JPS63138201A - Measuring implement - Google Patents

Measuring implement

Info

Publication number
JPS63138201A
JPS63138201A JP28525786A JP28525786A JPS63138201A JP S63138201 A JPS63138201 A JP S63138201A JP 28525786 A JP28525786 A JP 28525786A JP 28525786 A JP28525786 A JP 28525786A JP S63138201 A JPS63138201 A JP S63138201A
Authority
JP
Japan
Prior art keywords
grooves
thin film
measured
surface plate
hard thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28525786A
Other languages
Japanese (ja)
Other versions
JPH0820201B2 (en
Inventor
Masatoshi Shiyukume
正敏 宿女
Masahiro Okumura
雅弘 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP28525786A priority Critical patent/JPH0820201B2/en
Publication of JPS63138201A publication Critical patent/JPS63138201A/en
Publication of JPH0820201B2 publication Critical patent/JPH0820201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Details Of Measuring And Other Instruments (AREA)
  • Length-Measuring Instruments Using Mechanical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To permit sure measurement by depositing a thin hard film on a flat reference plate which contacts with an object to be measured in such a manner as to form rugged patterns thereon, thereby assuring the thorough contact with the object to be measured. CONSTITUTION:The imposing surface of a base body 1 consisting of ceramics such as Al2O3 is formed to a smooth and flat surface. A mask consisting of a resin or the like is then formed to the parts on the imposing surface where grooves 3 are to be formed and the thin hard film 2 of >=1,800kg/mm<2> VH consisting of TiC, TiN, etc., is deposited thereon. The mask is thereafter removed to obtain the rugged patterns having the grooved 3 thin hard film 2. The thin hard film 2 is further polished to a smooth surface. The depth D of the grooves 3 is the film thickness of the thin film 2 and can be set at a very small size at which both the width W and pitch P of the grooves 3 can be easily varied. The optimum grooves 3 may, therefore, be formed according to the size of a surface plate J and the kind and use environment of the object H to be measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は定盤やブロックゲージなどの測定具に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to measuring tools such as surface plates and block gauges.

(従来の技術) 精密測定などに用いる測定具として、定盤やブロックゲ
ージがあるが、第6図(a) (b)に示すように定盤
Jは被測定物体を載置する基準面J1を有する板状体で
あり、基準面J1は平坦でなめらかな面としていた。ま
たブロックゲージBは2つの平行な基準面r1.B+を
有する六面体で、基準面B、、B。
(Prior art) There are surface plates and block gauges as measurement tools used for precision measurements, etc. As shown in Fig. 6(a) and (b), the surface plate J is a reference surface J1 on which the object to be measured is placed. The reference surface J1 was a flat and smooth surface. Moreover, the block gauge B has two parallel reference planes r1. A hexahedron with B+ and reference planes B,,B.

間の距離tが定められた長さとなっており、さまざまな
距離tを有するブロックゲージBを用意しておいて、必
要な長さのものを取り出して使用するようになっていた
。また、これら定盤J゛、ブロックゲージBの材質は、
合金工具鋼、炭素クロム鋼などの金属や、アルミナセラ
ミックなどを用いていた。
The distance t between them is a predetermined length, and block gauges B having various distances t are prepared, and one of the required length is taken out and used. In addition, the materials of these surface plate J゛ and block gauge B are as follows.
Metals such as alloy tool steel, carbon chrome steel, and alumina ceramic were used.

(従来技術の問題点) このような従来の定盤J、ブロックゲージBを使用する
ときは、たとえばブロックゲージBを定盤J上に載置し
た場合、第6図(b)に示すように、定盤Jの基準面、
LとブロックゲージBの基準面B+の間に、微細なゴミ
Gが存在して測定値に誤差が生じるため、ブロックゲー
ジBを定盤Jに押しつけながら、矢印方向に何度か動か
して、ゴミGを外へ出すようにしていた。
(Problems with the prior art) When using such conventional surface plate J and block gauge B, for example, when block gauge B is placed on surface plate J, as shown in FIG. 6(b), , the reference surface of the surface plate J,
Fine dust G exists between L and the reference plane B+ of block gauge B, causing an error in the measured value. I was trying to get G out.

