JPS631377B2 - - Google Patents

Info

Publication number
JPS631377B2
JPS631377B2 JP16150183A JP16150183A JPS631377B2 JP S631377 B2 JPS631377 B2 JP S631377B2 JP 16150183 A JP16150183 A JP 16150183A JP 16150183 A JP16150183 A JP 16150183A JP S631377 B2 JPS631377 B2 JP S631377B2
Authority
JP
Japan
Prior art keywords
cooling
steel plate
water
temperature steel
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16150183A
Other languages
Japanese (ja)
Other versions
JPS6086215A (en
Inventor
Masakazu Nakao
Akinori Ootomo
Takeshi Tanaka
Yoshikazu Oobanya
Akira Kobayashi
Kensho Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16150183A priority Critical patent/JPS6086215A/en
Publication of JPS6086215A publication Critical patent/JPS6086215A/en
Publication of JPS631377B2 publication Critical patent/JPS631377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 本発明は、熱間圧延後の高温鋼板をオンライン
上で鋼板の上下面より冷却媒体(水)を噴射し、
冷却することによつて、所要の機械的性質を付与
せしめる冷却方法に関するものである。
[Detailed Description of the Invention] The present invention involves injecting a cooling medium (water) online from the upper and lower surfaces of a hot-rolled steel plate,
The present invention relates to a cooling method that imparts required mechanical properties by cooling.

近時、熱間圧延された厚鋼板をオンライン上で
それ自身の保有熱を利用し鋼板上面をラミナーノ
ズル(ラミナーフロー、ロツドライクフローおよ
びジエツトフローを含む以下同じ)で、鋼板下面
をスプレーノズルにより冷却する所謂、鋼板の制
御冷却技術が提唱されている。
Recently, hot-rolled thick steel plates are cooled online using their own heat, with the upper surface of the steel plate being cooled using a laminar nozzle (including laminar flow, rod-like flow, and jet flow), and the lower surface of the steel plate being cooled using a spray nozzle. A so-called controlled cooling technology for steel plates has been proposed.

この種の制御冷却技術において、冷却後におけ
る鋼板の形状、即ち、鋼板の反り、端部における
座屈波の生じない良好な平坦度を有する鋼板を得
るために、特に重要な要件となるのは、板厚方向
における対称な温度分布および鋼板の巾方向にお
ける均一な温度分布を付与せしめることである。
In this type of controlled cooling technology, the following are particularly important requirements in order to obtain a steel plate with good flatness that does not cause warping or buckling waves at the edges of the steel plate after cooling. , to provide a symmetrical temperature distribution in the thickness direction and a uniform temperature distribution in the width direction of the steel sheet.

前述する鋼板の変形(歪)に対する冷却条件の
影響は、例えば、鋼板の反りに対しては主に鋼板
の上下面より供給する冷却水の量的比率、即ち、
上下水量比に依存するものと考えられ、又、座屈
波は鋼板の巾方向における温度分布に依存するも
のと考えられ、従つて、良好な平坦度の鋼板を得
るためには、前述する2つの冷却条件を充分に加
味する必要がある。
The effect of cooling conditions on the deformation (strain) of the steel plate mentioned above is, for example, the warping of the steel plate mainly depends on the quantitative ratio of cooling water supplied from the upper and lower surfaces of the steel plate, that is,
It is thought that the buckling waves depend on the ratio of water and sewage volumes, and that the buckling waves depend on the temperature distribution in the width direction of the steel plate. Therefore, in order to obtain a steel plate with good flatness, it is necessary to It is necessary to fully consider the following cooling conditions.

