JP4000023B2 - Thermoelectric material molded body and method for producing thermoelectric material molded body - Google Patents

Thermoelectric material molded body and method for producing thermoelectric material molded body Download PDF

Info

Publication number
JP4000023B2
JP4000023B2 JP2002229953A JP2002229953A JP4000023B2 JP 4000023 B2 JP4000023 B2 JP 4000023B2 JP 2002229953 A JP2002229953 A JP 2002229953A JP 2002229953 A JP2002229953 A JP 2002229953A JP 4000023 B2 JP4000023 B2 JP 4000023B2
Authority
JP
Japan
Prior art keywords
thermoelectric material
molded body
thermoelectric
material molded
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002229953A
Other languages
Japanese (ja)
Other versions
JP2004071870A (en
Inventor
晃生 山口
竜太 日下部
慶三 小林
章宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Kitagawa Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Kitagawa Industries Co Ltd
Priority to JP2002229953A priority Critical patent/JP4000023B2/en
Publication of JP2004071870A publication Critical patent/JP2004071870A/en
Application granted granted Critical
Publication of JP4000023B2 publication Critical patent/JP4000023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱電材料成形体、および熱電材料成形体の製造方法に関する。
【0002】
【従来の技術】
従来から、熱電材料としては、金属系、半導体系、酸化物系等、様々な材料が知られている。この種の熱電材料に温度差を与えると、ゼーベック効果によって熱を電気に変換することができ(熱電発電)、また、熱電材料に電流を流すと、ペルチェ効果によって熱移動を発生させて冷却を行うことができる(熱電冷却)。
【0003】
上記のような熱電材料は、通常、小さな成形体(以下、この成形体を熱電材料成形体という)に加工してから利用され、例えば、多数の熱電材料成形体を縦横に配列するとともに、それら熱電材料成形体を直列に接続することにより、面状の熱電変換素子(熱電変換モジュール)を構成して利用される。
【0004】
より具体的な例を挙げれば、例えば、熱電材料であるP型半導体材料の成形体と熱電材料であるN型半導体材料の成形体を縦横に配列するとともに、それらP型半導体材料成形体とN型半導体材料成形体とを交互に直列に接続することにより、面状熱電変換素子を構成することができる。この場合、P型半導体とN型半導体とは電極を介して接続されるが、通電時にP型半導体側からN型半導体側へと電流が流れることになる電極と、通電時にN型半導体側からP型半導体側へと電流が流れることになる電極とを、面状熱電変換素子の表裏に分けて配置することにより、P型半導体材料成形体およびN型半導体材料成形体の双方における熱移動の方向が揃えられることになり、通電時に面状熱電変換素子の表裏いずれか一方が冷却されて他方が発熱するようになる。
【0005】
【発明が解決しようとする課題】
ところで、上記のような熱電材料を小さな成形体に加工する方法として、従来は、所期の熱電材料と同一組成の原料組成物を加熱して溶解または焼結した後、機械的加工(カット加工)により、直方体状の成形体を切り出していた。
【0006】
しかしながら、熱電材料には脆いものが多いため、成形体の切り出し加工時の歩留まりが低く、これが熱電変換素子の単価を低減できない要因となっていた。また、熱電材料が脆いと微細精密加工は難しいため、熱電材料成形体の小型化を図ることは容易ではなく、熱電材料成形体の実装密度を向上させることができないという問題もあった。
【0007】
本発明は、上記問題を解決するためになされたものであり、その目的は、従来品よりも加工時の歩留まりが高く、微少化も容易な構造の熱電材料成形体と、その製造方法を提供することにある。
【0008】
【課題を解決するための手段、および発明の効果】
以下、上記目的を達成するためになされた本発明の特徴について詳述する。
請求項1に記載の熱電材料成形体は、球状の熱電材料成形体であって、絶縁性材料からなるコアの外面に熱電材料をコーティングした構造であることを特徴とする。
【0009】
請求項に記載の熱電材料成形体は、
外径が0.05mm〜30mm、前記熱電材料のコーティング厚が1μm〜50μmとされていることを特徴とする。
【0010】
請求項に記載の熱電材料成形体は、
前記熱電材料が、Bi−Te系、Mg−Si系、Mn−Si系、Fe−Si系、Si−Ge系、Pb−Te系、Fe−V−Al系、カルコゲナイト系、スクッテルダイト系、フィルドスクッテルダイト系、および炭化ホウ素系の中から選ばれる一種の材料、または二種以上を混練してなる材料であることを特徴とする。
【0011】
請求項に記載の熱電材料成形体は、
前記絶縁性材料が、ZrO2系、Al23系、Si34系、SiO2系、ムライト系、ステアタイト系、またはコージュライト系のいずれかであることを特徴とする。
【0012】
請求項に記載の熱電材料成形体は、
前記絶縁性材料と前記熱電材料が、前記絶縁性材料の線膨張係数α1と前記熱電材料の線膨張係数α2についてα1≦α2なる関係を満たす組み合わせとなっていることを特徴とする。
【0013】
請求項に記載の熱電材料成形体の製造方法は、
絶縁性材料からなるコアの外面に熱電材料をコーティングした構造とされた球状の熱電材料成形体の製造方法であって、
前記絶縁性材料からなるボールと、前記熱電材料と同一組成の粉末組成物とを、容器内で撹拌して、前記ボールで前記粉末組成物を粉砕、混練することにより、前記粉末組成物を粉砕、混練してなる前記熱電材料を、前記コアとなる前記ボールの外面にコーティングすることを特徴とする。
【0014】
上記請求項1〜請求項の各請求項に記載の熱電材料成形体によれば、球状の熱電材料成形体であって、コアの外面に熱電材料をコーティングした構造になっているので、製造に際し、大きな熱電材料の塊を製造した上でその塊から小さな成形体を切り出す必要はなく、熱電材料のコーティング層となる組成物をコアの外面にコーティングするだけでよい。したがって、切り出し加工によって製造される熱電材料成形体よりも、歩留まりを高くすることが容易であり、製造コストを低減でき、ひいては熱電変換素子として構成した場合の単価を低減することができる。また、コアのサイズとコーティング厚とを調節するだけで、切り出し加工では製造不能であった微小な熱電材料成形体にすることもできるので、熱電材料成形体の実装密度を向上させることができる。さらに、熱電材料の中には希少で高価な成分を含むものもあるが、その場合でも、コアについては安価な材料で形成することができるので、同等の大きさの成形体を製造する場合であれば、熱電材料単独で製造するより原料コストが低減され安価なものになる。
