JPS63138663A - Manufacture of fused carbonate corrosion-resistant material - Google Patents

Manufacture of fused carbonate corrosion-resistant material

Info

Publication number
JPS63138663A
JPS63138663A JP61284544A JP28454486A JPS63138663A JP S63138663 A JPS63138663 A JP S63138663A JP 61284544 A JP61284544 A JP 61284544A JP 28454486 A JP28454486 A JP 28454486A JP S63138663 A JPS63138663 A JP S63138663A
Authority
JP
Japan
Prior art keywords
layer
alloy layer
base material
fused carbonate
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61284544A
Other languages
Japanese (ja)
Inventor
Masao Yamamoto
正夫 山本
Hiroshi Tateishi
浩史 立石
Tetsuo Fujiwara
藤原 鉄雄
Hisafumi Kaneko
尚史 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61284544A priority Critical patent/JPS63138663A/en
Publication of JPS63138663A publication Critical patent/JPS63138663A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To apply the fused carbonate corrosion resistance and insulating property by flame-coating the surface of a metal base material with a metal, covering at least part of this flame-coated layer surface with an aluminum layer or an alloy layer containing aluminum, then heating it in the vacuum or inert gas. CONSTITUTION:An Al layer or an alloy layer 3 containing Al formed on the uppermost surface is easily oxidized into Al2O3 at the operating temperature of a fused carbonate fuel cell and indicates the good fused carbonate corrosion resistance and insulating property. A deposited layer 2 exists between the Al layer or the alloy layer 3 containing Al and the metal of a base material 1, the deposited layer 2 differs from a rolled material or a forged material and is generally porous and has recesses and projections on its surface, thus it can be uniformly attached only by pressing. In addition, the fused Al by heating enters into recesses and projections and is alloyed with the deposited layer 2 without being coagulated due to the good wettability with the porous deposited layer 2. Accordingly, the Al layer or the alloy layer 3 containing Al on the surface of the structure member is maintained at the high adhesive strength, and the contact between the base material 1 and fused carbonate can be prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は溶融炭酸塩型燃料電池に用いられる耐溶融炭酸
塩腐食材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for producing a molten carbonate corrosion-resistant material used in a molten carbonate fuel cell.

(従来の技術) 発電システムにおいては、エネルギ源の多様化、エネル
ギの有効活用の観点から、燃料電池の開発が進められて
いる。燃料電池のうちでも、溶融炭酸塩型燃料電池は燃
料効率の点で優れているが、650℃以上の高温で運転
されることに加えて、極めて腐食性の高い溶融炭酸塩を
電解質として用いているため、その構造部材は激しい腐
食を受ける。
(Prior Art) In power generation systems, fuel cells are being developed from the viewpoint of diversifying energy sources and effectively utilizing energy. Among fuel cells, molten carbonate fuel cells are superior in terms of fuel efficiency, but in addition to being operated at high temperatures of over 650°C, they use extremely corrosive molten carbonate as an electrolyte. As a result, its structural members are subject to severe corrosion.

こうした構造部材の腐食は、有害腐食生成物の生成によ
る電池性能の劣化、肉厚減少に伴う電池性能及び強度低
下を起こす。更に、腐食が激しい場合には構造部材とし
て深部しなくなり、燃料ガスである水素と酸素との混合
が生じ、両者の直接反応による急激な燃焼を起こすおそ
れがある。特に、各種構造部材のうちでもセパレータの
エツジシール部で激しい腐食が起きると、以上のような
問題が顕著となる。
Corrosion of such structural members causes deterioration of battery performance due to the formation of harmful corrosion products, and decreases in battery performance and strength due to decrease in wall thickness. Furthermore, if the corrosion is severe, it may no longer be a deep structural member, and hydrogen and oxygen, which are fuel gases, may mix, leading to rapid combustion due to a direct reaction between the two. In particular, if severe corrosion occurs in the edge seal portion of the separator among the various structural members, the above-mentioned problems become noticeable.

