JPS63138223A - Optical device - Google Patents

Optical device

Info

Publication number
JPS63138223A
JPS63138223A JP28482486A JP28482486A JPS63138223A JP S63138223 A JPS63138223 A JP S63138223A JP 28482486 A JP28482486 A JP 28482486A JP 28482486 A JP28482486 A JP 28482486A JP S63138223 A JPS63138223 A JP S63138223A
Authority
JP
Japan
Prior art keywords
parallel
parallel plate
pieces
parallel plates
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28482486A
Other languages
Japanese (ja)
Other versions
JPH0786597B2 (en
Inventor
Yoshihiro Miyamoto
義博 宮本
Nobuyuki Kajiwara
梶原 信之
Hiroyuki Ishizaki
石崎 洋之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61284824A priority Critical patent/JPH0786597B2/en
Publication of JPS63138223A publication Critical patent/JPS63138223A/en
Publication of JPH0786597B2 publication Critical patent/JPH0786597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the resolution by providing at least two pieces of parallel plates having prescribed inclination and thickness, in an optical path, and rotating them at a prescribed speed, respectively. CONSTITUTION:When an explanation is made with regard to the case of two pieces of parallel plates, a coupling lens 1 couples incident infrared rays on a focal plane 3 through the parallel plates 2-1 and 2-2. The parallel plates 2-1, 2-2 are formed by Ge and allow infrared rays to transmit through, have thickness (d) and inclined at angles theta1, theta2, respectively, against an optical axis. When a rotating speed of the parallel plate 2-2 is set to four times of a rotating speed of the parallel plate 2-1, a formed image executes a scan of 4X4 at a pitch of an effective picture element interval l=35mum, and as for a detecting element in this case, 4L, namely, an interval of 140mum is enough, and a conventional picture element number can be set to four times. The foregoing explains the case of two pieces of parallel plates, and when (n) pieces of plates are provided, the number of picture elements can be increased to 4<n> times.

Description

【発明の詳細な説明】 〔概要〕 この発明は、赤外線二次元センサの走査数を増大しく最
像画素の解像度を向上するために、光軸を中心軸として
回転する平行平板を複数設け、それぞれの平行平板の厚
さと光軸に対する傾斜と、回転数を異なるように構成し
である。
[Detailed Description of the Invention] [Summary] In order to increase the number of scans of an infrared two-dimensional sensor and improve the resolution of the most imaged pixel, the present invention provides a plurality of parallel flat plates that rotate around the optical axis, and each The thickness of the parallel plates, the inclination with respect to the optical axis, and the rotation speed are different.

〔産業上の利用分野〕[Industrial application field]

この発明は、光学装置特に、赤外線二次元センサに用い
る光学装置の改善に関するものである。
The present invention relates to an optical device, particularly an optical device used in an infrared two-dimensional sensor.

光の二次元的な分布、二次元像を得る二次元赤外線セン
サでは、解像度を改善する方法として画素数を増加する
と、その画像品質が著しく向上する。
In a two-dimensional infrared sensor that obtains a two-dimensional distribution of light and a two-dimensional image, increasing the number of pixels as a way to improve resolution significantly improves the image quality.

そこで、画像品質向上のために、画素数を増大しようと
すると、この光センサは高密度化されなければならず、
そのために画素形成に微細加工が必要となる。また、こ
の光センサがハイブリッド型の場合に接続部材(バンプ
)も増大し作成に困難であり、更に画素数を増加するこ
とによって取り扱う電荷量が減少し性能を低下するとい
うことを生じる。
Therefore, in order to increase the number of pixels in order to improve image quality, this optical sensor must be made highly dense.
For this reason, fine processing is required to form pixels. Furthermore, when this optical sensor is of a hybrid type, the number of connecting members (bumps) increases and is difficult to manufacture, and furthermore, as the number of pixels increases, the amount of charge handled decreases, resulting in a decrease in performance.

従って、光学的に走査数を増やす光学装置が要望されて
いる。
Therefore, there is a need for an optical device that optically increases the number of scans.