この制御冷却技術における前述の冷却条件を詳
述するならば、鋼板の上下面から冷却を施すに当
り、前述する上部をラミナーノズルにより、また
下部をスプレーノズルにより冷却を行う場合、そ
の上下面において冷却方法が異なり、上面側にお
ける冷却能力が高いことから、鋼板の変形(反
り)を防止するためにはその上下水量比(下面水
量/上面水量)は1.5〜4.0の範囲を選択すべきで
あると従来ではされていた(特開昭52−85909号
公報参照)。
To explain the above-mentioned cooling conditions in this controlled cooling technology in detail, when cooling the steel plate from the upper and lower surfaces, when cooling the upper part using a laminar nozzle and the lower part using a spray nozzle, Since the cooling method is different and the cooling capacity is higher on the upper surface side, in order to prevent deformation (warping) of the steel plate, the water volume ratio (bottom surface water volume/top surface water volume) should be selected in the range of 1.5 to 4.0. This has been conventionally held (see Japanese Patent Application Laid-open No. 85909/1983).

また、水量密度が高いほど、換言すれば、鋼板
の冷却速度が大きくなれば、その上下水量比を大
きくしなければならないと従来されていた。例え
ば、上下水量比の設定についてその一例を示せば
第1図に示す様に鋼板の反りを抑制するためには
水量密度との関係を加味して下面水量は上面水量
に対して2.0〜2.5倍供給する必要がある。
Furthermore, it has been conventionally believed that the higher the water density is, in other words, the faster the cooling rate of the steel plate is, the larger the ratio of water and wastewater amounts must be. For example, as shown in Figure 1, in order to suppress the warping of a steel plate, the lower surface water volume should be 2.0 to 2.5 times the upper surface water volume, taking into account the relationship with the water flow density. need to be supplied.

また、鋼板の巾方向における温度分布について
は、上面ラミナーノズルからの冷却水が鋼板上面
に滞溜し、かつ、その冷却水は主に鋼板側端部へ
と流出するため、鋼板の端部側ほど滞溜水が加重
され、この滞溜水の2次的な冷却作用により鋼板
の巾方向における端部側の冷却作用が増加し、鋼
板の巾方向における温度分布が発生し、鋼板の弾
性座屈により鋼板端部における波状の座屈波が発
生する(“鉄と鋼”1982年春季溝演大会概要集第
187ページ参照)。
Regarding the temperature distribution in the width direction of the steel plate, the cooling water from the upper laminar nozzle accumulates on the top surface of the steel plate, and the cooling water mainly flows out to the edge of the steel plate. As the weight increases, the accumulated water becomes heavier, and due to the secondary cooling effect of this accumulated water, the cooling effect on the edge side in the width direction of the steel plate increases, and a temperature distribution occurs in the width direction of the steel plate, causing the elastic seat of the steel plate to increase. Due to bending, wavy buckling waves are generated at the edge of the steel plate (“Tetsu to Hagane” 1982 Spring Groove Exhibition Summary Collection, Vol.
(See page 187).

これらの影響を排除するために巾方向における
上部ノズル流量を調整する方法(特開昭55−
153616号公報)あるいは鋼板端部に落下する冷却
水の部分遮へいによる巾方向温度分布の均一化
(特開昭57−174416号公報および特開昭58−32511
号公報)を図つたものが提案されている。
A method of adjusting the flow rate of the upper nozzle in the width direction to eliminate these effects (Japanese Patent Laid-Open No. 1986-
153616) or uniformization of the temperature distribution in the width direction by partially shielding the cooling water falling on the edge of the steel plate (Japanese Patent Application Laid-Open Nos. 57-174416 and 58-32511)
A system has been proposed that aims to achieve this goal.

ところで、現実の操業を考さつするとき、前記
種々の対策にも拘らず鋼板の変形、特に冷却速度
を大きくする場合に過大な反りの発生を誘引する
ことが知見された。
By the way, when considering actual operations, it has been found that despite the various measures mentioned above, deformation of the steel plate, especially when the cooling rate is increased, causes excessive warping.

本発明者等は種々検討を加えた結果、その原因
は次のような理由であることが推論し得る。
As a result of various studies conducted by the present inventors, it can be inferred that the cause is as follows.