ところで、燃料電池は単セルを直列に接続して大出力を
得るシステム構造となっているため、各セルは絶縁され
ていなければならない。このため、セパレータのエツジ
シール部は電気抵抗の大きい材料で構成されていること
が望ましい。
Incidentally, since a fuel cell has a system structure in which single cells are connected in series to obtain a large output, each cell must be insulated. For this reason, it is desirable that the edge seal portion of the separator be made of a material with high electrical resistance.

この点、アルミナのような絶縁セラミックスを用いると
有利であるが、セラミックスは母材である金属との接合
が困難であるうえ、母材との熱膨張差に起因してセルの
そりやゆがみあるいは接合部の剥離等を生じるという問
題がある。
In this respect, it is advantageous to use insulating ceramics such as alumina, but ceramics are difficult to bond with the base metal, and due to the difference in thermal expansion with the base metal, the cells may warp, distort, or There is a problem that peeling of the joint occurs.

(発明が解決しようとする問題点) 本発明は上記問題点を解決するためになされたものであ
り、溶融炭酸塩燃料電池の構造部材として用いられ、耐
溶融炭酸塩腐食性及び絶縁性が要求される耐溶融炭酸塩
腐食材料を容易に製造することができる方法を提供する
ことを目的とする。
(Problems to be Solved by the Invention) The present invention has been made to solve the above problems, and is used as a structural member of a molten carbonate fuel cell, and requires resistance to molten carbonate corrosion and insulation. The purpose of the present invention is to provide a method by which a molten carbonate corrosion-resistant material can be easily produced.

[発明の構成コ (問題点を解決するための手段) 本発明の耐溶融炭酸塩腐食材料の製造方法は、金属母材
表面に金属を溶射する工程と、該溶射層表面の少なくと
も一部をアルミニウム層又はアルミニウムを含む合金層
で覆った後、真空中又は不活性ガス中で加熱する工程と
を具備したことを特徴とするものである。
[Configuration of the Invention (Means for Solving Problems) The method for producing a molten carbonate corrosion-resistant material of the present invention includes the steps of thermally spraying a metal onto the surface of a metal base material, and at least part of the surface of the sprayed layer. It is characterized by comprising a step of covering with an aluminum layer or an alloy layer containing aluminum and then heating in vacuum or in an inert gas.

本発明において、母材の金属としては例えば5US31
6等のステンレス鋼が挙げられる。また、溶着層を構成
する金属としては、母材との接着が強固であればどのよ
うな材料でもよいが、接着強度のほかに耐溶融炭酸塩腐
食性を考慮すると、NlCr系合金、例えばN1CrA
β合金やNlCrAnY合金あるいはこれらにl”eが
添加された合金等が特に望ましい。
In the present invention, the base metal is, for example, 5US31
Grade 6 stainless steel is mentioned. Furthermore, the metal constituting the welding layer may be any material as long as it has strong adhesion to the base material, but in addition to adhesion strength, considering molten carbonate corrosion resistance, NlCr alloys, such as N1CrA
Particularly desirable are β alloys, NlCrAnY alloys, and alloys to which l''e is added.

本発明において、溶着層表面の少なくとも一部を/1層
又はA2を含む合金層で覆うための具体的な方法として
は、箔をローラー等で機械的に接着させる方法、スパッ
タ等のPVD法あるいは化学反応を利用するCVD法等
が挙げられる。
In the present invention, specific methods for covering at least a part of the surface of the welding layer with the /1 layer or the alloy layer containing A2 include a method of mechanically bonding foil with a roller or the like, a PVD method such as sputtering, or Examples include CVD methods that utilize chemical reactions.

本発明において、A4層又は八βを含む合金層を形成し
た後、真空中又は不活性ガス中で加熱する具体的な方法
としては、通常の電気炉を用いる方法やレーザにより加
熱する方法が挙げられる。
In the present invention, after forming the A4 layer or the alloy layer containing 8β, specific methods of heating in vacuum or inert gas include a method using an ordinary electric furnace and a method of heating with a laser. It will be done.