〔従来の技術〕[Conventional technology]

赤外線二次元センサの画素数を増加するために、従来用
いられた光学装置は、第4図と第5図に示す構造であり
、第4図に示すように、赤外線を透過する例えば、ゲル
マニウムからなる平行平板20は、結像レンズ1と焦点
面3との光軸に対して傾斜角θ°を持って配設され、こ
の平行平板20は光軸を中心軸として回転するようにし
である。
In order to increase the number of pixels of an infrared two-dimensional sensor, the optical device conventionally used has the structure shown in FIGS. 4 and 5. As shown in FIG. The parallel plate 20 is arranged with an inclination angle θ° to the optical axis of the imaging lens 1 and the focal plane 3, and the parallel plate 20 is configured to rotate about the optical axis.

平行平板20を透過した赤外線は、平行平板の置かれた
環境、例えば大気とゲルマニウムのそれぞれの屈折率と
平行平板20の厚さdによって定まる変位ΔXを生じて
光軸に平行に焦点面3に達する。
The infrared rays transmitted through the parallel plate 20 produce a displacement ΔX determined by the environment in which the parallel plate is placed, for example, the refractive index of the atmosphere and germanium, and the thickness d of the parallel plate 20, and are directed to the focal plane 3 parallel to the optical axis. reach

この平行平板20を光軸中心に回転するとΔXの半径の
軌跡を焦点面に描くこととなる。焦点面のX、Y軸はそ
れぞれ2倍となり、結果画素数は2X2の4倍になる(
特願昭61−28222号参照)。
When this parallel plate 20 is rotated around the optical axis, a locus with a radius of ΔX is drawn on the focal plane. The X and Y axes of the focal plane are each doubled, and the resulting number of pixels is four times 2X2 (
(See Japanese Patent Application No. 61-28222).

第5図は従来の振動型の光学装置であって、平行平板2
0を回転するのでなく、平行平板20を角度θ°前後に
振動させるタイプであり、これも上記したと同じく画素
数は4倍となる。しかしこのタイプは、第4図より機構
的に複雑となる。
FIG. 5 shows a conventional vibrating optical device, in which a parallel plate 2
This is a type in which the parallel plate 20 is vibrated back and forth at an angle of θ° instead of rotating 0, and the number of pixels is four times the same as described above. However, this type is mechanically more complicated than that shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光学装置を用いた解像度は4倍であり、さらに高
解像度に対処できないという問題があった。
The resolution using conventional optical devices is four times higher, and there is a problem in that it cannot handle even higher resolutions.

この発明は、上記した従来の状況から、より高解像度の
光学装置を提供することを目的とするものである。
The object of the present invention is to provide an optical device with higher resolution in view of the above-mentioned conventional situation.

〔問題点を解決するための手段〕[Means for solving problems]

この発明では、結像レンズと光軸に斜交し、かつ光軸を
中心として回転する平行平板を少なくとも2個設け、各
平行平板の厚さと傾斜角と回転速度をそれぞれ異なるよ
うに構成する。
In this invention, at least two parallel flat plates which are obliquely intersecting the imaging lens and the optical axis and rotate about the optical axis are provided, and each parallel plate is configured to have a different thickness, inclination angle, and rotation speed.

〔作用〕[Effect]

第1の平行平板で変位した赤外線を第2の平行平板で更
に変位させて、画素数の増大を可能とする。
The infrared rays displaced by the first parallel plate are further displaced by the second parallel plate, making it possible to increase the number of pixels.

〔実施例〕〔Example〕

第1図は本発明による光学装置の一実施例を示す模式図
である。即ち、結像レンズlは、入射する赤外線を平行
平板2−1と2−2を介して焦点面3に結像する。平行
平板2−1と2−2は、ゲルマニウムで形成され赤外線
を透光する。例えば、平行平板2−1は、厚さdで形成
され光軸に対して角度θIをもって傾斜している。
FIG. 1 is a schematic diagram showing an embodiment of an optical device according to the present invention. That is, the imaging lens 1 images the incident infrared rays on the focal plane 3 via the parallel plates 2-1 and 2-2. The parallel plates 2-1 and 2-2 are made of germanium and transmit infrared rays. For example, the parallel plate 2-1 is formed with a thickness d and is inclined at an angle θI with respect to the optical axis.

