JPS63138410A - Noncontact supporting method - Google Patents

Noncontact supporting method

Info

Publication number
JPS63138410A
JPS63138410A JP28436686A JP28436686A JPS63138410A JP S63138410 A JPS63138410 A JP S63138410A JP 28436686 A JP28436686 A JP 28436686A JP 28436686 A JP28436686 A JP 28436686A JP S63138410 A JPS63138410 A JP S63138410A
Authority
JP
Japan
Prior art keywords
permanent magnet
displacement
fixed
electromagnet
movable side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28436686A
Other languages
Japanese (ja)
Other versions
JP2546997B2 (en
Inventor
Kiyoshi Ishida
石田 精
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP61284366A priority Critical patent/JP2546997B2/en
Publication of JPS63138410A publication Critical patent/JPS63138410A/en
Application granted granted Critical
Publication of JP2546997B2 publication Critical patent/JP2546997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To eliminate generation of heat and to attain reduction of the power amplifier capacity and stability of control jobs, by defining the magnetic poles approximate to each other as the same poles between a permanent magnet of the fixed side and a permanent magnet of the movable side which are set via a fixed gap. CONSTITUTION:At least two pairs of permanent magnets 311/321 and 312/322 are provided at the fixed and movable sides near an electromagnet. The fixed and movable sides of these pairs of magnets are set opposite to each other in the same pole via a minute gap. The repulsive power of first pair of magnets is set opposite to that of second pair and both pairs are positioned in the same direction as the attracting direction of the electromagnet. Therefore those magnets 311-322 only function to secure no mutual contact at the movable side and therefore can start even with a slight current. Thus the restoring force due to the repulsive power works despite the eccentricity is caused to the magnetic pole of one side by the external force. As a result, the large capacity is not required for a power amplifier and furthermore the generation of heat is eliminated with addition of a zero current control loop.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、回転体や直線搬送体を支持する方法のうち
、磁気力を用いた非接触支持方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a non-contact supporting method using magnetic force among methods for supporting a rotating body or a linear conveying body.

〔従来の技術〕[Conventional technology]

回転体または、リニヤ駆動系において、軸受損失の低減
を図るため、或いは特殊環境における使用に耐える方法
として、磁気力により非接触支持する磁気軸受が用いら
れるようになってきた。
BACKGROUND ART Magnetic bearings that support non-contact using magnetic force have come to be used in rotating bodies or linear drive systems in order to reduce bearing loss or as a method to withstand use in special environments.

その構成方法の第1の方法として、可動部を2つの電磁
石で逆向きに吸引する方法がある。この場合、剛性を上
げるためバイアス電流を供給すれば、銅損及び鉄損によ
り発熱が生じ、真空中で用いる場合は問題であった。ま
た、定常電流を与えるだけパワーアンプの電流容量を大
きくする必要があった。
A first method for constructing the movable part is to attract the movable part in opposite directions using two electromagnets. In this case, if a bias current is supplied to increase rigidity, heat is generated due to copper loss and iron loss, which is a problem when used in a vacuum. Additionally, it was necessary to increase the current capacity of the power amplifier to provide a steady current.

そこで、パワーアンプの容量を軽減させるために、電磁
石の巻線を、2分割するとともに、その内の1巻線を他
の電磁石の1巻線と直列接続して、1つのパワーアンプ
により定電流供給させるという方法(特開昭58−54
220公報など)が提案されたが、銅損及び鉄損は同様
に生じるので、真空中での熱の問題が残ったままである
Therefore, in order to reduce the capacity of the power amplifier, the winding of the electromagnet is divided into two, and one of the windings is connected in series with one winding of the other electromagnet, so that one power amplifier can generate a constant current. The method of supplying
220, etc.), but since copper loss and iron loss occur in the same way, the problem of heat in vacuum remains.