しかし、定盤Jの基準面J、とブロックゲージBの基準
面B1はいずれも平坦でなめらかな面であるから、ゴミ
Gの逃げ場がなく、ゴミGを完全に外へ出しきることが
困難であり、残ったゴミGの大きさ分だけ誤差が生じて
いた。たとえクリーンルーム内でも数μm程度のゴミG
が存在しているため、数μm程度の誤差を防ぐことは難
かしかった。
However, since the reference surface J of the surface plate J and the reference surface B1 of the block gauge B are both flat and smooth surfaces, there is no place for the garbage G to escape, and it is difficult to completely remove the garbage G. There was an error due to the size of the remaining dust G. Even in a clean room, dust G of several micrometers
Because of this, it has been difficult to prevent errors on the order of several μm.

また、前記したように使用するときにブロックゲージB
を定盤Jに押しつけながら前後に動かすため、金属やア
ルミナセラミックよりなる定盤JやブロックゲージBは
基準面J+、B+が摩耗しやすく、長期使用中には基準
面J、、B、の平坦度が悪くなって測定値に誤差が生じ
てしまうという不都合があった。
Also, when using as described above, block gauge B
The reference surfaces J+ and B+ of the surface plate J and block gauge B made of metal or alumina ceramic are likely to wear out, and during long-term use, the reference surfaces J,, B, become flat. There was an inconvenience that the accuracy deteriorated and an error occurred in the measured value.

(問題点を解決するための手段) 上記に鑑みて本発明は、被測定物体と接触する平坦な基
準面に、凹凸パターンを形成するように硬質薄膜を被着
したり、また前記基準面にあらかじめ凹凸パターンを形
成し、その上に硬質薄膜を被着して測定具を構成するよ
うにしたものである。
(Means for Solving the Problems) In view of the above, the present invention provides a method in which a hard thin film is applied to a flat reference surface in contact with an object to be measured so as to form an uneven pattern, and the reference surface is A measuring tool is constructed by forming a concavo-convex pattern in advance and depositing a hard thin film on top of the concavo-convex pattern.

(実施例) 以下、本発明の実施例を図によって説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図(a) (b)に示すように、定盤Jは基体1の
載置面に縞状に硬質薄膜2を被着して、溝3よりなる凹
凸パターンを形成したものであり、硬質薄膜2の表面2
aは表面粗さ0.25Ra以下のなめらかな面としであ
る。
As shown in FIGS. 1(a) and 1(b), the surface plate J has a hard thin film 2 coated in stripes on the mounting surface of the base 1 to form an uneven pattern of grooves 3. Surface 2 of hard thin film 2
A is a smooth surface with a surface roughness of 0.25 Ra or less.

また、第2図(a)(b)に示すようにブロックゲージ
Bは、基体11の2つの平行な基準面に縞状に硬質薄膜
12を被着して溝13よりなる凹凸パターンを形成した
ものであり、硬質薄膜12の表面12cは表面粗さ0.
IRa以下のなめらかな面としである。
Furthermore, as shown in FIGS. 2(a) and 2(b), the block gauge B has a hard thin film 12 coated in stripes on two parallel reference surfaces of a base 11 to form an uneven pattern consisting of grooves 13. The surface 12c of the hard thin film 12 has a surface roughness of 0.
It has a smooth surface of IRa or less.

このような第1図(a) (b)に示した本発明実施例
に係る定盤Jを用いれば、第3図に示すように、定盤J
上で、被測定物体■を矢印方向に何度か動かすと、微細
なゴミGが溝3の中に入りこむため、被測定物体Hが硬
質薄膜2の表面2aに完全に密着して正確な測定を行う
ことができる。また、被測定物体Hが接触する部分は硬
質薄1112の表面2aであるから摩耗が少なく、さら
に硬質薄膜2の表面2aの粒子構造は丸味を帯びたなめ
らかなものとなっているため、被測定物体11に傷をつ
けにくい。
If the surface plate J according to the embodiment of the present invention shown in FIGS. 1(a) and (b) is used, the surface plate J as shown in FIG.
When the object to be measured (■) is moved several times in the direction of the arrow above, the fine dust G gets into the groove 3, so that the object to be measured (H) comes into complete contact with the surface 2a of the hard thin film 2, resulting in accurate measurement. It can be performed. In addition, since the surface 2a of the hard thin film 1112 is in contact with the object to be measured H, there is less wear, and the particle structure of the surface 2a of the hard thin film 2 is rounded and smooth. Hard to damage object 11.