平行平板2−2は、厚さdであり角度θ2p14斜して
いる。この平行平板を光軸に対して傾斜させた場合の変
位状態を第2図に示す。この第2図は、平行平板に屈折
率4のゲルマニウムを用いて、大気中における変位を示
す。図に示すように傾斜角、即ち平行平板の入射角が2
0”程度まで、変位量は略直線的に変化する。
The parallel plate 2-2 has a thickness d and is inclined at an angle θ2p14. FIG. 2 shows the displacement state when this parallel plate is tilted with respect to the optical axis. This Figure 2 shows the displacement in the atmosphere using germanium with a refractive index of 4 as a parallel plate. As shown in the figure, the inclination angle, that is, the incident angle of the parallel plate is 2
The amount of displacement changes approximately linearly up to about 0''.

例えば、平行平板2−1の傾斜θ1を1.885  °
とし、厚さdを1mll1とすると、変位量Δx1は2
4.7μmとなる。平行平板2−2の傾斜θ2を3.7
79  。
For example, the inclination θ1 of the parallel plate 2-1 is 1.885°.
If the thickness d is 1ml1, the displacement Δx1 is 2
It becomes 4.7 μm. The inclination θ2 of the parallel plate 2-2 is 3.7
79.

とし、厚さを1mmとすると変位量Δx2は49.5μ
lとなる。この状態を表1に示す。
If the thickness is 1mm, the displacement Δx2 is 49.5μ
It becomes l. This state is shown in Table 1.

表  1 この状態に光学装置を設定し平行平板2−2の回転速度
を平行平板2−1の回転速度の4倍とすると、結像は、
第3図に示すようになる。即ち、実効画素間隔L=35
μ…のピンチで4×4の走査を行い、この時の検知素子
は4L即ち、140μm間隔でよいこととなる。
Table 1 If the optical device is set in this state and the rotational speed of the parallel plate 2-2 is set to four times the rotational speed of the parallel plate 2-1, the image formation will be as follows.
The result is as shown in FIG. That is, effective pixel interval L=35
A 4×4 scan is performed with a pinch of μ..., and the detection elements at this time may be arranged at intervals of 4L, that is, 140 μm.

上記した構成で従来の画素数を4倍にすることができる
With the above configuration, the number of pixels can be quadrupled compared to the conventional one.

以上の説明は平行平板を2個として説明を行ったがn個
備えると、4倍画素数を増大できる。
The above explanation has been made using two parallel plates, but if n pieces are provided, the number of pixels can be increased four times.

〔効果〕〔effect〕

以上の説明から明らかなように、この発明によれば、平
行平板を複数個備えと云う簡単な構成で画素数を増大で
き、解像度を向上する上できわめて有効な効果を発揮す
る。
As is clear from the above description, according to the present invention, the number of pixels can be increased with a simple configuration including a plurality of parallel flat plates, which is extremely effective in improving resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光学装置の一実施例を示す模式図
、 第2図は平行平板の傾斜角と変位の関係図、第3図は本
発明の画素と検知素子の関係を説明するための模式図、 本発明の画素と検知素子を説明するための模式第4図は
従来の光学装置を示す模式図、第5図は従来の振動型光
学装置を示す模式図である。 図において、lは結像レンズ、2−1と2−2は平行平
板、3は焦点面を示す。 手応畦−=73疋デ裟1−炊軸科隷ごり第1図 イ頃rtIlle’ → 平tf平uq イFfIH1’t M 停イtq mf
ir:lJ第2図 第3図 従来め3Lケ装置9ネT頌武必 第4図 2041ゴ千級 第5図
Fig. 1 is a schematic diagram showing an embodiment of the optical device according to the present invention, Fig. 2 is a diagram showing the relationship between the inclination angle and displacement of a parallel plate, and Fig. 3 is for explaining the relationship between the pixel and the detection element of the present invention. FIG. 4 is a schematic diagram showing a conventional optical device, and FIG. 5 is a schematic diagram showing a conventional vibrating optical device. In the figure, 1 is an imaging lens, 2-1 and 2-2 are parallel plates, and 3 is a focal plane. Hands-on = 73 疋 裟 1- Cooking axis department Reigori 1st figure I rtIlle' → flat tf flat uq iiFfIH1't M stop tq mf
ir:lJ Figure 2 Figure 3 Conventional 3L ke device 9ne T Odeki Figure 4 2041 Gothic class Figure 5

