JPS6313827B2 - - Google Patents
Info
- Publication number
- JPS6313827B2 JPS6313827B2 JP57055775A JP5577582A JPS6313827B2 JP S6313827 B2 JPS6313827 B2 JP S6313827B2 JP 57055775 A JP57055775 A JP 57055775A JP 5577582 A JP5577582 A JP 5577582A JP S6313827 B2 JPS6313827 B2 JP S6313827B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- vinyl chloride
- zinc alloy
- layer
- chloride resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 36
- 229910000831 Steel Inorganic materials 0.000 claims description 31
- FJMNNXLGOUYVHO-UHFFFAOYSA-N aluminum zinc Chemical compound [Al].[Zn] FJMNNXLGOUYVHO-UHFFFAOYSA-N 0.000 claims description 31
- 239000010959 steel Substances 0.000 claims description 31
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 28
- 239000010410 layer Substances 0.000 claims description 28
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 25
- 239000011347 resin Substances 0.000 claims description 23
- 229920005989 resin Polymers 0.000 claims description 23
- 238000007747 plating Methods 0.000 claims description 21
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- 239000011247 coating layer Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000011888 foil Substances 0.000 claims description 7
- 239000000049 pigment Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 239000012790 adhesive layer Substances 0.000 claims description 6
- 239000003365 glass fiber Substances 0.000 claims description 6
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 2
- 239000004917 carbon fiber Substances 0.000 claims description 2
- 239000012784 inorganic fiber Substances 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims 1
- 238000000576 coating method Methods 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 239000003973 paint Substances 0.000 description 8
- 230000035699 permeability Effects 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910001335 Galvanized steel Inorganic materials 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000008397 galvanized steel Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- -1 zinc aluminum ions Chemical class 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- BCFSVSISUGYRMF-UHFFFAOYSA-N calcium;dioxido(dioxo)chromium;dihydrate Chemical compound O.O.[Ca+2].[O-][Cr]([O-])(=O)=O BCFSVSISUGYRMF-UHFFFAOYSA-N 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- NVKTUNLPFJHLCG-UHFFFAOYSA-N strontium chromate Chemical compound [Sr+2].[O-][Cr]([O-])(=O)=O NVKTUNLPFJHLCG-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- UMKARVFXJJITLN-UHFFFAOYSA-N lead;phosphorous acid Chemical compound [Pb].OP(O)O UMKARVFXJJITLN-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000008301 phosphite esters Chemical class 0.000 description 1