【0015】
また、熱電材料成形体を球状としたことにより、個々の熱電材料成形体が、直方体状に切り出された成形体よりも欠けにくくなるので、その取り扱いが容易になる。
また、外径が0.05mm〜30mm、熱電材料のコーティング厚が1μm〜50mmとされていると、外径が過剰に小さいものや大きいものに比べ、自動機械を使って配列する際の取り扱いが容易になり、さらにコーティング厚が過剰に薄いものとは異なり、熱電材料として有意な熱電変換性能が得られ、コーティング厚が過剰に厚いものに比べ、原料コストを抑制することができる。コーティング厚については、1μm以上あると熱電材料として有意な熱電変換性能が得られるが、10μm以上あると熱電変換性能が安定するので望ましく、20μm程度にするとさらに望ましい。もちろん、熱電変換性能という観点だけであれば、コーティング厚はどれだけ厚くても構わないが、原料コスト等をも考慮すれば過剰に厚くする必要はない。
【0016】
また、熱電材料が、Bi−Te系、Mg−Si系、Mn−Si系、Fe−Si系、Si−Ge系、Pb−Te系、Fe−V−Al系、カルコゲナイト系、スクッテルダイト系、フィルドスクッテルダイト系、および炭化ホウ素系の中から選ばれる一種の材料、または二種以上を混練してなる材料であると、熱電変換性能を比較的高くすることができるので望ましい。
【0017】
また、絶縁性材料が、ZrO2系、Al23系、Si34系、SiO2系、ムライト系、ステアタイト系、またはコージュライト系のいずれかであると望ましい。
また、絶縁性材料と熱電材料が、絶縁性材料の線膨張係数α1と熱電材料の線膨張係数α2についてα1≦α2なる関係を満たす組み合わせとなっていると、加熱に伴って各材料が膨張してもコアが膨張しすぎてコーティング層に亀裂が入ったりするようなことがない。
【0018】
さらに、上記請求項6に記載の熱電材料成形体の製造方法によれば、上記請求項1〜請求項の各請求項に記載の熱電材料成形体を製造することができる。
【0019】
特に、請求項に記載の熱電材料成形体の製造方法によれば、絶縁性材料からなるボールと、熱電材料と同一組成の粉末組成物とを、容器内で撹拌して、ボールで粉末組成物を粉砕、混練することにより、粉末組成物を粉砕、混練してなる熱電材料を、コアとなるボールの外面にコーティングする。このような製法であれば、各種合金の製造に用いられるメカニカルアロイング法と同様の装置構成で、所期の熱電材料成形体を製造できる。
【0020】
【発明の実施の形態】
次に、本発明の実施形態について一例を挙げて説明する。
(1)熱電材料成形体の製造例1
Biの粉末とTeの粉末とSbの粉末とを混合して、所期の熱電材料[組成比:(Bi2Te3025(Sb2Te3075]と同一組成の粉末組成物を調製した。
【0021】
この粉末組成物10gと絶縁性材料であるZrO2製のボール(ボールサイズ:φ10mm/300g,φ3mm/150g,φ0.5mm/5g)とを、ボールミル装置の容器内に入れて10時間撹拌し、ボールで粉末組成物を粉砕、混練した。
【0022】
その結果、上記粉末組成物を粉砕、混練してなる熱電材料が、コアとなるボールの外面にコーティングされた構造のφ0.5mmの球状粒子が得られた。この球状粒子の断面を走査電子顕微鏡で観察したところ、図1に示すように、球状粒子1は、絶縁性材料からなるコア1aの外面に熱電材料のコーティング層1bを形成した構造になっており、そのコーティング厚は約2μmであった。
【0023】
コーティング層を形成する熱電材料は、P型半導体としての特性を有するものである。
【0024】
この粉末組成物10gと絶縁性材料であるZrO2製のボール(ボールサイズ:φ10mm/300g,φ3mm/150g,φ0.5mm/5g)とを、ボールミル装置の容器内に入れて10時間撹拌し、ボールで粉末組成物を粉砕、混練した。
【0025】
その結果、上記粉末組成物を粉砕、混練してなるBi−Te系熱電材料が、コアとなるボールの外面にコーティングされた構造のφ0.5mmの球状粒子が得られた。この球状粒子の断面を走査電子顕微鏡で観察したところ、コーティング厚は約2μmであった。
【0026】
コーティング層を形成するBi−Te系熱電材料は、N型半導体としての特性を有するものである。
(3)熱電変換素子の性能実験
図2に示すように、上記製造例1において製造した球状粒子1(=P型半導体である熱電材料成形体)と、上記製造例2において製造した球状粒子7(=N型半導体である熱電材料成形体)とを、インジウムからなる導電部9を介して直列接続することにより、熱電変換素子10を構成した。
【0027】
この熱電変換素子10の一端を80℃に加熱するとともに、他端を空冷して、熱電変換素子10の起電力を測定した。この時の空冷側の温度は50℃で、測定の結果、起電力は10mVであった。
以上、本発明の実施形態について説明したが、本発明は上記の具体的な一実施形態に限定されず、この他にも種々の形態で実施することができる。
【0028】
例えば、上記実施形態では、特定の熱電材料にて熱電材料成形体を構成する例を示したが、この他の熱電材料を用いて熱電材料成形体を構成することも可能であり、具体的には、Mg−Si系、Mn−Si系、Fe−Si系、Si−Ge系、Pb−Te系、Fe−V−Al系、カルコゲナイト系、スクッテルダイト系、フィルドスクッテルダイト系、炭化ホウ素系などの熱電材料を、同様に用いて熱電材料成形体を形成することができる。
【0029】
これらの熱電材料は、一種だけを単独で用いてもよいが、二種以上を用いてもよい。二種以上を用いる場合は、それら二種以上の熱電材料を同時にボールで粉砕、混練することにより、二種以上を混練してなる熱電材料からなるコーティング層を形成してもよいし、二種以上の熱電材料を順次ボールで粉砕、混練することにより、各熱電材料からなるコーティング層を順次積層してもよい。
【図面の簡単な説明】
【図1】 熱電材料成形体の断面図である。
【図2】 熱電変換素子の概略構成図である。
【符号の説明】
1・・・球状粒子(熱電材料成形体)、1a・・・コア(絶縁材料、ボール)、1b・・・コーティング層(熱電材料)、2・・・球状粒子(熱電材料成形体)、3・・・導電部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoelectric material molded body and a method for producing a thermoelectric material molded body.
[0002]
[Prior art]
Conventionally, various materials such as metal-based, semiconductor-based, and oxide-based materials are known as thermoelectric materials. When a temperature difference is given to this type of thermoelectric material, heat can be converted into electricity by the Seebeck effect (thermoelectric power generation), and when a current is passed through the thermoelectric material, heat transfer is generated by the Peltier effect and cooling is performed. Can be performed (thermoelectric cooling).
[0003]