即ち、鋼板冷却時、下部スプレーノズルによる
冷却水がその噴射圧によつて鋼板の上面に巻き込
まれ、該冷却水による2次冷却作用から鋼板上面
における冷却能を加速し、また、ある場合には鋼
板の端部における温度不均一を招き、反りや弾性
座屈波を生じる結果となる。
That is, when cooling a steel plate, the cooling water from the lower spray nozzle is drawn onto the upper surface of the steel plate by its injection pressure, and the secondary cooling effect of the cooling water accelerates the cooling ability on the upper surface of the steel plate. This results in temperature non-uniformity at the edges of the steel plate, resulting in warping and elastic buckling waves.

一方、これら現象は鋼板上面における全体の冷
却能を上昇せしめることにつながり、さらにはこ
れが延いては鋼板上下面における水量比との関係
から下面スプレーノズルにおける冷却水の増大を
招いていた。
On the other hand, these phenomena lead to an increase in the overall cooling capacity on the upper surface of the steel plate, which in turn leads to an increase in the cooling water at the lower spray nozzle due to the relationship with the water amount ratio between the upper and lower surfaces of the steel plate.

さらに、またこれが端部の滞溜水の増大を招く
という悪循環を招くから他ならない。
Furthermore, this leads to an increase in the amount of water stagnant at the ends, creating a vicious cycle.

このような現象の存在を無視して上下水量水が
決定され冷却が施されていたのである。
The amount of water and sewage water was determined and cooled by ignoring the existence of such phenomena.

下部スプレーノズルによる鋼板の端部に対する
制御し得ない冷却状態により生じる温度不均一と
鋼板上面に巻き込まれることによる冷却能の増大
という悪循環を除去するために、例えば、特開昭
57−174416号公報に示されるように、下部スプレ
ーノズルの形態に変更を加えた場合にあつても、
前述の上下水量比でもつて冷却を行うと、冷却速
度を大きくした場合、大きな反り、歪が生じた。
In order to eliminate the vicious cycle of temperature non-uniformity caused by uncontrollable cooling of the edge of the steel plate by the lower spray nozzle and increased cooling capacity due to being caught on the upper surface of the steel plate, for example,
As shown in Publication No. 57-174416, even if the form of the lower spray nozzle is changed,
When cooling was performed with the above-mentioned water/sewage volume ratio, large warpage and distortion occurred when the cooling rate was increased.

特に、この上下水量比の不均一さが鋼板の変形
に与える影響は爾後の工程におけるレベリング工
程の通板を阻害する大きな反りとして現出するこ
とになり、生産性、歩留りを低下せしめる原因と
なる。
In particular, the effect of this uneven ratio of water and wastewater amounts on the deformation of the steel plate manifests itself in large warps that impede the threading of the steel plate in the leveling process in the subsequent process, causing a decrease in productivity and yield. .

これは前述する鋼板上下面に対するラミナーノ
ズルとスプレーノズルにおける上下水量比の不均
衡がもたらす結果に他ならないとの結論に達した
のである。
It was concluded that this was the result of the aforementioned imbalance in the ratio of water and wastewater amounts between the laminar nozzle and the spray nozzle relative to the upper and lower surfaces of the steel plate.

本発明者等は前述の観点から実操業における最
適な鋼板冷却条件、特に、鋼板上下面の冷却水量
比について種々実験を重ねた結果、従来とは全く
別異の傾向を有する最適上下水量比が存すること
を見い出したのである。
From the above-mentioned perspective, the present inventors have conducted various experiments regarding the optimal steel plate cooling conditions in actual operation, especially the cooling water volume ratio between the upper and lower surfaces of the steel plate, and as a result, the optimal water and wastewater volume ratio, which has a completely different tendency from the conventional one, has been found. I discovered that it does exist.