以上第1図(a) (b)に示した定盤Jについて説明
したが、第2図(a) (b)に示したブロックゲージ
Bについても同様である。
The above description has been made regarding the surface plate J shown in FIGS. 1(a) and (b), but the same applies to the block gauge B shown in FIGS. 2(a) and (b).

次に第1図(a) (b)に示した定盤Jおよび第2図
(a) (b)に示すブロックゲージBの製法を定盤B
を例として説明する。まずアルミナ、ジルコニアなどの
セラミックまたはコバールよりなる基体1を用意し、載
置面をなめらかで平坦な面とする。次にこの蔵置面上の
溝3とすべき分に樹脂やフォトレジストなどでマスクを
形成しおいて、その上からTiC,TiN、TiB2.
ダイヤモンド、 W B + S t CIS 1 x
 N aなどのビッカース硬度1800Kg/mm” 
 以上の硬質薄膜2をCVD法などで被着させる。その
後、前記マスクを取り除けばマスク部分は硬質薄膜2が
被着されていないため溝3となり、第1図(b)に示す
ような凹凸パターンを形成することができる。さらに、
必要に応じて硬質薄膜2の表面を研磨して、表面粗さ0
.25Ra以下のなめらかな面とすればよい。
Next, the manufacturing method for the surface plate J shown in Fig. 1 (a) (b) and the block gauge B shown in Fig. 2 (a) (b) was applied to the surface plate B.
will be explained as an example. First, a base 1 made of ceramic such as alumina or zirconia or Kovar is prepared, and the mounting surface is made smooth and flat. Next, a mask is formed using resin, photoresist, etc. in the area that should be the groove 3 on this storage surface, and then TiC, TiN, TiB2, etc. are formed on the mask.
Diamond, W B + S t CIS 1 x
Vickers hardness such as Na 1800Kg/mm”
The above hard thin film 2 is deposited by CVD method or the like. Thereafter, when the mask is removed, the masked portions become grooves 3 since the hard thin film 2 is not adhered thereto, and an uneven pattern as shown in FIG. 1(b) can be formed. moreover,
Polish the surface of the hard thin film 2 as necessary to achieve a surface roughness of 0.
.. A smooth surface of 25 Ra or less may be used.

このとき溝3の深さDは硬質薄膜2の膜厚でありCVD
法の時間を変化させることにより、また溝3の幅−、ピ
ッチPはマスクの形状を変化させることによりそれぞれ
容易に変化させることができ、しかも非常に微小なもの
とすることができる。
At this time, the depth D of the groove 3 is the thickness of the hard thin film 2, and the CVD
By changing the process time, and by changing the shape of the mask, the width and pitch P of the grooves 3 can be easily changed, and can be made very small.

したがって、定盤Jの大きさや被測定物体IIの種類、
使用環境などに応じて最適の形状、深さを持った溝3を
形成すればよい。
Therefore, the size of the surface plate J and the type of the object to be measured II,
The groove 3 may be formed with an optimal shape and depth depending on the usage environment.

さらに本発明の他の実施例を説明する。Further, other embodiments of the present invention will be described.

第3図に示す定盤Jは基体1の載置面全体に硬M薄膜2
を被着しておき、表面に溝3よりなる凹凸パターンを形
成したものであり、凸部表面2aは0.25Ra以下の
なめらかな面となっている。このような凹凸パターンは
、硬質薄膜2を被着後、溝3以外の部分にマスクを形成
しておいて、エツチング処理を施したあとマスクを取り
除くことによって形成される。
The surface plate J shown in FIG. 3 has a hard M thin film 2 on the entire mounting surface of the base 1.
A convex and convex pattern consisting of grooves 3 is formed on the surface, and the convex surface 2a is a smooth surface with a surface roughness of 0.25 Ra or less. Such a concavo-convex pattern is formed by forming a mask on the parts other than the grooves 3 after depositing the hard thin film 2, performing an etching process, and then removing the mask.

さらに、第4図に示す定盤Jは基体lのR直面laにあ
らかしめ、マスクを形成しておいてエツチングまたはサ
ンドブラストを施すことにより凹凸パターンを形成して
おき、このiz面1aに硬質薄11!2を被着させ、溝
3を形成したものである。
Furthermore, the surface plate J shown in FIG. 4 is prepared on the R plane la of the base body l, a mask is formed, and an uneven pattern is formed by etching or sandblasting. 11!2 is applied and grooves 3 are formed.