The thermoelectric material as described above is usually used after being processed into a small molded body (hereinafter, this molded body is referred to as a thermoelectric material molded body). For example, a large number of thermoelectric material molded bodies are arranged vertically and horizontally, and they are used. By connecting the thermoelectric material molded bodies in series, a planar thermoelectric conversion element (thermoelectric conversion module) is configured and used.
[0004]
More specifically, for example, a molded body of P-type semiconductor material that is a thermoelectric material and a molded body of N-type semiconductor material that is a thermoelectric material are arranged vertically and horizontally, and the molded body of P-type semiconductor material and N A planar thermoelectric conversion element can be configured by alternately connecting the molded semiconductor material molded bodies in series. In this case, the P-type semiconductor and the N-type semiconductor are connected via electrodes, but an electrode through which current flows from the P-type semiconductor side to the N-type semiconductor side when energized, and from the N-type semiconductor side when energized By disposing the electrode on which the current flows to the P-type semiconductor side separately on the front and back of the planar thermoelectric conversion element, the heat transfer in both the P-type semiconductor material molded body and the N-type semiconductor material molded body The directions are aligned, and either one of the front and back surfaces of the planar thermoelectric conversion element is cooled while the other is heated.
[0005]
[Problems to be solved by the invention]
By the way, as a method of processing the thermoelectric material as described above into a small molded body, conventionally, a raw material composition having the same composition as the desired thermoelectric material is heated to be melted or sintered, and then mechanical processing (cut processing) is performed. ), A rectangular parallelepiped shaped body was cut out.
[0006]
However, since many thermoelectric materials are brittle, the yield at the time of cutting out the molded body is low, which has been a factor that cannot reduce the unit price of the thermoelectric conversion element. In addition, if the thermoelectric material is brittle, it is difficult to carry out fine precision processing. Therefore, it is not easy to downsize the thermoelectric material molded body, and there is a problem that the mounting density of the thermoelectric material molded body cannot be improved.
[0007]
The present invention has been made to solve the above-mentioned problems, and its object is to provide a thermoelectric material molded body having a structure that has a higher processing yield and can be easily miniaturized than conventional products, and a method for manufacturing the same. There is to do.
[0008]
[Means for Solving the Problems and Effects of the Invention]
The features of the present invention made to achieve the above object will be described in detail below.
The thermoelectric material molded body according to claim 1 is a spherical thermoelectric material molded body having a structure in which a thermoelectric material is coated on an outer surface of a core made of an insulating material.
[0009]
The thermoelectric material molded body according to claim 2 ,
The outer diameter is 0.05 mm to 30 mm, and the coating thickness of the thermoelectric material is 1 μm to 50 μm.