Claims (1)

【特許請求の範囲】[Claims] 結像レンズ(1)と、該結像レンズの光軸に斜交し、か
つ光軸を中心軸として回転する透光部材からなる平行平
板(2)とを具備する光学装置において、所定の傾きと
厚さを有する前記平行平板(2−1〜2−n)を少なく
とも2個光路中に設け、それぞれ所定の速度で回転する
ことを特徴とする光学装置。
In an optical device that includes an imaging lens (1) and a parallel plate (2) made of a transparent member that is oblique to the optical axis of the imaging lens and rotates about the optical axis, a predetermined inclination is provided. An optical device characterized in that at least two of the parallel flat plates (2-1 to 2-n) having a thickness of 1 are provided in an optical path, and each of the parallel plates rotates at a predetermined speed.
JP61284824A 1986-11-28 1986-11-28 Optical device Expired - Lifetime JPH0786597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284824A JPH0786597B2 (en) 1986-11-28 1986-11-28 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284824A JPH0786597B2 (en) 1986-11-28 1986-11-28 Optical device

Publications (2)

Publication Number Publication Date
JPS63138223A true JPS63138223A (en) 1988-06-10
JPH0786597B2 JPH0786597B2 (en) 1995-09-20

Family

ID=17683483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284824A Expired - Lifetime JPH0786597B2 (en) 1986-11-28 1986-11-28 Optical device

Country Status (1)

Country Link
JP (1) JPH0786597B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191730A (en) * 1975-02-10 1976-08-11
JPS51126145U (en) * 1975-04-07 1976-10-13
JPS5373146A (en) * 1976-12-13 1978-06-29 Sony Corp Optical device of image pick-up apparatus
JPS61275815A (en) * 1985-05-31 1986-12-05 Nippon Kogaku Kk <Nikon> Scanning optical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191730A (en) * 1975-02-10 1976-08-11
JPS51126145U (en) * 1975-04-07 1976-10-13
JPS5373146A (en) * 1976-12-13 1978-06-29 Sony Corp Optical device of image pick-up apparatus
JPS61275815A (en) * 1985-05-31 1986-12-05 Nippon Kogaku Kk <Nikon> Scanning optical device

Also Published As

Publication number Publication date
JPH0786597B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
JP4101297B2 (en) Electrical device comprising a pixel array
CN101069088A (en) Surface inspection apparatus and surface inspection method
US20090309957A1 (en) Omnidirectional imaging apparatus
JPS5821702A (en) Image-forming element using both side reflection band of minute width
US3765743A (en) Optical energy detection system including image plane scanning system
JP2612637B2 (en) Apparatus for sharing data under multi-processing environment
JPS63138223A (en) Optical device
JPH03175402A (en) Optical transmission plate
JPH02158711A (en) Ftheta lens system in optical scanner
CN100405830C (en) Imaging device
JP2000284217A (en) Erect variable power array lens device
TW202209138A (en) Biometric sensing device and biometric sensing group
JP2003174155A (en) Imaging device
JPH05100181A (en) Scanning system
JP4492343B2 (en) Imaging device
KR102443126B1 (en) Wide angle compound-eye camera and method of manufacturing the same
JPH08191418A (en) Image pickup device with interference fringe noise preventing mechanism
WO2019127251A1 (en) Imaging device and imaging method
CN2497332Y (en) Omnbearing monitoring mirror
JPH1198392A (en) Image pickup device
JPS61142862A (en) Image pickup device
JPS58166340A (en) Image forming device
JPH04105476A (en) Omni-directional image pickup device
JP2005086287A (en) Stereoscopic video imaging apparatus
JP2841997B2 (en) Liquid crystal display device