即ち、本発明にあつてはまず第1に、熱間圧延
された高温鋼板の上面をパイプノズルからの冷却
水流によつて冷却し、前記高温鋼板の下面をスプ
レーノズルからの噴射水流によつて冷却する高温
鋼板の冷却方法において、 鋼板の上下面に対する上下水量比(下部水量/
上部水量)を水量密度の増大に伴つて小さくなる
よう設定して冷却することを特徴とする高温鋼板
お冷却方法を提供するにある。
That is, in the present invention, first, the upper surface of the hot-rolled high-temperature steel sheet is cooled by a cooling water flow from a pipe nozzle, and the lower surface of the high-temperature steel sheet is cooled by a jet water flow from a spray nozzle. In the method of cooling high-temperature steel plates, the ratio of water volume to the top and bottom surfaces of the steel plate (bottom water volume/
To provide a method for cooling a high-temperature steel plate, which is characterized in that cooling is performed by setting the upper water volume (upper water volume) to decrease as the water volume density increases.

ここで、上下水量比は1.4〜2.6であることが以
下の説明からも明らかとなり、また、水量密度が
0.5以上になれば上下水量比は1.4〜1.7の平行な範
囲に入り、強冷した場合でも本発明の範ちゆうに
入ることが以下の説明でも理解されよう。
Here, it is clear from the following explanation that the water/sewage volume ratio is 1.4 to 2.6, and the water volume density is
It will be understood from the following explanation that if the ratio is 0.5 or more, the water/sewage volume ratio falls within the parallel range of 1.4 to 1.7, and even strong cooling falls within the scope of the present invention.

更に、本発明にあつては第2に、熱間圧延され
た高温鋼板の上面にパイプノズルからの冷却水流
によつて冷却し、前記高温鋼板の下面をスプレー
ノズルからの噴射水流によつて冷却する高褐鋼板
の冷却方法において、 上下水量比R(下部水量/上部水量)を、 R≦3.836−8.089・W+7.556・W2 R≧2.013−1.733・W+1.333・W2 但し、Wは上下平均水量密度〔m2/min・m2〕 の範囲で冷却することを特徴とする高温鋼板の冷
却方法を提供するにある。
Furthermore, in the present invention, secondly, the upper surface of the hot-rolled high-temperature steel sheet is cooled by a cooling water flow from a pipe nozzle, and the lower surface of the high-temperature steel sheet is cooled by a jet water flow from a spray nozzle. In the method of cooling high brown steel sheets, the water volume ratio R (bottom water volume/top water volume) is R≦3.836−8.089・W+7.556・W 2 R≧2.013−1.733・W+1.333・W 2 An object of the present invention is to provide a method for cooling a high-temperature steel plate, which is characterized by cooling within a range of average water flow density [m 2 /min·m 2 ] above and below.

以下、図面を参照して本発明の実施例を詳述す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の方法に使用する冷却装置の説
明図であり、板幅中心C−Cより対称である一方
のみを示しており、1は被冷却鋼板で、熱間圧延
されて図示しないローラーテーブルを介して図面
と垂直方向に通板される。
FIG. 2 is an explanatory diagram of the cooling device used in the method of the present invention, showing only one side that is symmetrical with respect to the sheet width center C-C. 1 is a steel sheet to be cooled, which has been hot rolled and is not shown. The sheet is passed through a roller table in a direction perpendicular to the drawing.

ローラーテーブル間にはスプレーノズル2,2
Aを有する下部ヘツダ3が設けられ、スプレーノ
ズル2,2Aを介して鋼板1の下面に冷却水を噴
出可能とされ、該噴射水流によつて鋼板下面が冷
却可能である。
Spray nozzles 2, 2 are installed between the roller tables.
A lower header 3 having a diameter A is provided, and can spray cooling water onto the lower surface of the steel plate 1 through spray nozzles 2 and 2A, and the lower surface of the steel plate can be cooled by the jetted water flow.