[0010]
The thermoelectric material molded body according to claim 3 ,
The thermoelectric material is Bi-Te, Mg-Si, Mn-Si, Fe-Si, Si-Ge, Pb-Te, Fe-V-Al, chalcogenite, skutterudite, One type of material selected from filled skutterudite type and boron carbide type, or a material obtained by kneading two or more types is characterized.
[0011]
The thermoelectric material molded body according to claim 3 ,
The insulating material is any one of ZrO 2 , Al 2 O 3 , Si 3 N 4 , SiO 2 , mullite, steatite, or cordierite.
[0012]
The thermoelectric material molded body according to claim 4 ,
The insulating material and the thermoelectric material are a combination satisfying a relationship of α1 ≦ α2 with respect to a linear expansion coefficient α1 of the insulating material and a linear expansion coefficient α2 of the thermoelectric material.
[0013]
The method for producing a thermoelectric material molded body according to claim 5 comprises:
A method for producing a spherical thermoelectric material molded body having a structure in which a thermoelectric material is coated on an outer surface of a core made of an insulating material,
The powder composition is pulverized by stirring the ball made of the insulating material and the powder composition having the same composition as the thermoelectric material in a container, and pulverizing and kneading the powder composition with the ball. The thermoelectric material kneaded is coated on the outer surface of the ball serving as the core.
[0014]
According to the thermoelectric material molded body described in each of claims 1 to 4 , since it is a spherical thermoelectric material molded body and has a structure in which the outer surface of the core is coated with the thermoelectric material, it is manufactured. At this time, it is not necessary to produce a large thermoelectric material lump and cut out a small molded body from the lump, and it is only necessary to coat the outer surface of the core with a composition to be a coating layer of the thermoelectric material. Therefore, it is easier to increase the yield than the thermoelectric material molded body manufactured by the cutting process, the manufacturing cost can be reduced, and the unit price when configured as a thermoelectric conversion element can be reduced. In addition, by simply adjusting the core size and coating thickness, it is possible to obtain a minute thermoelectric material molded body that could not be manufactured by cutting, so the mounting density of the thermoelectric material molded body can be improved. Furthermore, some thermoelectric materials contain rare and expensive components, but even in that case, the core can be formed of an inexpensive material, so it is necessary to produce a compact of the same size. If it exists, raw material cost will be reduced and it will become cheap rather than manufacturing thermoelectric material alone.
[0015]
Moreover, by the thermoelectric material compact was spherical, individual thermoelectric material molded body, since hardly chipped than rectangular shape cut-out molded body, its handling is facilitated.