一方、発熱の問題を解決するために、例えば特開昭59
−37323公報などにみられるように、電磁石の磁路
中に永久磁石を設け、電磁石のバイアス電流による磁束
を永久磁石の磁束で代替させる方法も提案されたが、電
磁石に電流が供給されていない時は、永久磁石の磁気吸
引力により可動部が引きつけられているので、起動する
時には、これに打ち勝つ吸引力を発生させるだけの電流
を供給してやらねばならず、それだけ容量の大きなパワ
ーアンプが必要であった。また、永久磁石の磁気吸引力
はギャップの2乗に反比例するので非線形かつ不安定で
あり、これを補なうだけの能力が電磁石を用いた制御ル
ープに要求されるので、制御系の安定化が充分にとるこ
とができなかった。
On the other hand, in order to solve the problem of heat generation, for example,
-As seen in Publication No. 37323, a method has been proposed in which a permanent magnet is installed in the magnetic path of the electromagnet and the magnetic flux of the permanent magnet replaces the magnetic flux caused by the electromagnet's bias current, but no current is supplied to the electromagnet. At the time, the moving parts are attracted by the magnetic attraction force of the permanent magnet, so when starting up, it is necessary to supply enough current to generate the attraction force to overcome this attraction, which requires a power amplifier with a correspondingly large capacity. there were. In addition, the magnetic attraction force of a permanent magnet is inversely proportional to the square of the gap, so it is nonlinear and unstable, and the control loop using electromagnets is required to have the ability to compensate for this, so the control system can be stabilized. I couldn't get enough of it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、上記のような問題点に鑑みてなされたもの
であり、真空中での使用が可能となるよう発熱の問題を
なくし、パワーアンプの容量を軽減し、かつ制御まわり
の安定化をも可能ならしめるものである。
This invention was made in view of the above problems, and aims to eliminate the problem of heat generation, reduce the capacity of the power amplifier, and stabilize the control area so that it can be used in a vacuum. This also makes it possible.

〔問題点を解決するための手段〕[Means for solving problems]

そのための方法として、逆向きの2つの電磁石により可
動部を磁気吸引して非接触浮上させる従来の方法に加え
、電磁石の近くの固定側及び可動側に永久磁石を少なく
とも2組設けるようにするのである。又、その対になっ
た永久磁石は、固定側と可動側が微少ギャップを介して
同極にて向かい合わせるようにする。また、第1組の反
発力と第2組の反発力が逆向きであり、それぞれ電磁石
の吸引する方向と同一方向となるよう配置するという方
法である。
As a method for this, in addition to the conventional method of magnetically attracting the movable part using two electromagnets in opposite directions and levitating it in a non-contact manner, at least two sets of permanent magnets are installed on the fixed side and the movable side near the electromagnets. be. Further, the fixed side and the movable side of the paired permanent magnets are arranged to face each other with the same polarity through a small gap. Another method is to arrange the first set of repulsive forces and the second set of repulsive forces in opposite directions and in the same direction as the attracting direction of the electromagnet.

〔作 用〕[For production]

このような配置とすることにより、永久磁石だけをみる
と可動部を非接触させようと作用するので、起動時にも
わずかの電流で起動することができ、外力により一方の
磁極に偏心しても永久磁石の反発力による復元力が働ら
くのでパワーアンプの容量を大きくとる必要がないので
ある。また、ゼロ電流制御ループを設けることにより、
定常時の電流をゼロにし、銅損及び鉄損をゼロにして発
熱をゼロにすることもできるのである。
With this arrangement, when looking only at the permanent magnet, it acts to keep the movable parts out of contact, so it can be started with a small amount of current, and even if the magnetic pole is eccentric to one side due to an external force, it will remain permanently Since the restoring force is generated by the repulsive force of the magnet, there is no need to increase the capacity of the power amplifier. In addition, by providing a zero current control loop,
It is also possible to make the steady state current zero, copper loss and iron loss zero, and heat generation zero.