この場合、スプレーノズルのうち、板端側のノ
ズル2Aは図示の如く斜方ノズルとされ、該ノズ
ル2Aからの噴出流が鋼板1のエツジには乗らな
いようにされ、ここに、該ノズル2Aによる2次
冷却は防止されている。なお、その他のノズル2
は垂直方向の放射ノズルである。なお、全てのノ
ズルが斜方ノズルであつてもよい。
In this case, among the spray nozzles, the nozzle 2A on the plate end side is an oblique nozzle as shown in the figure, and the jet stream from the nozzle 2A is prevented from riding on the edge of the steel plate 1. Secondary cooling is prevented. In addition, other nozzles 2
is a vertical radiation nozzle. Note that all the nozzles may be oblique nozzles.

4は上部ヘツダであり、パイプノズル5を備
え、鋼板1の上面に対して該ノズル5からの冷却
水流が噴出され、冷却可能とされている。
Reference numeral 4 denotes an upper header, which is equipped with a pipe nozzle 5, from which a cooling water stream is jetted against the upper surface of the steel plate 1, thereby making it possible to cool the steel plate 1.

第2図で示したような冷却装置を用いて、本発
明者等は下記条件で実験をしたところ第3図、第
4図の結果を得た。
Using the cooling device shown in FIG. 2, the inventors conducted experiments under the following conditions and obtained the results shown in FIGS. 3 and 4.

実施例 鋼板サイズ(mm)(12t〜51t)×(2500w〜4500w
×l 但し、tは板厚、wは板幅 冷却開始温度(℃) 720〜850 冷却停止温度(℃) 500〜600 水量(m2/hr) 3000〜8000 而して、第3図で示す如く、前述実施例におい
て、板幅3200〜3800で、板厚tが12≦t≦25のも
のにつき、上下平均水量密度(m3/min.m2)と
上下水量比R(下部水量/上部水量)の範囲を求
めた結果、形状良否の判断基準を冷却後にホツト
レベラ等の矯正機に通常操業ピツチを害すること
なく通過できるか否かを基準とし、通過できない
ものは形状不良な大きな反り変形があつたことを
第3図において示している。
Example Steel plate size (mm) (12 t ~ 51 t ) x (2500 w ~ 4500 w )
×l However, t is plate thickness, w is plate width Cooling start temperature (℃) 720-850 Cooling stop temperature (℃) 500-600 Water amount (m 2 / hr) 3000-8000 Therefore, as shown in Figure 3 As shown in the above example, for a plate width of 3200 to 3800 and a plate thickness t of 12≦t≦25, the upper and lower average water volume density (m 3 /min.m 2 ) and the upper and lower water volume ratio R (lower water volume / upper As a result of determining the range of the amount of water (water amount), the criterion for determining whether the shape is good or bad is whether or not it can pass through a straightening machine such as a hot leveler after cooling without damaging the normal operating pitch. This is shown in Figure 3.

即ち、第3図において、 上下水量比Rを、 R≦3.836−8.089・W+7.556・W2 R≧2.013−1.733・W+1.333・W2 但し、Wは上下平均水量密度〔m3/min・m2〕 の範囲で冷却することにより、第3図の〇印で示
されるような形状良好な冷却鋼板を得ることがで
きたのであり、前記範囲外にあつては黒色〇印で
示す如く形状不良な冷却鋼板となることを知見し
たのである。
That is, in Fig. 3, the water and sewerage volume ratio R is as follows: R≦3.836−8.089・W+7.556・W 2 R≧2.013−1.733・W+1.333・W 2 However, W is the average water flow density of the upper and lower sides [m 3 /min・m 2 ] By cooling within the range of They discovered that this resulted in a cooling steel sheet with a poor shape.

また、第4図の上下水量比と反りとの関係グラ
フからも明らかな如く、前述特定された上下水量
比Rの範囲は有効なことが立証できる。
Furthermore, as is clear from the graph of the relationship between the water and sewage volume ratio and the warpage in FIG. 4, it can be proven that the range of the water and sewage volume ratio R specified above is effective.