In addition, when the outer diameter is 0.05 mm to 30 mm and the coating thickness of the thermoelectric material is 1 μm to 50 mm, the handling when arranging using an automatic machine is easier than the one with an excessively small or large outer diameter. In addition to the excessively thin coating thickness, a significant thermoelectric conversion performance can be obtained as a thermoelectric material, and the raw material cost can be suppressed as compared with an excessively thick coating thickness. When the coating thickness is 1 μm or more, significant thermoelectric conversion performance as a thermoelectric material can be obtained. However, when the thickness is 10 μm or more, the thermoelectric conversion performance is stable, and it is more preferably about 20 μm. Of course, from the viewpoint of thermoelectric conversion performance, the coating thickness can be any thickness, but it is not necessary to make it excessively thick in consideration of raw material costs and the like.
[0016]
Thermoelectric materials are Bi-Te, Mg-Si, Mn-Si, Fe-Si, Si-Ge, Pb-Te, Fe-V-Al, chalcogenite, and skutterudite. It is desirable that the material is a kind of material selected from filled skutterudite and boron carbide, or a material obtained by kneading two or more, since the thermoelectric conversion performance can be relatively high.
[0017]
Further, it is desirable that the insulating material is any of ZrO 2 , Al 2 O 3 , Si 3 N 4 , SiO 2 , mullite, steatite, or cordierite.
Further, when the insulating material and the thermoelectric material are in a combination satisfying the relationship of α1 ≦ α2 with respect to the linear expansion coefficient α1 of the insulating material and the linear expansion coefficient α2 of the thermoelectric material, each material expands with heating. However, the core does not expand too much and the coating layer does not crack.
[0018]
Furthermore, according to the method for manufacturing a thermoelectric material molded body according to claim 6, the thermoelectric material molded body according to each of claims 1 to 4 can be manufactured.
[0019]
In particular, according to the method for producing a thermoelectric material molded body according to claim 5 , a ball made of an insulating material and a powder composition having the same composition as the thermoelectric material are stirred in a container, and the powder composition is made with the ball. By grinding and kneading the product, a thermoelectric material obtained by grinding and kneading the powder composition is coated on the outer surface of the core ball. If it is such a manufacturing method, the desired thermoelectric material molded object can be manufactured with the apparatus structure similar to the mechanical alloying method used for manufacture of various alloys.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with an example.
(1) Production Example 1 of Thermoelectric Material Molded Body
By mixing a powder of Bi powder and Te powder and Sb, intended thermoelectric materials [compositional ratio: (Bi 2 Te 3) 0 . 25 (Sb 2 Te 3 ) 0 . 75 ] was prepared.
[0021]
10 g of this powder composition and a ZrO 2 ball (ball size: φ10 mm / 300 g, φ3 mm / 150 g, φ0.5 mm / 5 g), which is an insulating material, are placed in a container of a ball mill apparatus and stirred for 10 hours. The powder composition was pulverized and kneaded with a ball.
[0022]
As a result, grinding the powder composition, thermoelectric material by kneading ing is, spherical particles of φ0.5mm of coated on the outer surface of the ball comprising a core structure was obtained. When the cross section of this spherical particle was observed with a scanning electron microscope, as shown in FIG. 1, the spherical particle 1 has a structure in which a coating layer 1b of a thermoelectric material is formed on the outer surface of a core 1a made of an insulating material. The coating thickness was about 2 μm.