- 150000003022 phthalic acids Chemical class 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Description
本発明は、アルミニウム亜鉛合金めつき鋼板を
基板とした塩化ビニル被覆鋼板に関するものであ
る。
従来から鋼板1上にアルミニウム亜鉛合金めつ
き層2を形成したアルミニウム亜鉛合金めつき鋼
板は、特公昭46−7161号公報に開示された亜鉛ア
ルミニウム被覆製品、特公昭53−22528号公報に
開示された耐腐食性アルミニウム亜鉛被覆物とそ
の製造方法、特公昭54−8335号公報に開示された
熱間浸漬被覆による鉄ストランドの処理法などに
よつて知られているように、亜鉛鉄板にくらべて
2倍以上の耐食性があることが知られている。一
方塩化ビニル樹脂塗膜は鋼板や亜鉛鉄板に塗装さ
れた場合など耐食性は極めて高い樹脂であるが太
陽光線による紫外線や熱それに雨水塵埃などによ
り劣化が促進されるといわれている。したがつて
建築物などの屋根、壁に使用される外壁用塩ビ鋼
板の塗膜はこの欠点を改良すべく熱および紫外線
劣化を防止するために二塩基性亜燐酸鉛系、有機
錫系、バリユム亜鉛系、有機亜燐酸エステル系な
どの安定剤、チタンホワイト(TiO)などの体質
顔料、それに着色顔料を塩化ビニル樹脂ペースト
にデイソデシルフタレート(DIDP)、デオクタ
ルフタレート(DOP)などのフタル酸系可塑剤
を練り合わせたゾル塗料を塗布して焼付けられて
いる。一方アルミニウムおよびアルミニウム亜鉛
合金めつき鋼板は耐食性に優れ外装用建築材料と
して使用されているが太陽光線中の赤外線や紫外
線を反射するため例えば第1図のようにアルミニ
ウム亜鉛合金めつき層2上に塩化ビニル樹脂層7
を形成した塩化ビニル塗装板にすると太陽光線の
入射と反射とにより二重に塩化ビニル樹脂層7を
通過するため劣化を促進することとアルミニウム
と塩化ビニル塗膜の熱膨張の差による接着界面層
の凝集力不足による接着層面よりの剥離などによ
りこの種の塗装金属板は商品化されなかつた。し
たがつてアルミニウム亜鉛合金めつき鋼板も高ア
ルミニウム比率の合金めつきの場合はアルミニウ
ムの影響が強くでて赤外線および紫外線を反射す
るため塩化ビニル樹脂被覆鋼板の基板としてはア
ルミニウム亜鉛合金めつき鋼板は向いていなかつ
た。したがつて亜鉛めつき鋼板が主力で僅かにタ
ーンシート(鉛錫合金めつき鋼板)がその基板と
して使用されてきた。
本発明は上記の点に鑑みて発明したものであつ
て、その目的とするところは亜鉛鉄板の2倍以上
の高耐久性のあるアルミニウム亜鉛合金めつき鋼
板を基板として塩化ビニル塗膜を基板を含めて耐
候耐食性の優れた15年以上耐久性を保持可能なア
ルミニウム亜鉛合金めつき鋼板を基板とした塩化
ビニル被覆鋼板を提供するにある。
本発明は、鋼板上にアルミニウム亜鉛合金めつ
き層を形成し、アルミニウム亜鉛合金めつき層に
化成処理を施し、この上に防錆顔料入り接着剤層
を介してガラス繊維または炭素繊維の如き無機質
繊維とアルミニウム粉末またはアルミニウム箔片
を混入した塩化ビニル樹脂塗膜層を形成して成る
ことを特徴とするアルミニウム亜鉛合金めつき鋼
板を基板とした塩化ビニル被覆鋼板である。以下
本発明を具体的に詳述する。図中1は鋼板であつ
て、この鋼板1にはアルミニウム亜鉛合金めつき
層2が形成してあつていわゆるアルミニウム亜鉛
合金めつき鋼板である。このアルミニウム亜鉛合
金めつき鋼板のアルミニウム亜鉛合金めつき層2
の上にクロム酸系化成処理剤にて処理を施して化
成処理層3を形成し、その上にクロム酸カルシウ
ムとクロム酸ストロンチウムなどの防錆顔料を単
独または混合したものが入つたアクリル・エポキ
シ系またはアクリル・フエノール系の接着剤を塗
布焼付した接着剤層4を形成し、この接着剤層4
上に径5〜22μ、長さ10〜500μでシランカツプリ
ング剤処理をしたガラス繊維5とステアリン酸チ
タネート処理をした粒径1〜130μのアルミニウ
ム粉末または5μ以下のアルミニウム箔細片6を
それぞれ3〜40%の範囲混入した前記の各種の安
定剤、着色顔料、可塑剤、塩化ビニル樹脂と混合
されたゾル塗料を塗装焼付けた塗膜7が形成され
る。この塗膜は調刻されたロールで加温された状
態でエンボス加工されることもあれば塗装ロール
のロール回転により枝目状の塗膜にすることもあ
る。またこの塗膜の表面に透明または着色された
紫外線を遮断するメチルメタクリレート樹脂の10
〜100μ厚さのフイルム8を熱融着する場合もあ
る。ここでアルミニウム亜鉛合金めつき層は例え
ばAl55重量%、Zn43.4重量%、Si1.6重量%の合
金層であるが必ずしも配合はこれに限定されない
ものである。
本発明にあつては塩化ビニル樹脂塗膜層にアル
ミニウム粉末またはアルミニウム箔細片とガラス
繊維を混入してあるので、塩化ビニル樹脂塗膜層
の表面から内部に侵入しようとする紫外線と赤外
線がアルミニウム粉末やアルミニウム箔細片によ
つて第2図の矢印で示すように塩化ビニル樹脂塗
膜層の表面で反射されてそれ以上内部に侵入しな
いものであり、この結果鋼板上に形成したアルミ
ニウム亜鉛合金めつき層まで紫外線、赤外線が到
達しない。従つて塗膜温度の上昇が防がれ熱によ
る塩化ビニル樹脂の劣化が進行せずまた紫外線が
塩化ビニル樹脂塗膜層の中を通つて劣化を促進さ
せ、さらに塩化ビニル樹脂塗膜層を通行後にアル
ミニウム亜鉛合金めつき層によつて紫外線が反射
され再度全巾にわたつて塩化ビニル樹脂塗膜層を
劣化させるといつた恐れはなくなる。しかもこの
ようにアルミニウム亜鉛合金めつき層に太陽光が
至つて反射するのを防止するため塩化ビニル樹脂
被覆層にアルミニウム粉末またはアルミニウム箔
片を混入した場合、アルミニウム粉末またはアル
ミニウム箔片の混入量が多くなると塩化ビニル樹
脂層の透水性や透湿性が高まると共に強度が低下
して、雨水が通りやすくなつて亜鉛アルミニウム
イオンが流出したり、塩化ビニル樹脂層の物性が
低下して加工性が悪くなるが、本発明にあつては
この点を無機質繊維を混入することでアルミニウ
ム粉末やアルミニウム細片を混入したことによる
透水性や透湿性が高まるのを防止し、塗膜の透水
性、透湿性を20〜30%と低くできて雨水が通りに
くく、アルミニウム亜鉛めつき層からの亜鉛アル
ミニウムイオンの流出がしにくく、基板のめつき
層がより保護され亜鉛鉄板の2倍以上の性能がよ