〔実施例〕〔Example〕

第1図はこの発明を回転体に適用した場合の実施例の構
成を示すもので、1は回転軸であり、2つのラジアル軸
受21.22を軸方向の離れた位置に設けてあり、回転
可能となっている。軸方向の動きを拘束するスラスト軸
受及び回転軸1に回転力を付与するモータは図示してい
ない。
FIG. 1 shows the configuration of an embodiment in which the present invention is applied to a rotating body. 1 is a rotating shaft, and two radial bearings 21 and 22 are provided at separate positions in the axial direction. It is possible. A thrust bearing that restricts movement in the axial direction and a motor that applies rotational force to the rotating shaft 1 are not shown.

ラジアル軸受21 (又は22)は鉄心と巻線とより成
り、図示しないフレームに固定されたステータ211 
(又は221)と、ステータ211(又は221)と微
少ギャップを介して回転軸1に固着されたロータ212
(又は222)と、該微少ギャップを検出するステータ
211 (又は221)近傍に設けられた図示しない変
位センサと、該変位センサの信号をうけてステータ21
1(又は221)に電流を供給する図示しない軸受制御
器とから成り、前記微少ギャップが一定となるよう制御
されている。
The radial bearing 21 (or 22) consists of an iron core and a winding, and a stator 211 is fixed to a frame (not shown).
(or 221), and a rotor 212 fixed to the rotating shaft 1 via the stator 211 (or 221) and a minute gap.
(or 222), a displacement sensor (not shown) provided near the stator 211 (or 221) that detects the minute gap, and a displacement sensor (not shown) that detects the minute gap, and a displacement sensor (not shown) that detects the minute gap.
1 (or 221), and a bearing controller (not shown) that supplies current to 1 (or 221), and is controlled so that the minute gap is constant.

一方、ラジアル軸受21 (又は22)の近傍軸端側に
は、永久磁石による反発形ラジアル軸受が設けられ、図
示しないフレームに固定された固定側永久磁石311 
(又は321)と、該固定側永久磁石311 (又は3
21)と微少ギャップを介して回転軸に固定された回転
側永久磁石312(又は322)より成っている。
On the other hand, a repulsion type radial bearing using a permanent magnet is provided near the shaft end side of the radial bearing 21 (or 22), and a fixed side permanent magnet 311 fixed to a frame (not shown) is provided.
(or 321) and the fixed permanent magnet 311 (or 3
21) and a rotating side permanent magnet 312 (or 322) fixed to the rotating shaft via a small gap.

固定側及び回転側永久磁石311 (又は321)、3
12(又は322)は半径方向に着磁されており、微少
ギャップを介して互いに対面している部分は同極となっ
ており、永久磁石軸受31 (又は32)単独でも径方
向の非接触支持が可能となっている。
Fixed side and rotating side permanent magnets 311 (or 321), 3
12 (or 322) are magnetized in the radial direction, and the parts that face each other through a small gap have the same polarity, so that even if the permanent magnet bearing 31 (or 32) is used alone, it can be supported without contact in the radial direction. is possible.

なお、永久磁石31 (又は32)の着磁力向を軸方向
にNSとしても良い。
Note that the direction of the magnetizing force of the permanent magnet 31 (or 32) may be NS in the axial direction.

第2図は制御ブロック図を示すもので、XS+Xfは前
記微妙ギャップの指令値、及び図示しない変位センサの
出力であり、前記微少ギャップの検出信号である。これ
らを受けた比較器により差信号が得られ、変位制御用補
償器5の入力信号とされる。
FIG. 2 shows a control block diagram, where XS+Xf is the command value of the minute gap and the output of a displacement sensor (not shown), which is the detection signal of the minute gap. A difference signal is obtained by the comparator receiving these signals, and is used as an input signal to the displacement control compensator 5.

そしてパワーアンプ6t、s2−<指令を送り、ステー
タの対向する電磁石対へ電流1.、Igを供給している
Then, the power amplifier 6t sends a s2-<command, and a current of 1. , supplies Ig.