[0023]
Thermoelectric materials that form a coating layer has a characteristic of a P-type semiconductor.
[0024]
10 g of this powder composition and a ZrO 2 ball (ball size: φ10 mm / 300 g, φ3 mm / 150 g, φ0.5 mm / 5 g), which is an insulating material, are placed in a container of a ball mill apparatus and stirred for 10 hours. The powder composition was pulverized and kneaded with a ball.
[0025]
As a result, spherical particles with a diameter of 0.5 mm were obtained in which a Bi-Te thermoelectric material obtained by pulverizing and kneading the powder composition was coated on the outer surface of the core ball. When the cross section of the spherical particles was observed with a scanning electron microscope, the coating thickness was about 2 μm.
[0026]
The Bi-Te thermoelectric material forming the coating layer has characteristics as an N-type semiconductor.
(3) Performance Experiment of Thermoelectric Conversion Element As shown in FIG. 2, spherical particles 1 (= thermoelectric material molded body which is a P-type semiconductor) produced in Production Example 1 and spherical particles 7 produced in Production Example 2 above. The thermoelectric conversion element 10 was configured by connecting (= thermoelectric material molded body which is an N-type semiconductor) in series via a conductive portion 9 made of indium.
[0027]
One end of the thermoelectric conversion element 10 was heated to 80 ° C., and the other end was air-cooled, and the electromotive force of the thermoelectric conversion element 10 was measured. The temperature on the air cooling side at this time was 50 ° C., and the electromotive force was 10 mV as a result of measurement.
As mentioned above, although embodiment of this invention was described, this invention is not limited to said specific one Embodiment, In addition, it can implement with a various form.
[0028]
For example, in the above embodiment, an example in which a thermoelectric material molded body is configured with a specific thermoelectric material has been shown. However, a thermoelectric material molded body can also be configured using other thermoelectric materials. Mg-Si, Mn-Si, Fe-Si, Si-Ge, Pb-Te, Fe-V-Al, chalcogenite, skutterudite, filled skutterudite, boron carbide A thermoelectric material molded body can be formed using a thermoelectric material such as a system in the same manner.
[0029]
These thermoelectric materials may be used alone or in combination of two or more. When two or more types are used, a coating layer made of a thermoelectric material formed by kneading two or more types may be formed by simultaneously grinding and kneading the two or more types of thermoelectric materials with a ball. The above thermoelectric materials may be sequentially pulverized and kneaded with balls to sequentially laminate the coating layers made of the thermoelectric materials.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a thermoelectric material molded body.
FIG. 2 is a schematic configuration diagram of a thermoelectric conversion element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Spherical particle (thermoelectric material molded object), 1a ... Core (insulating material, ball), 1b ... Coating layer (thermoelectric material), 2 ... Spherical particle (thermoelectric material molded object), 3 ... Conductive part.