り向上するものであり、また塩化ビニルの物性を
向上させて加工性が良くなるものである。次に太
陽熱や気温によつて塩化ビニル樹脂塗膜層が膨張
収縮することによる塗膜のクラツクの発生や接着
剤層よりの剥離に対しては塩化ビニル樹脂塗膜層
中に混入した繊維により塗膜の強度が強化され耐
摩耗性があるため良好な結果が得られている。こ
のように本発明にあつては塩化ビニル被覆鋼板の
基板としてアルミニウム亜鉛合金めつき鋼板を使
用しても塩化ビニル樹脂塗膜の耐久性の低下、加
工性の低下を防止し、透水性や透湿性を低くして
アルミニウム亜鉛合金めつき層からの亜鉛アルミ
ニウムイオンの流出を防止してめつき層の保護を
することができ、これらの基板及び被覆の相乗効
果により20年以上の耐久性のある製品とできるも
のである。
次に本発明の実施例について説明する。
実施例
板厚0.5m/mの55%アルミニウム亜鉛合金め
つき鋼板(めつき目付150g/m2めつき厚み片面
20μ)のアルミニウム亜鉛合金めつき層に日本パ
ーカライジング社のクロム酸系化成処理液ボンデ
ンライト1310で処理し、その上にアクリルフエノ
ール系接着剤の100重量部に対して防錆顔料クロ
ム酸ストロンチウム20重量部とクロム酸カルシウ
ム10重量部を混入した接着剤を7g/m2塗布して
200℃で焼付け、その上にガラス繊維(径13μ長
さ100μで塗料への混入率が塗料100重量部に対し
て15重量部)と、アルミニウム粉末(粒径5μの
ものを塗料への混入率が塗料100重量部に対して
20重量部)とを混入した塩化ビニル塗料を250
g/m2塗布焼付して200μの膜厚としてアルミニ
ウム亜鉛合金めつき鋼板を基板とした塩化ビニル
被覆鋼板を形成した。
比較例
板厚0.5m/mの亜鉛鉄板(亜鉛目付305g/m2
めつき厚み片面20μ)にリン酸亜鉛系化成処理液
で処理し、その上にアクリルフエノール系接着剤
を塗布焼付した上に標準の外装用塩化ビニル塗料
を膜厚200μに塗布焼付して比較例のものを得た。
本発明の実施例のものと比較例のものとの性能
を下記の第1表に示す。
The present invention relates to a vinyl chloride-coated steel sheet using an aluminum-zinc alloy coated steel sheet as a substrate. Conventionally, aluminum-zinc alloy coated steel sheets in which an aluminum-zinc alloy plating layer 2 is formed on a steel sheet 1 are known as zinc-aluminum coated products disclosed in Japanese Patent Publication No. 46-7161, and those disclosed in Japanese Patent Publication No. 53-22528. As is known from the corrosion-resistant aluminum-zinc coating and its manufacturing method, and the method for treating iron strands by hot-dipping coating disclosed in Japanese Patent Publication No. 54-8335, compared to galvanized iron sheets, It is known to have twice the corrosion resistance. On the other hand, vinyl chloride resin coatings have extremely high corrosion resistance when applied to steel plates or galvanized iron plates, but it is said that deterioration is accelerated by ultraviolet rays from sunlight, heat, rain water, dust, etc. Therefore, in order to improve this drawback, the coating film of PVC steel plates for exterior walls used for roofs and walls of buildings, etc., is coated with dibasic lead phosphite-based, organic tin-based, and baryum to prevent heat and ultraviolet deterioration. Stabilizers such as zinc-based and organic phosphite esters, extender pigments such as titanium white (TiO), and coloring pigments are added to vinyl chloride resin paste with phthalic acids such as deisodecyl phthalate (DIDP) and deoctal phthalate (DOP). It is coated with a sol paint mixed with a plasticizer and baked. On the other hand, aluminum and aluminum-zinc alloy plated steel sheets have excellent corrosion resistance and are used as exterior building materials, but because they reflect infrared rays and ultraviolet rays in sunlight, for example, as shown in Figure 1, aluminum-zinc alloy plated layer 2 is Vinyl chloride resin layer 7