また電流It、Izの検出信号fl+12の差が比較器
によってifとして得られ、その指令信号t、(=O)
と比較されてゼロ電流制御用補償器4の入力とされてい
る。そしてゼロ電流制御用補償器によって変位指令x、
が出力されているのである。
Also, the difference between the detection signals fl+12 of the currents It and Iz is obtained as if by the comparator, and the command signal t, (=O)
It is compared with and is input to the zero current control compensator 4. Then, the displacement command x,
is being output.

このような構成において、変位指令X、に対して変位検
出信号Xfが異なる値をもっていれば、その差信号を受
けた変位制御用位相補償器5は、パワーアンプ61.6
2に指令を与えてステータに電流It、Igを供給させ
、磁気吸引力により回転軸を変位させ、変位検出信号X
、が変位指令X、に等しくなるよう動作するという変位
一定の制御ループを構成している。
In such a configuration, if the displacement detection signal Xf has a different value with respect to the displacement command
2 to supply currents It and Ig to the stator, displace the rotating shaft by magnetic attraction force, and generate a displacement detection signal X.
, constitutes a constant displacement control loop that operates so that , is equal to the displacement command X,.

また、ゼロ電流指令信号i、(=O)に対し、電流の検
出信号i、が異なった値をもっていれば、その差を受け
たゼロ電流制御用位相補償器4は、前記変位一定制御ル
ープに変位指令x1を与え、ステータ電流がゼロとなる
よう働らき、ゼロ電流制御ループを構成している。
Furthermore, if the current detection signal i, has a different value from the zero current command signal i, (=O), the zero current control phase compensator 4 that has received the difference is connected to the constant displacement control loop. It gives a displacement command x1, works so that the stator current becomes zero, and constitutes a zero current control loop.

このような構成で、回転軸に径方向のステップ外力が加
えられた時の動作について説明する。
With such a configuration, the operation when a step external force in the radial direction is applied to the rotating shaft will be described.

外力が加えられる直前は、永久磁石のみで力が平衡して
おり、その位置に対応する変位指令x1が変位制御ルー
プに与えられ、ステータの電流It、Itがゼロとなっ
てつり合っている。
Immediately before an external force is applied, the force is balanced only by the permanent magnet, a displacement command x1 corresponding to that position is given to the displacement control loop, and the stator currents It, It are zero and balanced.

ステップ外力により、回転軸に径方向変位が生じると、
永久磁石については、減衰が弱いものの復元力が働らく
。変位制御ループについては変位検出信号Xtが指令値
x1と異なるので、変位制御用位相補償器5が働らき、
そこに含まれる微分器により減衰もよくきいて、回転軸
1の径方向変位が復帰し、変位検出信号Xrが指令値X
、に等しくなる。
When a radial displacement occurs on the rotating shaft due to an external step force,
Permanent magnets have weak attenuation but a restoring force. Regarding the displacement control loop, since the displacement detection signal Xt is different from the command value x1, the displacement control phase compensator 5 works,
The differentiator included there also listens to the attenuation well, and the radial displacement of the rotating shaft 1 is restored, and the displacement detection signal Xr changes to the command value
, is equal to .

ところが、この状態では、ステップ外力とつり合う電流
が電磁石に供給されているので、電流の検出信号ifは
ゼロでなくなり、ゼロ電流制御用位相補償器4が働らい
て変位指令x、が修正されるのである。そして、加えら
れている外力と永久磁石の反発力がつり合う位置まで変
位指令X、が修正されると、もはやii電磁石の供給電
流がゼロとなるのでゼロ電流制御用位相補償器4の入力
はゼロとなり、定常状態となるのである。
However, in this state, a current that balances the step external force is supplied to the electromagnet, so the current detection signal if is no longer zero, and the zero current control phase compensator 4 operates to correct the displacement command x. It is. When the displacement command X is corrected to a position where the external force being applied and the repulsive force of the permanent magnet are balanced, the current supplied to the electromagnet ii becomes zero, so the input to the zero current control phase compensator 4 becomes zero. Therefore, it becomes a steady state.