これらの第3図、第4図に示した定盤Jを用いても?R
3に微細なゴミGを取り込むことができるため、載置し
た被測定物体を硬質薄膜2の表面2aに完全に密着させ
ることができる。また溝3の深さDはエツチングまたは
サンドブラストの時間を変化させることにより、幅W、
ピッチPはマスクの形状を変化させることによりそれぞ
れ容易に変化させることがでいる。したがって、定盤J
の大きさや被測定物体の種類、使用環境などに応じて最
適の形状、深さを持った溝3を形成すればよい。
Even if I use the surface plate J shown in these figures 3 and 4? R
Since fine dust G can be taken into the hard thin film 2, the mounted object to be measured can be brought into complete contact with the surface 2a of the hard thin film 2. Also, the depth D of the groove 3 can be changed by changing the width W,
The pitch P can be easily changed by changing the shape of the mask. Therefore, surface plate J
The groove 3 may be formed to have an optimal shape and depth depending on the size of the object, the type of object to be measured, the usage environment, etc.

また第3図、第4図では測定具として定盤のみを示した
が、ブロックゲージなどの他の測定具にも応用でき同様
の効果を奏することは言うまでもない。
Further, although only a surface plate is shown as a measuring tool in FIGS. 3 and 4, it goes without saying that the present invention can also be applied to other measuring tools such as block gauges and produce similar effects.

実際に第1図(a) (b)、第3図、第4図に示した
定盤Jを測定具に使用する場合は種々実験の結果、溝3
の深さDは5〜1oIII111幅Hは5〜10μm 
As a result of various experiments, when the surface plate J shown in Figs. 1(a), (b), 3, and 4 is actually used as a measuring tool,
Depth D is 5~1oIII111 Width H is 5~10μm
.

ピッチPは1〜5μmのものがゴミを確実に取り除き摩
耗も少なく優れていた。また、第2図(a)(b)に示
したブロックゲージBの場合は溝13の深さ0は5〜I
Lcrm 、幅Nは10〜30,17111 、 ヒフ
 fP ハ0.5〜1μmのものが優れていた。さらに
、これらの定盤JやブロックゲージBにおいて溝3,1
3の形状は格子状などさまざまなものとしてよく、また
基準面の端部まで溝3,13を形成しておけば中にたま
ったゴミGを容易に排除することができる。
A pitch P of 1 to 5 μm was superior in that it could reliably remove dust and cause less wear. In addition, in the case of the block gauge B shown in FIGS. 2(a) and 2(b), the depth 0 of the groove 13 is 5 to I.
Lcrm, width N of 10 to 30,17111, and fP of 0.5 to 1 μm were excellent. Furthermore, grooves 3 and 1 are formed on these surface plates J and block gauges B.
The shape of the grooves 3 may be various, such as a grid shape, and if the grooves 3 and 13 are formed up to the end of the reference surface, the dust G accumulated therein can be easily removed.

また本発明の実施例の測定具を構成する基体lの材質は
アルミナ、ジルコニア等のセラミックやコバールなどの
熱膨張率の低いものを用いる。さらに硬を薄膜2.12
として用いる物質は第1表に示すように従来の測定具を
形成する物質である合金工具鋼、炭素クロム鋼、アルミ
ナに比べ硬度が大きく、したがって本発明実施例に係る
測定具は基準面の耐摩耗性が大きいことがわかる。
Furthermore, the material of the base 1 constituting the measuring tool of the embodiment of the present invention is a ceramic such as alumina or zirconia, or a material with a low coefficient of thermal expansion such as Kovar. Furthermore, the hardness is thin film 2.12
As shown in Table 1, the hardness of the material used as a reference surface is greater than that of alloy tool steel, carbon chromium steel, and alumina, which are the materials used to form conventional measuring tools. It can be seen that the wear resistance is high.

〔以下余白〕[Margin below]

第  1  表 次に本発明実施例に係る定盤Jを、第2表に示すさまざ
まな材質の基体1と硬質薄膜2の組合せで試作した。基
体lの大きさは縦100mm、横100mm。
Table 1 Next, surface plates J according to examples of the present invention were prototyped using combinations of the base 1 and hard thin film 2 made of various materials shown in Table 2. The size of the base l is 100 mm in length and 100 mm in width.