When using a vinyl chloride coated plate coated with aluminum, sunlight passes through the vinyl chloride resin layer 7 twice due to incidence and reflection, which accelerates deterioration, and an adhesive interface layer due to the difference in thermal expansion between the aluminum and vinyl chloride coatings. This type of coated metal plate could not be commercialized because of problems such as peeling from the adhesive layer due to insufficient cohesive force. Therefore, if an aluminum-zinc alloy plated steel sheet has an alloy plating with a high aluminum ratio, the aluminum will have a strong influence and reflect infrared and ultraviolet rays, so an aluminum-zinc alloy-plated steel sheet is not suitable as a substrate for a vinyl chloride resin-coated steel sheet. I wasn't there. Therefore, galvanized steel sheets have been the mainstay, and turnsheets (lead-tin alloy plated steel sheets) have been used as the substrate. The present invention was devised in view of the above points, and its purpose is to apply a vinyl chloride coating to an aluminum-zinc alloy plated steel plate, which has twice the durability of a galvanized iron plate, as a substrate. The purpose of the present invention is to provide a vinyl chloride-coated steel sheet using an aluminum-zinc alloy-plated steel sheet as a substrate, which has excellent weather and corrosion resistance and can maintain durability for 15 years or more. In the present invention, an aluminum-zinc alloy plating layer is formed on a steel plate, a chemical conversion treatment is applied to the aluminum-zinc alloy plating layer, and an inorganic material such as glass fiber or carbon fiber is applied to the aluminum-zinc alloy plating layer through an adhesive layer containing rust-preventive pigments. This is a vinyl chloride-coated steel sheet using an aluminum-zinc alloy plated steel sheet as a substrate, which is characterized by forming a vinyl chloride resin coating layer mixed with fibers and aluminum powder or aluminum foil pieces. The present invention will be specifically described below. In the figure, reference numeral 1 denotes a steel plate, and this steel plate 1 has an aluminum-zinc alloy plating layer 2 formed thereon, and is a so-called aluminum-zinc alloy plated steel plate. Aluminum zinc alloy plating layer 2 of this aluminum zinc alloy plated steel sheet
A chemical conversion treatment layer 3 is formed by treating with a chromic acid-based chemical conversion treatment agent, and on top of that, an acrylic epoxy containing anticorrosive pigments such as calcium chromate and strontium chromate, either singly or in combination. An adhesive layer 4 is formed by applying and baking a acrylic or acrylic/phenol adhesive.