次に起動時のことについて説明する。゛第1図の永久磁
石ラジアル軸受では、径方向に浮上するものの、スラス
ト方向の拘束もなくなるので、スラスト方向に変位し図
示しない補助軸受に当って止まっている。
Next, we will explain what happens at startup. In the permanent magnet radial bearing shown in FIG. 1, although it floats in the radial direction, there is no restriction in the thrust direction, so it is displaced in the thrust direction and stops against an auxiliary bearing (not shown).

スラスト方向に永久磁石を併用しそれも反発形にしてい
る場合は、永久磁石のみで完全浮上すると考えられがち
であるが、それはありえないということがEarnsh
awによって証明されている。従ってこの場合も、どこ
かが接触して止まっていることになる。
If a permanent magnet is also used in the thrust direction and it is also of a repulsive type, it is often thought that the permanent magnet will levitate completely with only the permanent magnet, but it is known that this is impossible.
This is proven by aw. Therefore, in this case as well, it means that something is touching and stopping.

いずれにおいても、吸引形の永久磁石を用いた場合のよ
うにギャップが小さくなればなる程吸引力が大きくなる
というのではなく、反発されて離れた位置で止まってい
るので、起動する時に回転軸を固定側の中心に復帰させ
る力はわずかですみ、電磁石に供給する起動特電流は少
なくてすむのである。従ってパワーアンプは過大なもの
が不要ということになる。
In either case, the attraction force does not increase as the gap becomes smaller, as is the case when an attraction type permanent magnet is used, but instead it is repelled and stops at a distant position, so when starting up, the rotation axis The force required to return the magnet to the center of the fixed side is small, and the starting current supplied to the electromagnet is small. Therefore, there is no need for an oversized power amplifier.

以上、回転体について述べたがリニヤ形式でも同じなの
は言うまでもない。
The above discussion has been about rotating bodies, but it goes without saying that the same applies to linear types as well.

〔発明の効果〕〔Effect of the invention〕

上記のように、定常外力が加えられていようと、そうで
なかろうと、定常外力と永久磁石の反発力がつり合う位
置に制御されるので、電磁石の電流が常にゼロとなる。
As mentioned above, regardless of whether a steady external force is applied or not, the constant external force and the repulsive force of the permanent magnet are controlled to a balanced position, so the current of the electromagnet is always zero.

従って銅損及び鉄損がなく、発熱がないので、真空中で
の使用を可能ならしめる効果がある。
Therefore, there is no copper loss, no iron loss, and no heat generation, which has the effect of making it possible to use it in a vacuum.