なお、本発明においては、真空中又は不活性ガス中で加
熱した後、例えば大気中で加熱することによりA4層又
はAl1を含む合金層の表面を酸化してもよい。また、
A4層又はAβを含む合金層の表面を酸化した後、更に
リチウム化してもよい。
In the present invention, the surface of the A4 layer or the alloy layer containing Al1 may be oxidized by heating in vacuum or in an inert gas and then, for example, in the atmosphere. Also,
After the surface of the A4 layer or the alloy layer containing Aβ is oxidized, it may be further lithiated.

リチウム化の具体的な方法としては、構造部材を溶融し
た1i20s等に浸漬したり、liガスを含む雰囲気中
にさらしたり、構造部材の所定部位にliを含む溶液を
塗布する方法が挙げられる。
Specific methods for lithiation include immersing the structural member in molten 1i20s or the like, exposing it to an atmosphere containing li gas, and applying a solution containing li to a predetermined portion of the structural member.

(作用) 上述したような方法によれば、最表面に形成されたへ2
層又はA2を含む合金層は溶融炭酸塩燃料電池が作動す
る650℃以上の温度で容易に酸化されてAQ20aと
なり、良好な耐溶融炭酸塩腐食性及び絶縁性を示す。ま
た、Al1又はAβを含む合金層と母材の金属との間に
は溶着層が介在しており、溶着層は圧延材や鍛造材と異
なり一般に多孔質で表面に凹凸があるので、例えばAλ
箔をローラー等で押付けるだけで均一に付着させること
ができる。しかも、加熱によって溶融したA℃は多孔質
の溶射層との良好な濡れ性のため凝集することなく凹凸
に入り込み溶射層との間で合金化する。この際、A2は
融点が低いので、加熱をレーザーにより行なってもレー
ザー出力が小さくてすみ、構造部材にそりを発生させる
ことはない。このため、構造部材表面のA4層又はAl
1を含む合金層は高い密着強度で保持され、溶融炭酸塩
燃料電池の作動濃度で酸化されて八β203が形成され
てもその状態が維持されるので、母材と溶融炭酸塩が接
触するのを防止することができる。
(Function) According to the method described above, the groove 2 formed on the outermost surface
The layer or alloy layer containing A2 is easily oxidized to AQ20a at temperatures above 650° C. at which molten carbonate fuel cells operate, exhibiting good molten carbonate corrosion resistance and insulation properties. In addition, a welded layer is interposed between the alloy layer containing Al1 or Aβ and the base metal, and unlike rolled or forged materials, the welded layer is generally porous and has an uneven surface.
The foil can be evenly adhered by simply pressing it with a roller or the like. Moreover, the A° C. melted by heating has good wettability with the porous sprayed layer, so it penetrates into the irregularities without agglomerating and forms an alloy with the sprayed layer. At this time, since A2 has a low melting point, even if heating is performed using a laser, only a small laser output is required, and the structural member will not warp. For this reason, the A4 layer or Al
The alloy layer containing 1 is maintained with high adhesion strength and remains in that state even when 8β203 is formed by oxidation at the operating concentration of the molten carbonate fuel cell, so that the base metal and the molten carbonate are not in contact with each other. can be prevented.

これに対して、母材とAl1層又はAffiを含む合金
層との間に溶着層がない場合には、母材表面にA4層又
はAfiを含む合金層の箔をローラー等により押付けて
加熱しても、均一かつ十分な密着性が得られず、冷W過
程で剥離を生じやすい。また、母材表面で直接A℃を溶
融させても、母材と溶融したA2とは濡れ性が悪<Af
fiが凝集して均一な被覆層を得るのが困難である。
On the other hand, if there is no welding layer between the base material and the Al1 layer or the alloy layer containing Affi, the foil of the A4 layer or the alloy layer containing Affi is pressed onto the surface of the base material using a roller or the like and heated. However, uniform and sufficient adhesion cannot be obtained, and peeling is likely to occur during the cold W process. Furthermore, even if A℃ is directly melted on the surface of the base material, the wettability of the base material and the molten A2 is poor.
fi aggregates, making it difficult to obtain a uniform coating layer.