On top are 3 glass fibers 5 each treated with a silane coupling agent and having a diameter of 5 to 22 μm and a length of 10 to 500 μm, and 3 pieces of aluminum powder or aluminum foil strips 6 of 5 μm or less and treated with stearic acid titanate and having a particle size of 1 to 130 μm. A coating film 7 is formed by applying and baking a sol paint mixed with the above-mentioned various stabilizers, coloring pigments, plasticizers, and vinyl chloride resin in a range of 40% to 40%. This coating film may be embossed in a heated state using a preformed roll, or it may be formed into a branch-like coating film by rotating the coating roll. The surface of this coating is also coated with 10% transparent or colored methyl methacrylate resin that blocks ultraviolet rays.
In some cases, a film 8 having a thickness of ~100 μm is heat-sealed. Here, the aluminum-zinc alloy plating layer is, for example, an alloy layer containing 55% by weight of Al, 43.4% by weight of Zn, and 1.6% by weight of Si, but the composition is not necessarily limited thereto. In the present invention, since aluminum powder or aluminum foil pieces and glass fiber are mixed in the vinyl chloride resin coating layer, ultraviolet rays and infrared rays that try to penetrate from the surface of the vinyl chloride resin coating layer into the inside of the aluminum As shown by the arrow in Figure 2, the powder and aluminum foil strips are reflected on the surface of the vinyl chloride resin coating layer and do not penetrate any further into the interior, and as a result, the aluminum-zinc alloy formed on the steel plate UV and infrared rays do not reach the plating layer. Therefore, the temperature of the coating film is prevented from increasing, and the deterioration of the vinyl chloride resin due to heat does not proceed.In addition, ultraviolet rays pass through the vinyl chloride resin coating layer, promoting deterioration, and further pass through the vinyl chloride resin coating layer. There is no longer a risk that the ultraviolet rays will be reflected by the aluminum-zinc alloy plating layer and deteriorate the vinyl chloride resin coating layer again over the entire width. Moreover, when aluminum powder or aluminum foil pieces are mixed into the vinyl chloride resin coating layer in order to prevent sunlight from reaching and reflecting on the aluminum-zinc alloy plating layer, the amount of aluminum powder or aluminum foil pieces mixed in becomes smaller. If the amount increases, the water permeability and moisture permeability of the vinyl chloride resin layer will increase and its strength will decrease, making it easier for rainwater to pass through and zinc aluminum ions to flow out, and the physical properties of the vinyl chloride resin layer will decrease and processability will deteriorate. However, in the present invention, by mixing inorganic fibers, it is possible to prevent the water permeability and moisture permeability from increasing due to the mixing of aluminum powder and aluminum pieces, and improve the water permeability and moisture permeability of the coating film. It can be made as low as 20-30%, making it difficult for rainwater to pass through, making it difficult for zinc-aluminum ions to leak out from the aluminum galvanized layer, further protecting the plating layer of the board, and improving the performance by more than twice that of galvanized steel sheets. It also improves the physical properties of vinyl chloride and improves processability. Next, fibers mixed in the vinyl chloride resin coating layer can prevent the coating from cracking or peeling from the adhesive layer due to expansion and contraction of the vinyl chloride resin coating layer due to solar heat and temperature. Good results have been obtained because the membrane has increased strength and wear resistance. As described above, in the present invention, even if an aluminum-zinc alloy plated steel sheet is used as a substrate for a vinyl chloride-coated steel sheet, a decrease in durability and workability of the vinyl chloride resin coating film can be prevented, and water permeability and permeability can be improved. It is possible to protect the plating layer by lowering the humidity and preventing the outflow of zinc-aluminum ions from the aluminum-zinc alloy plating layer, and the synergistic effect of these substrates and coatings ensures durability for over 20 years. It is something that can be made into a product. Next, examples of the present invention will be described. Example: 55% aluminum-zinc alloy plated steel plate with a plate thickness of 0.5 m/m (plating weight 150 g/m, 2 plating thickness on one side)
20 μ) aluminum zinc alloy plating layer is treated with Nippon Parkerizing Co., Ltd.'s chromic acid-based chemical conversion treatment liquid Bondenrite 1310, and on top of that, 20 parts by weight of the rust-preventing pigment strontium chromate is applied to 100 parts by weight of the acrylic phenol adhesive. and 10 parts by weight of calcium chromate were applied at 7g/ m2 .