Claims (5)

球状の熱電材料成形体であって、
絶縁性材料からなるコアの外面に熱電材料をコーティングした構造であることを特徴とする熱電材料成形体。
A spherical thermoelectric material molded body,
A thermoelectric material molded body having a structure in which a thermoelectric material is coated on an outer surface of a core made of an insulating material.
外径が0.05mm〜30mm、前記熱電材料のコーティング厚が1μm〜50μmとされていることを特徴とする請求項1に記載の熱電材料成形体。  2. The thermoelectric material molded body according to claim 1, wherein an outer diameter is 0.05 mm to 30 mm, and a coating thickness of the thermoelectric material is 1 μm to 50 μm. 前記絶縁性材料が、ZrO  The insulating material is ZrO. 22 系、AlSeries, Al 22 O 3Three 系、SiSystem, Si 3Three N 4Four 系、SiOSystem, SiO 22 系、ムライト系、ステアタイト系、またはコージュライト系のいずれかであることを特徴とする請求項1または請求項2に記載の熱電材料成形体。3. The thermoelectric material molded body according to claim 1, wherein the thermoelectric material molded body is one of a mullite system, a mullite system, a steatite system, and a cordierite system. 前記絶縁性材料と前記熱電材料が、前記絶縁性材料の線膨張係数α1と前記熱電材料の線膨張係数α2についてα1≦α2なる関係を満たす組み合わせとなっていることを特徴とする請求項1〜請求項3のいずれかに記載の熱電材料成形体。  The insulating material and the thermoelectric material are a combination satisfying a relationship of α1 ≦ α2 with respect to a linear expansion coefficient α1 of the insulating material and a linear expansion coefficient α2 of the thermoelectric material. The thermoelectric material molded body according to claim 3. 絶縁性材料からなるコアの外面に熱電材料をコーティングした構造とされた球状の熱電材料成形体の製造方法であって、  A method for producing a spherical thermoelectric material molded body having a structure in which a thermoelectric material is coated on an outer surface of a core made of an insulating material,
前記絶縁性材料からなるボールと、前記熱電材料と同一組成の粉末組成物とを、容器内で撹拌して、前記ボールで前記粉末組成物を粉砕、混練することにより、前記粉末組成物を粉砕、混練してなる前記熱電材料を、前記コアとなる前記ボールの外面にコーティングすることを特徴とする熱電材料成形体の製造方法。  The powder composition is pulverized by stirring the ball made of the insulating material and the powder composition having the same composition as the thermoelectric material in a container, and pulverizing and kneading the powder composition with the ball. The thermoelectric material formed by kneading is coated on the outer surface of the ball serving as the core.
JP2002229953A 2002-08-07 2002-08-07 Thermoelectric material molded body and method for producing thermoelectric material molded body Expired - Lifetime JP4000023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229953A JP4000023B2 (en) 2002-08-07 2002-08-07 Thermoelectric material molded body and method for producing thermoelectric material molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229953A JP4000023B2 (en) 2002-08-07 2002-08-07 Thermoelectric material molded body and method for producing thermoelectric material molded body