厚、さ20mraで硬¥を薄膜2の膜厚は10μm、溝
3の幅は10μm、ピッチは1mmとした。また比較例
とじて同じ大きさで硬質薄膜2を被着しないものと、硬
質薄膜2を被着して溝3を形成しないものも試作して、
これらの定盤Jを用いて特性試験を行った。
The thickness of the thin film 2 was 10 μm, the width of the grooves 3 was 10 μm, and the pitch was 1 mm. In addition, as comparative examples, we made prototypes of the same size without the hard thin film 2, and with the hard thin film 2 but without the grooves 3.
Characteristic tests were conducted using these surface plates J.

まず、各々の定盤Jに従来のブロックゲージを載置して
何度か前後に動かしてコ壓Gを除くようにした後、その
大きさを測定し、測定誤差の大きさを調べ、次に20m
m角のセラミックブロックを各定盤上に一定時間内こす
りつけて、定盤の摩耗量を測定した。結果は第2表の通
りである。
First, place a conventional block gauge on each surface plate J and move it back and forth several times to remove the block G, then measure its size and check the measurement error. 20m to
An m square ceramic block was rubbed on each surface plate for a certain period of time to measure the amount of wear on the surface plate. The results are shown in Table 2.

第  2 表 第2表より比較例であるNo、1.2の定盤は硬質薄膜
2を被着していないため摩耗量が大きく、またゴミGが
完全に取り除けないため測定誤差も大きかった。
Table 2 As shown in Table 2, the surface plate No. 1.2, which is a comparative example, had a large amount of wear because it did not have the hard thin film 2 applied thereto, and also had a large measurement error because the dust G could not be completely removed.

No、3の定盤は硬質薄膜2を被着しているが溝3を形
成していないためゴミGを取り除けず、測定誤差が大き
かった。これに対して、本発明実施例に係るNo、4〜
7の定盤はいずれも摩耗量が少なく、溝中にゴミを取り
込むことができるため測定誤差も小さがった。
Surface plate No. 3 was covered with a hard thin film 2, but no grooves 3 were formed, so the dust G could not be removed, resulting in a large measurement error. On the other hand, Nos. 4 to 4 according to the embodiments of the present invention
All of the surface plates No. 7 had less wear and were able to trap dirt into the grooves, reducing measurement errors.

次に本発明実施例に係るブロックゲージBを第2表に示
すさまざまな材質の基体11と硬質薄膜12の組合せで
試作した。ブロックゲージBの大きさは縦10mm、横
10mm 、基準面間の距離tが5mmとし、硬質薄膜
12の膜厚は5μm、溝13の幅は10μm、ピンチは
1mmとした。また比較例として、同じ大きさで、硬’
11m膜12を被着しないものと、硬′1に薄膜12を
被着して溝13を形成しないものも試作して、これらの
ブロックゲージBを用いて特性試験を行った。まず各々
のブロックゲージBをアルミナセラミックよりなる従来
の定盤上に載置し、前後に何度か動かしてゴミを取り除
くようにした後、基準面間の距離tを測定して誤差の大
きさを調べ、次に各々のブロックゲージBを定盤上に一
定時間こすりつけて、基準面の摩耗量を測定した。結果
は第3表の通りである。
Next, block gauges B according to the embodiments of the present invention were prototyped using combinations of the base 11 and hard thin film 12 made of various materials shown in Table 2. The size of the block gauge B was 10 mm long and 10 mm wide, the distance t between the reference surfaces was 5 mm, the thickness of the hard thin film 12 was 5 μm, the width of the groove 13 was 10 μm, and the pinch was 1 mm. As a comparative example, a
A prototype without the 11m film 12 applied thereto and another in which the thin film 12 was applied to the hard layer 1 without forming the grooves 13 were made as prototypes, and characteristic tests were conducted using these block gauges B. First, each block gauge B is placed on a conventional surface plate made of alumina ceramic, and after moving it back and forth several times to remove dust, the distance t between the reference surfaces is measured to determine the size of the error. Next, each block gauge B was rubbed on a surface plate for a certain period of time to measure the amount of wear on the reference surface. The results are shown in Table 3.