Baked at 200℃, on top of that glass fiber (diameter 13μ, length 100μ, mixing rate in the paint is 15 parts by weight per 100 parts by weight of the paint) and aluminum powder (particle size 5μ) in the paint. is per 100 parts by weight of paint
250 parts by weight of vinyl chloride paint mixed with
g/m 2 was applied and baked to a film thickness of 200 μm to form a vinyl chloride-coated steel plate using an aluminum-zinc alloy coated steel plate as a substrate. Comparative example Galvanized iron plate with a thickness of 0.5 m/m (zinc weight 305 g/m 2
Comparative example in which a plating thickness of 20μ on one side was treated with a zinc phosphate chemical conversion treatment liquid, an acrylic phenol adhesive was applied and baked on top of that, and then a standard exterior vinyl chloride paint was applied and baked to a film thickness of 200μ. I got something. The performances of the examples of the present invention and the comparative examples are shown in Table 1 below.
【表】【table】
第1図はアルミニウム亜鉛めつき鋼板に塩化ビ
ニル塗膜層を形成した場合における塩化ビニル樹
脂塗膜層への紫外線、赤外線の反射を示す説明
図、第2図は本発明における紫外線、赤外線の反
射状態を示す説明図、第3図は本発明の他の実施
例の説明図であつて、1は鋼板、2はアルミニウ
ム亜鉛合金めつき層、3は化成処理層、4は接着
剤層、5はガラス繊維、6はアルミニウム粉末、
7は塩化ビニル樹脂層である。
Figure 1 is an explanatory diagram showing the reflection of ultraviolet rays and infrared rays on the vinyl chloride resin coating layer when a vinyl chloride coating layer is formed on an aluminum galvanized steel sheet, and Figure 2 is the reflection of ultraviolet rays and infrared rays in the present invention. FIG. 3 is an explanatory diagram of another embodiment of the present invention, in which 1 is a steel plate, 2 is an aluminum-zinc alloy plating layer, 3 is a chemical conversion treatment layer, 4 is an adhesive layer, and 5 is an explanatory diagram showing the state. is glass fiber, 6 is aluminum powder,
7 is a vinyl chloride resin layer.