なお、AJ21!又はAβを含む合金層を形成した後、
例えば大気中で加熱することによりその表面を酸化すれ
ば、構造部材を燃料電池本体に組込む前に予め強固なA
℃203層が形成されることになる。
In addition, AJ21! Or after forming an alloy layer containing Aβ,
For example, if the surface of the structural member is oxidized by heating in the atmosphere, it is possible to form a strong A before assembling the structural member into the fuel cell main body.
℃203 layer will be formed.

また、エツジシール部は電解質と直接接触するため、そ
の表面にAffi20:+層が形成されていると、容易
に電解質中のLi2O3と反応してリチウムアルミネー
ト(LiA2o2)を生成する。
Furthermore, since the edge seal portion is in direct contact with the electrolyte, if an Affi20:+ layer is formed on its surface, it easily reacts with Li2O3 in the electrolyte to produce lithium aluminate (LiA2o2).

このため、シール性能はよくなるが、電解質中のLi2
O3が消費されて電解質の組成が変化するおそれがある
。この対策として、へρ層又はA℃を含む合金層の表面
を酸化した後、更にリチウム化しておけば、電解質の組
成変化を防止することができる。
Therefore, although the sealing performance is improved, Li2 in the electrolyte
There is a risk that O3 will be consumed and the composition of the electrolyte will change. As a countermeasure against this, changes in the composition of the electrolyte can be prevented by oxidizing the surface of the hep layer or the alloy layer containing A° C. and then lithifying it.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1 第1図に示すように、まず板状の5US316ステンレ
ス鋼からなる母材1の全表面にN + crAxY合金
粉末を溶射して0.2m厚の溶射層2を形成した。次に
、溶射層2の表面に厚さ15−のA2箔をローラーで押
付けて接着させた後、10うmHQの真空中で900℃
に加熱し、へ2箔を溶解させて溶射l12表面にA12
層3を形成して試験片を作成した。
Example 1 As shown in FIG. 1, N + crAxY alloy powder was first sprayed onto the entire surface of a plate-shaped base material 1 made of 5US316 stainless steel to form a sprayed layer 2 with a thickness of 0.2 m. Next, a 15-thick A2 foil was pressed onto the surface of the thermal spray layer 2 with a roller to adhere it, and then heated to 900°C in a vacuum of 10 umHQ.
A12 is heated to melt the A12 foil and sprayed on the surface of the A12.
Layer 3 was formed to create a test piece.

この試験片を02 /CO2(02: CO2−1:2
)混合ガス気流中にIIされたアルミナルツボ中の溶融
炭酸塩(モル比で1−i2GO+:に2 C03=62
 :38)に100時間半浸漬し、その耐食性を調べた
。その結果、腐食による減口は、7X104IIg/j
II2であった。
This test piece was heated to 02/CO2 (02: CO2-1:2
) Molten carbonate in an alumina crucible in a mixed gas stream (molar ratio 1-i2GO+:2C03=62
:38) for 100 and a half hours, and its corrosion resistance was examined. As a result, the loss due to corrosion was 7X104IIg/j
It was II2.

実施例2 実施例1と同様な方法で作成した試験片を、更に大気中
、800℃で30分間酸化した。
Example 2 A test piece prepared in the same manner as in Example 1 was further oxidized in the air at 800° C. for 30 minutes.

この試験片について、実施例1と同様にして腐食性を調
べたところ、腐食による減量は2X10’η/1lI2
であった。
When this test piece was examined for corrosivity in the same manner as in Example 1, the weight loss due to corrosion was 2X10'η/1lI2
Met.

実施例3 実施例1と同様な方法で作成した試験片の表面に、更に
レーザーを照射してへλ層3を溶融させた。
Example 3 The surface of a test piece prepared in the same manner as in Example 1 was further irradiated with a laser to melt the λ layer 3.