又、起動特電流が少なくてすみ、浮上中においても、永
久磁石のみで正の軸受剛性を持つので、パワーアンプの
容量が小さくてすむという効果がある。
Furthermore, the starting special current is small, and even during levitation, the permanent magnet alone provides positive bearing rigidity, so the capacity of the power amplifier can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を回転体に適用した場合の構成図、第
2図はその制御ブロック図である。 1・・・回転軸 21・・・第1のラジアル軸受 211・・・ステータ 212・・・ロータ 22・・・第2のラジアル軸受 221・・・ステータ 222・・・ロータ 31・・・第1の永久磁石軸受 311・・・ステータ 312・・・ロータ 32・・・第2の永久磁石軸受 321・・・ステータ 322・・・ロータ 4・・・ゼロ電流制御用位相補償器 5・・・変位制御用位相補償器 61・・・第1のパワーアンプ 62・・・第2のパワーアンプ ■、・・・供給電流 It・・・供給電流 i、・・・■1の検出信号 12・・・1□の検出信号 i、・・・ゼロ電流指令信号(通常ゼロ)xl・・・変
位指令信号 X、・・・変位検出信号 i、・・・電流の検出信号 1・・・回転軸 21・・・第1のラジアル軸受 211・・・ステータ 212・・・ロータ 22・・・第2のラジアル軸受 221・・・ステータ 222・・・ロータ 31・・・第1の永久磁石軸受 311・・・ステータ 312・・・ロータ 32・・・第2の永久磁石軸受 321・・・ステータ 322・・・ロータ 4・・・ゼロ電流制御用位相補償器 5・・・変位制御用位相補償器 61・・・第1のパワーアンプ 62・・・第2のパワーアンプ 第   1   図 第   2   図
FIG. 1 is a configuration diagram when the present invention is applied to a rotating body, and FIG. 2 is a control block diagram thereof. 1... Rotating shaft 21... First radial bearing 211... Stator 212... Rotor 22... Second radial bearing 221... Stator 222... Rotor 31... First Permanent magnet bearing 311...Stator 312...Rotor 32...Second permanent magnet bearing 321...Stator 322...Rotor 4...Zero current control phase compensator 5...Displacement Control phase compensator 61...first power amplifier 62...second power amplifier ■,...supply current It...supply current i,...detection signal 12 of ■1... 1□ detection signal i,...Zero current command signal (normally zero) xl...Displacement command signal X,...Displacement detection signal i,...Current detection signal 1...Rotating shaft 21. ...First radial bearing 211...Stator 212...Rotor 22...Second radial bearing 221...Stator 222...Rotor 31...First permanent magnet bearing 311... Stator 312...Rotor 32...Second permanent magnet bearing 321...Stator 322...Rotor 4...Zero current control phase compensator 5...Displacement control phase compensator 61...・First power amplifier 62...Second power amplifier Fig. 1 Fig. 2

Claims (6)

【特許請求の範囲】[Claims] (1)固定側に互いに逆向きに配置した少なくとも2個
の電磁石と、該電磁石と一定ギャップを介して可動側に
設けられた継鉄と、固定側と可動側の相対変位を検出す
る変位センサと、該変位センサの出力信号を入力とし前
記少なくとも2個の電磁石に電流を供給する変位制御器
とから成る非接触支持方法において、前記固定側電磁石
の近傍の固定側に少なくとも2個の永久磁石を設け、該
永久磁石と一定ギャップを介して可動側に永久磁石を設
け、該一定ギャップを介して設けられた固定側永久磁石
と可動側永久磁石の互いに近接し合う磁極を同極とする
ことを特徴とする非接触支持方法。
(1) At least two electromagnets arranged in opposite directions on the fixed side, a yoke provided on the movable side with a certain gap between them and the electromagnets, and a displacement sensor that detects relative displacement between the fixed side and the movable side. and a displacement controller that receives the output signal of the displacement sensor and supplies current to the at least two electromagnets, wherein at least two permanent magnets are arranged on the fixed side near the fixed side electromagnet. A permanent magnet is provided on the movable side with a fixed gap between the permanent magnet and the permanent magnet, and the magnetic poles of the fixed side permanent magnet and the movable side permanent magnet that are provided across the fixed gap are the same polarity. A non-contact support method characterized by:
(2)電磁石のつくる磁路と、永久磁石のつくる磁路が
互いに干渉しないことを特徴とする特許請求の範囲第1
項記載の非接触支持方法。
(2) Claim 1 characterized in that the magnetic path created by the electromagnet and the magnetic path created by the permanent magnet do not interfere with each other.
Non-contact support method described in section.
(3)可動側が回転体であることを特徴とする特許請求
の範囲第1項記載の非接触支持方法。
(3) The non-contact support method according to claim 1, wherein the movable side is a rotating body.
(4)可動側が直線搬送体であることを特徴とする特許
請求の範囲第1項記載の非接触支持方法。
(4) The non-contact support method according to claim 1, wherein the movable side is a linear conveyor.
(5)変位一定制御ループの外側にゼロ電流制御ループ
を設け、電磁石の電流がゼロとなる位置の変位指令が変
位制御器に与えられることを特徴とする特許請求の範囲
第1項記載の非接触支持方法。
(5) A zero current control loop is provided outside the constant displacement control loop, and a displacement command for a position where the current of the electromagnet becomes zero is given to the displacement controller. Contact support method.
(6)変位制御器に磁気吸引力の線形化手段が含まれて
いることを特徴とする特許請求の範囲第1項記載の非接
触支持方法。
(6) The non-contact support method according to claim 1, wherein the displacement controller includes means for linearizing magnetic attraction force.
JP61284366A 1986-12-01 1986-12-01 Non-contact support method Expired - Lifetime JP2546997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284366A JP2546997B2 (en) 1986-12-01 1986-12-01 Non-contact support method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284366A JP2546997B2 (en) 1986-12-01 1986-12-01 Non-contact support method