Claims (1)
成し、アルミニウム亜鉛合金めつき層上に化成処
理を施し、この上に防錆顔料入り接着剤層を介し
てガラス繊維または炭素繊維の如き無機質繊維と
アルミニウム粉末またはアルミニウム箔片を混入
した塩化ビニル樹脂塗膜層を形成して成ることを
特徴とするアルミニウム亜鉛合金めつき鋼板を基
板とした塩化ビニル被覆鋼板。1. Form an aluminum-zinc alloy plating layer on a steel plate, perform a chemical conversion treatment on the aluminum-zinc alloy plating layer, and apply inorganic fibers such as glass fiber or carbon fiber on top of this via an adhesive layer containing anti-rust pigments. A vinyl chloride-coated steel sheet using an aluminum-zinc alloy plated steel sheet as a substrate, characterized by forming a vinyl chloride resin coating layer mixed with aluminum powder or aluminum foil pieces.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5577582A JPS58171949A (en) | 1982-04-02 | 1982-04-02 | Vinyl chloride coated steel plate using aluminum zinc alloy plated steel plate as substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5577582A JPS58171949A (en) | 1982-04-02 | 1982-04-02 | Vinyl chloride coated steel plate using aluminum zinc alloy plated steel plate as substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58171949A JPS58171949A (en) | 1983-10-08 |
JPS6313827B2 true JPS6313827B2 (en) | 1988-03-28 |
Family
ID=13008250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5577582A Granted JPS58171949A (en) | 1982-04-02 | 1982-04-02 | Vinyl chloride coated steel plate using aluminum zinc alloy plated steel plate as substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58171949A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5561456A (en) * | 1978-11-01 | 1980-05-09 | Nippon Steel Corp | Vinyl chloride coated film steel plate and its preparation |
JPS55164151A (en) * | 1979-06-11 | 1980-12-20 | Toyo Kohan Co Ltd | High climate resisting composite coated metallic plate |
JPS5658859A (en) * | 1979-10-20 | 1981-05-22 | Nippon Steel Corp | Steel plate coated with vinyl chloride and its manufacture |
-
1982
- 1982-04-02 JP JP5577582A patent/JPS58171949A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5561456A (en) * | 1978-11-01 | 1980-05-09 | Nippon Steel Corp | Vinyl chloride coated film steel plate and its preparation |
JPS55164151A (en) * | 1979-06-11 | 1980-12-20 | Toyo Kohan Co Ltd | High climate resisting composite coated metallic plate |
JPS5658859A (en) * | 1979-10-20 | 1981-05-22 | Nippon Steel Corp | Steel plate coated with vinyl chloride and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPS58171949A (en) | 1983-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100918085B1 (en) | Adiabatic paint composition for building structure and method for adiabatic construction by using the same | |
KR102045881B1 (en) | Solution composition for surface treating of steel sheet, steel sheet using the same, and manufacturing method of the same | |
BRPI0720642A2 (en) | COMPOSITION AND PROCESS FOR COATING METAL SURFACES | |
JPH0374908B2 (en) | ||
CN108727961A (en) | Heat insulating and corrosion coating and preparation method thereof | |
JP2009046970A (en) | Roof construction and wall construction | |
KR102064527B1 (en) | A metal panel improved in corrosion, heat shielding and scratching function, and a manufacturing method thereof | |
JPS6313827B2 (en) | ||
JP2004307957A (en) | Inorganic/organic bilayer painted metal plate | |
JPH0683815B2 (en) | Surface treated metal plate | |
JPH0688371B2 (en) | Durable painted metal plate | |
CN114032010A (en) | Color steel plate suitable for metal roof BIPV system | |
JP2003320614A (en) | Pre-coated metal sheet excellent in processability, coating film adhesion and photocatalytic activity | |
JPH07308633A (en) | Highly durable coated metal plate with corrosion resistance in flaw part, processability, and snow slipperiness, and continuous manufacture of the metal plate | |
JPS6334793B2 (en) | ||
JP2001170553A (en) | Inorganic coated metal plate excellent in corrosion resistance and antifoulancy, and its manufacturing method | |
CN220226002U (en) | Oil-stain-resistant modified acrylic ester emulsion paint coating structure | |
CN211691171U (en) | Reflective heat-insulating coating structure for building | |
JPS61148046A (en) | Surface-treated metallic plate and manufacture thereof | |
JPH11503500A (en) | Zinc shingle for roofing | |
JPS6051423B2 (en) | Synthetic resin film coated steel sheet and its manufacturing method | |
WO1993023348A1 (en) | Method of ceramic coating | |
JPH01290867A (en) | Metal plate | |
JP2016193593A (en) | Chromate-free type precoated steel sheet excellent in edge face red rust anticorrosion and having coated film excellent in hygroscopic resistance | |
JPH0714542Y2 (en) | Metal plate |