Publications (2)

Publication Number Publication Date
JP2004071870A JP2004071870A (en) 2004-03-04
JP4000023B2 true JP4000023B2 (en) 2007-10-31

Family

ID=32016174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229953A Expired - Lifetime JP4000023B2 (en) 2002-08-07 2002-08-07 Thermoelectric material molded body and method for producing thermoelectric material molded body

Country Status (1)

Country Link
JP (1) JP4000023B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409505B1 (en) 2009-08-17 2014-06-25 라이르드 테크놀로지스, 아이엔씨 Synthesis of silver, antimony, and tin doped bismuth telluride nanoparticles and bulk bismuth telluride to form bismuth telluride composites
KR101950370B1 (en) * 2011-09-29 2019-02-20 엘지이노텍 주식회사 Method for enhancement of thermoelectric efficiency by the preparation of nano thermoelectric powder with core-shell structure
KR101384981B1 (en) * 2012-01-30 2014-04-14 연세대학교 산학협력단 Thermoelectric device having structure capable of improving thermal efficiency
JP6145664B2 (en) * 2013-03-13 2017-06-14 北川工業株式会社 Method for manufacturing thermoelectric conversion module
CN103555986B (en) * 2013-11-08 2015-06-10 河南城建学院 Method for preparing (Bi0.8Sb0.2)2Te3 nano thermoelectric material
CN105226180B (en) * 2015-10-29 2018-02-23 南京工业大学 A kind of TiS2Composite Nano MoS2The preparation method of thermoelectric material

Also Published As

Publication number Publication date
JP2004071870A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
CN1969354B (en) Process for producing a heusler alloy, a half heusler alloy, a filled skutterudite based alloy and thermoelectric conversion system using them
US5929351A (en) Co-Sb based thermoelectric material and a method of producing the same
JP4876501B2 (en) Thermoelectric conversion material and manufacturing method thereof
EP1523048B1 (en) Thermoelectric material and thermoelectric module using the thermoelectric material
JP2002232026A (en) Thermoelectric material, its manufacturing method and peltier module
CN102449790A (en) Thermoelectric material coated with a protective layer
JP2006319210A (en) Manufacturing method of thermoelectric conversion element
KR100795194B1 (en) Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
JP2021044574A (en) Method for producing magnesium-based thermoelectric conversion material
JP2001320097A (en) Thermoelectric element and method of production and thermoelectric module
KR101801367B1 (en) Method of manufacturing thermoelectric element
JP4000023B2 (en) Thermoelectric material molded body and method for producing thermoelectric material molded body
JP6058668B2 (en) Thermoelectric conversion material, thermoelectric conversion module using the same, and method of manufacturing thermoelectric conversion material
JP4584035B2 (en) Thermoelectric module
JP4584034B2 (en) Thermoelectric module
JPH10303468A (en) Thermoelectric material and its manufacture
JP2009289911A (en) Method of manufacturing thermoelectric semiconductor material
KR102300527B1 (en) Three-elements-like thermoelectric material, manufacturing method of the same, thermoelectric element, thermoelectric module
CN102460753A (en) Thermoelectric transducing material
JP2000138399A (en) Thermoelectric semiconductor material, thermoelectric device, manufacture of them, and manufacturing apparatus of the thermoelectric semiconductor material
JP2003218410A (en) Thermoelectric material, its manufacturing method, and thermoelectric conversion device
KR102092894B1 (en) Method of manufacturing a curved thermoelectric element
CN106098925A (en) A kind of ceramic membrane does the manufacture method of the thin film thermoelectric semiconductor device of base material
JPH08148725A (en) Peltier element and manufacture of thermoelectric material
JP2007051345A (en) Clathrate compound, and thermoelectric conversion element using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20020808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070810

R150 Certificate of patent or registration of utility model

Ref document number: 4000023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term