第3表 第3表より、比較例であるNo、 1のものは硬質薄膜
12を被着していないため測定誤差、摩耗量とも大きく
、またNo、2のものは溝13を形成していないためゴ
ミを逃がしきれず、測定誤差が大きかった。これに対し
、本発明実施例に係るNo、3〜7のものは測定誤差、
摩耗量ともに小さく優れた結果であった。
Table 3 From Table 3, Comparative Example No. 1 has no hard thin film 12 applied, so the measurement error and wear amount are large, and No. 2 has no groove 13 formed. Therefore, the dust could not be completely removed, resulting in large measurement errors. On the other hand, Nos. 3 to 7 according to Examples of the present invention have measurement errors,
Both the amount of wear was small and the results were excellent.

以上の実施例において、硬質薄膜2,12の一被着方法
はCvD法以外にもイオンブレーティング法、スパンタ
リング法、イオンデームデポジション法などのPvD法
を用いてもよい。また、硬質薄膜2.12としてTiC
,TiNなどの導電性の高い物質を用いると、表面の静
電気を除去することができ好都合であった。
In the embodiments described above, as a method for depositing the hard thin films 2 and 12, other than the CvD method, a PvD method such as an ion blasting method, a sputtering method, or an ion deme deposition method may be used. In addition, TiC is used as the hard thin film 2.12.
The use of highly conductive substances such as , TiN, etc. is advantageous because static electricity on the surface can be removed.

(発明の効果) 叙上のように本発明によれば、被測定物体と接触する平
坦な基準面に凹凸パターンを形成するように硬Ma膜を
被着したり、または前記基準面に凹凸パターンを形成し
ておいて、その上に硬質薄膜を被着させて測定具を形成
したことによって、該凹凸パターンの溝中にゴミが入り
込むため、被測定物体や他の測定具を完全に密着させ、
正確な測定ができるだけでなく、基準面の耐摩耗性が大
きく長期にわたって優れた平坦度を保つことができ、ま
た基準面の粒子構造が丸味を帯びたものとなるため被測
定物体や他の測定具に傷をつけることもないなど、多く
の特長を有した測定具を提供することができる。
(Effects of the Invention) As described above, according to the present invention, a hard Ma film is deposited to form a concave-convex pattern on a flat reference surface that contacts the object to be measured, or a concave-convex pattern is formed on the reference surface. By forming a hard thin film on top of a hard thin film to form a measurement tool, dust can get into the grooves of the uneven pattern, so the object to be measured and other measurement tools cannot be placed in complete contact with each other. ,
Not only can accurate measurements be made, but the reference surface has high wear resistance and can maintain excellent flatness over a long period of time, and the grain structure of the reference surface is rounded, making it easy to measure objects and other objects. It is possible to provide a measuring tool that has many features such as not damaging the tool.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明に係る測定具の一実施例である定
盤を示す斜視図、第1図(b)は同図(a)中のX−X
線断面図である。第2図(a)は本発明の他の実施例で
あるブロックゲージを示す斜視図、第2図(b )は同
図(a)中のY−Y線断面図である。第3図、第4図は
それぞれ本発明の他の実施例を示す断面図である。第5
図は第1図に示した定盤上に被測定物体を載置した状態
を示す断面図である。 第6図(a)は従来の定盤とブロックゲージを示す斜視
図、第6図(b)は同図(a)中のZ−Z線断面図であ
る。 J ・・・定盤 B ・・・ブロックゲージ 1.11・・基体 2.12・・硬質薄膜
FIG. 1(a) is a perspective view showing a surface plate which is an embodiment of the measuring tool according to the present invention, and FIG. 1(b) is a perspective view showing a surface plate taken along the line
FIG. FIG. 2(a) is a perspective view showing a block gauge according to another embodiment of the present invention, and FIG. 2(b) is a sectional view taken along the line Y--Y in FIG. 2(a). FIGS. 3 and 4 are sectional views showing other embodiments of the present invention. Fifth
This figure is a sectional view showing a state in which an object to be measured is placed on the surface plate shown in FIG. 1. FIG. 6(a) is a perspective view showing a conventional surface plate and block gauge, and FIG. 6(b) is a sectional view taken along the Z-Z line in FIG. 6(a). J...Surface plate B...Block gauge 1.11...Base 2.12...Hard thin film

Claims (2)