而して、上下水量比は第3図からも明らかな如
くR=2.750−4.251・W+3.655・W2であること
が適正である。即ち、鋼板の上下面に対する上下
水量比(下部水量/上部水量)を水量密度の増大
に伴つて小さくなるようにして冷却するのであ
り、この場合、第3図でも明らかな如く上下水量
比は1.4〜2.6とされているのであり、又、第3図
において、水量密度が0.5以上になれば、上下水
量比は1.4〜1.7の平行な範囲に入るのである。な
お、第4図において、水量密度の表記は下部ノズ
ルに対するものである。
Therefore, as is clear from FIG. 3, it is appropriate that the water/sewage volume ratio be R=2.750-4.251·W+3.655· W2 . In other words, the steel plate is cooled by decreasing the water volume ratio (bottom water volume/top water volume) with respect to the upper and lower surfaces as the water volume density increases.In this case, as is clear from Figure 3, the water and sewer volume ratio is 1.4. ~2.6, and in Fig. 3, if the water volume density becomes 0.5 or more, the water/sewage volume ratio falls within a parallel range of 1.4 to 1.7. In addition, in FIG. 4, the notation of the water amount density is for the lower nozzle.

以上、要するに本発明にあつては、幾多の実験
を重ねた結果、従来例とは全く異なる現象をみい
出し、上下水量比を特定することによつて反りの
ない高温鋼板の加速冷却方法を得ることができ、
ここに、技術的に難易度が高く、解決すべきテー
マが多いこの種冷却方法として、従来例では到底
期待できないものを提供するのに成功したのであ
る。
In short, in the present invention, as a result of numerous experiments, we have discovered a phenomenon that is completely different from the conventional example, and by specifying the ratio of water and waste water amounts, we have obtained a method for accelerated cooling of high-temperature steel sheets without warping. It is possible,
Here, we have succeeded in providing a cooling method of this type that is technically difficult and has many issues to solve, something that could not be expected with conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例における水量密度と上下水量比
の関係を示すグラフ、第2図は本発明方法に使用
する冷却装置一例の説明図、第3図は上下平均水
量密度と上下水量比の関係を裏付けるための本発
明実施例のグラフ、第4図は上下水量比と反りと
の関係を示す本発明実施例と従来例を示すグラフ
である。 1……被冷却鋼板、3……下部ヘツダ、4……
上部ヘツダ。
Figure 1 is a graph showing the relationship between the water volume density and the water/sewage volume ratio in the conventional example, Figure 2 is an explanatory diagram of an example of a cooling device used in the method of the present invention, and Figure 3 is the relationship between the average vertical water volume density and the water/sewage volume ratio. FIG. 4 is a graph showing the example of the present invention and the conventional example showing the relationship between the water/sewage volume ratio and warpage. 1... Steel plate to be cooled, 3... Lower header, 4...
Upper header.

Claims (1)

