams of each surface of the next molded product obtained in the second example, and Figure 5 is the Bit T gs O single M
Crystal O'ilA formula diagram, fg6 diagram bar't(7) Xi1
1 is a diffraction diagram, FIG. 7 is a perspective view of a molded body molded by a conventional molding method, and FIG. 8 is an X-ray diffraction diagram of each side of a conventional molded body. FIGS. 9, 10, 11, and 12 are schematic diagrams showing the crystal orientation of each molded body.

Claims (3)

【特許請求の範囲】[Claims] (1)菱面体構造を用する熱電材料の製造方法において
、性能指数の優れた結晶方位に配向性を持つように塑性
変形を与える工程を少なくとも1つ含むことを特徴とす
る熱電材料の製造方法。
(1) A method for producing a thermoelectric material using a rhombohedral structure, the method comprising at least one step of plastically deforming the material so that it has orientation in a crystal orientation with an excellent figure of merit. .
(2)圧延工程を含むことを特徴とする上記特許請求の
範囲第1項記載の熱電材料の製造方法。
(2) The method for producing a thermoelectric material according to claim 1, which comprises a rolling step.
(3)押出し工程を含むことを特徴とする上記特許請求
の範囲第1項記載の熱電材料の製造方法。
(3) The method for producing a thermoelectric material according to claim 1, which comprises an extrusion step.
JP61284275A 1986-12-01 1986-12-01 Manufacture of thermoelectric material Pending JPS63138789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284275A JPS63138789A (en) 1986-12-01 1986-12-01 Manufacture of thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284275A JPS63138789A (en) 1986-12-01 1986-12-01 Manufacture of thermoelectric material

Publications (1)

Publication Number Publication Date
JPS63138789A true JPS63138789A (en) 1988-06-10

Family

ID=17676420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284275A Pending JPS63138789A (en) 1986-12-01 1986-12-01 Manufacture of thermoelectric material

Country Status (1)

Country Link
JP (1) JPS63138789A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011612A1 (en) * 1996-09-13 1998-03-19 Komatsu Ltd. Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
JPH11177156A (en) * 1997-12-16 1999-07-02 Natl Aerospace Lab Machining method for thermoelectric conversion material and production of thermoelectric conversion element
WO1999046824A1 (en) * 1998-03-13 1999-09-16 Komatsu Ltd. Method of producing thermoelectric semiconductor material
US6617504B2 (en) 2000-05-09 2003-09-09 Komatsu Ltd. Thermoelectric element, method of fabricating the same, and thermoelectric module employing the same
WO2008114653A1 (en) * 2007-03-22 2008-09-25 Sumitomo Chemical Company, Limited Process for manufacturing thermoelectric conversion module and thermoelectric conversion module
US8692103B2 (en) 2003-05-08 2014-04-08 Ihi Corporation Thermoelectric semiconductor material, thermoelectric semiconductor element using thermoelectric semiconductor material, thermoelectric module using thermoelectric semiconductor element and manufacturing method for same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011612A1 (en) * 1996-09-13 1998-03-19 Komatsu Ltd. Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
US6274802B1 (en) 1996-09-13 2001-08-14 Komatsu Ltd. Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
JPH11177156A (en) * 1997-12-16 1999-07-02 Natl Aerospace Lab Machining method for thermoelectric conversion material and production of thermoelectric conversion element
WO1999046824A1 (en) * 1998-03-13 1999-09-16 Komatsu Ltd. Method of producing thermoelectric semiconductor material
US6617504B2 (en) 2000-05-09 2003-09-09 Komatsu Ltd. Thermoelectric element, method of fabricating the same, and thermoelectric module employing the same
US8692103B2 (en) 2003-05-08 2014-04-08 Ihi Corporation Thermoelectric semiconductor material, thermoelectric semiconductor element using thermoelectric semiconductor material, thermoelectric module using thermoelectric semiconductor element and manufacturing method for same
US8884152B2 (en) 2003-05-08 2014-11-11 Ihi Corporation Thermoelectric semiconductor material, thermoelectric semiconductor element using thermoelectric semiconductor material, thermoelectric module using thermoelectric semiconductor element and manufacturing method for same
WO2008114653A1 (en) * 2007-03-22 2008-09-25 Sumitomo Chemical Company, Limited Process for manufacturing thermoelectric conversion module and thermoelectric conversion module
JP2008235712A (en) * 2007-03-22 2008-10-02 Sumitomo Chemical Co Ltd Method for manufacturing thermoelectric conversion module and the same

Similar Documents

Publication Publication Date Title
Cai et al. Promising materials for thermoelectric applications
Medlin et al. Interfaces in bulk thermoelectric materials: a review for current opinion in colloid and interface science
Eremenko et al. Electron microscope investigation of the microplastic deformation mechanisms of silicon by indentation
DE69426233T2 (en) THERMOELECTRIC MATERIALS WITH HIGHER PERFORMANCE AND MANUFACTURING PROCESS
Shvartsman et al. Mesoscale domains and nature of the relaxor state by piezoresponse force microscopy
DE69713562T2 (en) Process for forming objects with high surface quality and dimensional accuracy from ceramic
RU2005137862A (en) THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT USING A THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC MODEL ONLY
US20130284967A1 (en) Thermoelectric material having reduced thermal conductivity, and thermoelectric device and module including the same
JPS63138789A (en) Manufacture of thermoelectric material
Kreisel et al. Phase transitions and ferroelectrics: revival and the future in the field
KR20070117270A (en) Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
Endstra et al. Structural and magnetic properties of UCo2Ge2
JP3546675B2 (en) Thermoelectric material and method for producing thermoelectric material
US10529905B2 (en) Method for manufacturing thermoelectric material having high efficiency
JP4000023B2 (en) Thermoelectric material molded body and method for producing thermoelectric material molded body
Deng et al. The mechanism of deformation and failure of In4Se3 based thermoelectric materials
EP3489969A1 (en) Fibre made of plastic with electrical conductivity
JP2000138399A (en) Thermoelectric semiconductor material, thermoelectric device, manufacture of them, and manufacturing apparatus of the thermoelectric semiconductor material
JPH05132318A (en) Method for preparing aggregately arranged polycrystalline material
JP4340768B2 (en) Whisker crystal of thermoelectric conversion layered cobalt oxide NaxCoO2 and method for producing the whisker crystal
JPH06206787A (en) Production of dielectric crystal film
JPS61106463A (en) Manufacture of ceramics
Sciau et al. Comparison Between BaTi 0.65 Zr 0.35 O 3 and PbMg 1/3 Nb 2/3 O 3 Relaxors
JPS582289A (en) Manufacture of single crystal body
US7467448B2 (en) Method of manufacturing a piezoelectric ceramic