【特許請求の範囲】[Claims] (1)被測定物体と接触する平坦な基準面に、凹凸パタ
ーンを形成するように硬質薄膜を被着したことを特徴と
する測定具。
(1) A measuring instrument characterized in that a hard thin film is adhered to a flat reference surface that contacts an object to be measured so as to form an uneven pattern.
(2)被測定物体と接触する基準面に凹凸パターンを形
成し、該基準面に硬質薄膜を被着したことを特徴とする
測定具。
(2) A measuring instrument characterized in that a concavo-convex pattern is formed on a reference surface that contacts an object to be measured, and a hard thin film is adhered to the reference surface.
JP28525786A 1986-11-29 1986-11-29 Measuring tool Expired - Lifetime JPH0820201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28525786A JPH0820201B2 (en) 1986-11-29 1986-11-29 Measuring tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28525786A JPH0820201B2 (en) 1986-11-29 1986-11-29 Measuring tool

Publications (2)

Publication Number Publication Date
JPS63138201A true JPS63138201A (en) 1988-06-10
JPH0820201B2 JPH0820201B2 (en) 1996-03-04

Family

ID=17689156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28525786A Expired - Lifetime JPH0820201B2 (en) 1986-11-29 1986-11-29 Measuring tool

Country Status (1)

Country Link
JP (1) JPH0820201B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339612A (en) * 1989-07-06 1991-02-20 Origin Electric Co Ltd Roller for thickness detector of paper
JP2005156551A (en) * 2003-11-06 2005-06-16 Showa Denko Kk Flatness measuring device of workpiece equipped with workpiece pedestal, and the workpiece pedestal
JP2005288619A (en) * 2004-03-31 2005-10-20 Nippon Oil Corp Cfrp surface table
JP2021098241A (en) * 2019-12-20 2021-07-01 株式会社ディスコ Feeler gauge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3645726B2 (en) * 1999-01-14 2005-05-11 株式会社ミツトヨ Gauge block

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339612A (en) * 1989-07-06 1991-02-20 Origin Electric Co Ltd Roller for thickness detector of paper
JP2005156551A (en) * 2003-11-06 2005-06-16 Showa Denko Kk Flatness measuring device of workpiece equipped with workpiece pedestal, and the workpiece pedestal
JP4511316B2 (en) * 2003-11-06 2010-07-28 昭和電工株式会社 Work cradle and work flatness measuring apparatus equipped with the work cradle
JP2005288619A (en) * 2004-03-31 2005-10-20 Nippon Oil Corp Cfrp surface table
JP2021098241A (en) * 2019-12-20 2021-07-01 株式会社ディスコ Feeler gauge

Also Published As

Publication number Publication date
JPH0820201B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JP5519578B2 (en) Lamina production method
US7916045B2 (en) Scale for photoelectric encoder
JP2003272336A (en) Mounting member made of glass for magnetic disk and method for manufacturing the same
KR100887269B1 (en) Semiconductor wafers with highly precise edge profile and method for producing them
JPS63138201A (en) Measuring implement
Teague et al. Sinusoidal profile precision roughness specimens
Tsukada et al. A three-dimensional measuring technique for surface asperities
JPS6029601A (en) Ceramic gage
CN113770805A (en) Turning surface roughness prediction method based on cutter parameters and material parameters
JPWO2011145494A1 (en) Cutting tools
JPWO2018155644A1 (en) Cutting insert and cutting tool provided with the same
Jungles et al. An investigation of the shape and dimensions of some diamond styli
JP2537222B2 (en) Blockage
Quiney et al. The measurement of surface roughness and profiles on metals
JP6972853B2 (en) Imprint mold forming substrate, imprint mold forming blanks, and imprint mold, and imprint mold forming blanks and imprint mold manufacturing method.
JP2527003B2 (en) Glass master for optical disc master
JPS6056201A (en) Variable block gauge
CN112469957A (en) Surface finish contact pin
JPH07128002A (en) Ceramic gauge
JP7067131B2 (en) Imprint mold manufacturing substrate and imprint mold and imprint mold manufacturing substrate manufacturing method and imprint mold manufacturing method
Blau et al. A comparison of several surface finish measurement methods as applied to ground ceramic and metal surfaces
KR102407973B1 (en) Large-size synthetic quartz glass substrate, evaluation method, and manufacturing method
CN114112574B (en) Magnetron sputtering forming device for testing mechanical property of mesoscopic scale bending sample
Sharman Paper 34: Calibration of Surface Texture Measuring Instruments
Sharpe et al. Small attachable interferometric strain gages