Publications (2)

Publication Number Publication Date
JPS63138410A true JPS63138410A (en) 1988-06-10
JP2546997B2 JP2546997B2 (en) 1996-10-23

Family

ID=17677649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284366A Expired - Lifetime JP2546997B2 (en) 1986-12-01 1986-12-01 Non-contact support method

Country Status (1)

Country Link
JP (1) JP2546997B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046600A (en) * 2004-08-06 2006-02-16 Koyo Seiko Co Ltd Magnetic bearing unit and flywheel energy storage device provided with it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639574B1 (en) * 2000-01-18 2006-10-31 삼성광주전자 주식회사 A ballless bearing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114917U (en) * 1982-01-29 1983-08-05 株式会社日立製作所 magnetic bearing device
JPS60136616A (en) * 1983-11-29 1985-07-20 ライフ・イクステンダース・コーポレーション Magnetic rotor bearing
JPS61154324U (en) * 1985-03-18 1986-09-25

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114917U (en) * 1982-01-29 1983-08-05 株式会社日立製作所 magnetic bearing device
JPS60136616A (en) * 1983-11-29 1985-07-20 ライフ・イクステンダース・コーポレーション Magnetic rotor bearing
JPS61154324U (en) * 1985-03-18 1986-09-25

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046600A (en) * 2004-08-06 2006-02-16 Koyo Seiko Co Ltd Magnetic bearing unit and flywheel energy storage device provided with it
JP4513458B2 (en) * 2004-08-06 2010-07-28 株式会社ジェイテクト Magnetic bearing device and flywheel energy storage device including the same

Also Published As

Publication number Publication date
JP2546997B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
US6794780B2 (en) Magnetic bearing system
US5350283A (en) Clean pump
US6707200B2 (en) Integrated magnetic bearing
US4090745A (en) Magnetic suspension with magnetic stiffness augmentation
US5767597A (en) Electromagnetically biased homopolar magnetic bearing
JPS61218355A (en) Magnetically levitating actuator having rotation positioning function
US20030155829A1 (en) Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack
JP2000145773A (en) Magnetic bearing device
KR20010070311A (en) Motor of magnetic lifting type and manufacturing method therefor
WO2018213825A1 (en) Transport system having a magnetically levitated transportation stage
JPS63138410A (en) Noncontact supporting method
JP3138696B2 (en) Bearing structure
EP1701050A1 (en) Power amplification device and magnetic bearing
JPH048911A (en) Magnetic bearing device
JPH076541B2 (en) Magnetic bearing device
JP3268843B2 (en) Variable spring constant linear actuator
JPS6399742A (en) Magnetic bearing integrating type motor
JP3197031B2 (en) Linear motion magnetic support device
EP4143451B1 (en) A control system for controlling a magnetic suspension system
CN109578435B (en) Axial magnetic bearing for precision tracking support
CN109681528B (en) Multi-coil axial magnetic bearing for precision tracking support
US20240200597A1 (en) Combined Axial/Radial Magnetic Bearing
JPS59117915A (en) Magnetic bearing device
JP2533083Y2 (en) Magnetic bearing control device
JPH02184205A (en) Magnetic levitation controller