この試験片について、実施例1と同様にして腐食性を調
べたところ、腐食による減量は8 X 10’ #IF
/am2であった。
When this test piece was examined for corrosivity in the same manner as in Example 1, the weight loss due to corrosion was 8 x 10'#IF
/am2.

実施例4 実施例1と同様な方法で作成した試験片を、実施例2と
同様に酸化し、更に溶融したLI20iに浸漬してその
表面をリチウム化した。
Example 4 A test piece prepared in the same manner as in Example 1 was oxidized in the same manner as in Example 2, and further immersed in molten LI20i to lithium the surface.

この試験片について、実施例1と同様にして腐食性を調
べたところ、腐食による減量は6x10’#+y/贋2
であった。
When this test piece was examined for corrosivity in the same manner as in Example 1, the weight loss due to corrosion was 6x10'#+y/fake2
Met.

比較例 5IJS316ステンレス鋼に何らの処理も施さずに、
実施例1と同様な耐食性試験を行なったとコロ、腐食ニ
ヨル減1 ハ3.2X 10 ” IR9/ s2テあ
った。
Comparative Example 5 IJS316 stainless steel was not subjected to any treatment,
When the same corrosion resistance test as in Example 1 was carried out, the corrosion resistance was reduced by 3.2 x 10'' IR9/s2.

[発明の効果] 以上詳述したように本発明の耐溶融炭酸塩腐食材料の製
造方法によれば、溶融炭酸塩燃料電池の構造部材に容易
に耐溶融炭酸塩腐食性及び絶縁性を付与することができ
、電池性能の劣化や強度低下を防止できる等顕著な効果
を奏するものである。
[Effects of the Invention] As detailed above, according to the method for producing a molten carbonate corrosion-resistant material of the present invention, molten carbonate corrosion resistance and insulation properties can be easily imparted to structural members of a molten carbonate fuel cell. This has remarkable effects such as preventing deterioration of battery performance and strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例において作成された耐溶融炭酸
塩腐食材料の断面図である。 1・・・母材、2・・・溶射層、3・・・A42層。
FIG. 1 is a cross-sectional view of a molten carbonate corrosion-resistant material made in an example of the present invention. 1... Base material, 2... Thermal spray layer, 3... A42 layer.

Claims (3)

【特許請求の範囲】[Claims] (1)金属母材表面に金属を溶射する工程と、該溶射層
表面の少なくとも一部をアルミニウム層又はアルミニウ
ムを含む合金層で覆つた後、真空中又は不活性ガス中で
加熱する工程とを具備したことを特徴とする耐溶融炭酸
塩腐食材料の製造方法。
(1) A step of thermally spraying a metal onto the surface of a metal base material, and a step of covering at least a portion of the surface of the sprayed layer with an aluminum layer or an alloy layer containing aluminum, and then heating in vacuum or in an inert gas. A method for producing a molten carbonate corrosion-resistant material, characterized by comprising:
(2)真空中又は不活性ガス中で加熱した後、ルミニウ
ム層又はアルミニウムを含む合金層の表面を酸化するこ
とを特徴とする特許請求の範囲第1項記載の耐溶融炭酸
塩腐食材料の製造方法。
(2) Production of the molten carbonate corrosion-resistant material according to claim 1, characterized in that the surface of the aluminum layer or aluminum-containing alloy layer is oxidized after heating in vacuum or in an inert gas. Method.
(3)アルミニウム層又はアルミニウムを含む合金層の
表面を酸化した後、リチウム化することを特徴とする特
許請求の範囲第2項記載の耐溶融炭酸塩腐食材料の製造
方法。
(3) The method for producing a molten carbonate corrosion-resistant material according to claim 2, wherein the surface of the aluminum layer or the aluminum-containing alloy layer is oxidized and then lithiated.
JP61284544A 1986-11-29 1986-11-29 Manufacture of fused carbonate corrosion-resistant material Pending JPS63138663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284544A JPS63138663A (en) 1986-11-29 1986-11-29 Manufacture of fused carbonate corrosion-resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284544A JPS63138663A (en) 1986-11-29 1986-11-29 Manufacture of fused carbonate corrosion-resistant material

Publications (1)

Publication Number Publication Date
JPS63138663A true JPS63138663A (en) 1988-06-10

Family

ID=17679825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284544A Pending JPS63138663A (en) 1986-11-29 1986-11-29 Manufacture of fused carbonate corrosion-resistant material

Country Status (1)

Country Link
JP (1) JPS63138663A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132764A (en) * 1988-11-14 1990-05-22 Hitachi Ltd Fused carbonate type fuel cell
JPH06260178A (en) * 1993-02-26 1994-09-16 Kawasaki Heavy Ind Ltd Device material anti-corrosive covering method for molten salt and anti-corrosive covering material
KR100394776B1 (en) * 1996-05-31 2003-11-17 한국전력공사 Anticorrosive coating method for gas sealing part of fuel cell separator
KR100394777B1 (en) * 1996-06-19 2003-11-17 한국전력공사 Surface treatment of molten carbonate fuel cell separator
US6989213B2 (en) 2000-04-06 2006-01-24 Ballard Power Systems Inc. Metal bipolar plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132764A (en) * 1988-11-14 1990-05-22 Hitachi Ltd Fused carbonate type fuel cell
JPH06260178A (en) * 1993-02-26 1994-09-16 Kawasaki Heavy Ind Ltd Device material anti-corrosive covering method for molten salt and anti-corrosive covering material
KR100394776B1 (en) * 1996-05-31 2003-11-17 한국전력공사 Anticorrosive coating method for gas sealing part of fuel cell separator
KR100394777B1 (en) * 1996-06-19 2003-11-17 한국전력공사 Surface treatment of molten carbonate fuel cell separator
US6989213B2 (en) 2000-04-06 2006-01-24 Ballard Power Systems Inc. Metal bipolar plate

Similar Documents

Publication Publication Date Title
JP3423574B2 (en) Corrosion resistant treatment method for separator of molten carbonate fuel cell
US4234668A (en) Composite sulfur electrode container and method of manufacture
JPS63138663A (en) Manufacture of fused carbonate corrosion-resistant material
ATE179283T1 (en) FUEL CELL WITH CERAMIC COATED BIPOLAR PLATES AND THEIR PRODUCTION
JPS6025159A (en) Manufacture of nonaqueous electrolyte battery
US4048394A (en) Secondary battery or cell with vitreous carbon coated graphite current collector
JP2003238201A (en) Sealing material, joined body, electrochemical apparatus, and crystallized glass
JPH0652868A (en) Separator masking material for molten carbonate fuel cell and manufacture thereof
JPH03196465A (en) Manufacture of solid electrolyte for fuel cell
JPH03285268A (en) High temperature type fuel cell and manufacture thereof
JPS59201371A (en) Fused carbonate type fuel battery
JPH02132764A (en) Fused carbonate type fuel cell
JPH10208759A (en) Separator for molten carbonate type fuel cell
JP2760982B2 (en) Surface treatment method for structural member of molten carbonate fuel cell
JPS6151770A (en) Molten carbonate fuel cell
JPS62262376A (en) Melted carbonate type fuel cell
KR100394777B1 (en) Surface treatment of molten carbonate fuel cell separator
JP2621863B2 (en) Molten carbonate fuel cell
JP2009511743A (en) Stable joint formed by thermal spraying
KR100196008B1 (en) Separator sheet for molten carbonate fuel cell
JPH0982345A (en) Fused carbonate fuel cell and its manufacture
KR100321379B1 (en) Surface coating method for the separator of molten carbonate fuel cell
JPH0315158A (en) Separator for fuel cell
KR970077795A (en) Bonding corrosion coating method of gas tight part of fuel cell separator
KR101229075B1 (en) Stack for molten carbonate fuel cell and method of producing separator for molten carbonate fuel cell