【特許請求の範囲】 1 熱間圧延された高温鋼板の上面をパイプノズ
ルからの冷却水流によつて冷却し、前記高温鋼板
の下面をパイプノズルからの噴射水流によつて冷
却する高温鋼板の冷却方法において、 鋼板の上下面に対する上下水量比(下部水量/
上部水量)を水量密度の増大に伴つて小さくなる
よう設定して冷却することを特徴とする高温鋼板
の冷却方法。 2 熱間圧延された高温鋼板の上面をパイプノズ
ルからの冷却水流によつて冷却し、前記高温鋼板
の下面をパイプノズルからの噴射水流によつて冷
却する高温鋼板の冷却方法において、 上下水量比R(下部水量/上部水量)を R≦3.836−8.089・W+7.556・W2 R≧2.013−1.733・W+1.333・W2 但し、Wは上下平均水量密度〔m3/min.m2〕 の範囲で冷却することを特徴とする高温鋼板の冷
却方法。 3 上下水量比RがR=2.750−4.251・W+
3.655・W2であることを特徴とする特許請求の範
囲第2項記載の高温鋼板の冷却方法。
[Claims] 1. Cooling of a hot-rolled high-temperature steel plate, in which the upper surface of the hot-rolled high-temperature steel plate is cooled by a cooling water flow from a pipe nozzle, and the lower surface of the hot-rolled high-temperature steel plate is cooled by a jet water flow from a pipe nozzle. In the method, the ratio of water volume to the top and bottom surfaces of the steel plate (bottom water volume/
A method for cooling a high-temperature steel plate, characterized in that cooling is performed by setting the upper water volume (upper water volume) to decrease as the water volume density increases. 2. In a method for cooling a high-temperature steel plate, in which the upper surface of a hot-rolled high-temperature steel plate is cooled by a cooling water flow from a pipe nozzle, and the lower surface of the high-temperature steel plate is cooled by a jet water flow from a pipe nozzle, the water and wastewater amount ratio R (bottom water volume/top water volume) is R≦3.836−8.089・W+7.556・W 2 R≧2.013−1.733・W+1.333・W 2 However, W is the average water flow density above and below [m 3 /min.m 2 ] A method for cooling a high-temperature steel plate, characterized by cooling within a range of . 3 Water and sewerage volume ratio R = 2.750−4.251・W+
3.655·W 2 . The method for cooling a high-temperature steel plate according to claim 2.
JP16150183A 1983-08-31 1983-08-31 Method of cooling high temperature steel sheet Granted JPS6086215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16150183A JPS6086215A (en) 1983-08-31 1983-08-31 Method of cooling high temperature steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16150183A JPS6086215A (en) 1983-08-31 1983-08-31 Method of cooling high temperature steel sheet

Publications (2)

Publication Number Publication Date
JPS6086215A JPS6086215A (en) 1985-05-15
JPS631377B2 true JPS631377B2 (en) 1988-01-12

Family

ID=15736265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16150183A Granted JPS6086215A (en) 1983-08-31 1983-08-31 Method of cooling high temperature steel sheet

Country Status (1)

Country Link
JP (1) JPS6086215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333664U (en) * 1986-08-20 1988-03-04

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905051B2 (en) * 2006-10-19 2012-03-28 Jfeスチール株式会社 Steel sheet cooling equipment and cooling method
JP6275525B2 (en) * 2014-03-27 2018-02-07 株式会社神戸製鋼所 Thick steel plate cooling method, thick steel plate manufacturing method, and thick steel plate cooling apparatus
CN105414204B (en) * 2015-12-07 2017-11-28 武汉钢铁有限公司 Laminar flow cooling control system and method for hot-strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333664U (en) * 1986-08-20 1988-03-04

Also Published As

Publication number Publication date
JPS6086215A (en) 1985-05-15

Similar Documents

Publication Publication Date Title
JPS631377B2 (en)
JP3802830B2 (en) Steel sheet descaling method and equipment
JPS5853695B2 (en) Cooling method for steel pipes
JPS61269925A (en) Descaling method in hot rolling
JP3811380B2 (en) Manufacturing method of thick steel plate by hot rolling
JPH05123737A (en) Method for cooling upper surface of high temperature steel sheet
JPS6048241B2 (en) Rolling method for hot-rolled steel sheets with few scale defects
JPS61231124A (en) Method and apparatus for strain-free controlled cooling of steel plate
JP3277985B2 (en) High temperature steel plate cooling system
JPS6234998Y2 (en)
JPS5856641B2 (en) Method to prevent rolling material from rising
JPS60221115A (en) Cooling method of steel plate
JPH07290136A (en) Method and device for cooling wide flange shape
JPS6317892B2 (en)
JP2780610B2 (en) High temperature steel plate online cooling system
JPS6249326B2 (en)
JPS5919004A (en) Rolling device of thick plate
JPS60210313A (en) Cooling method of steel sheet
JPS6242967B2 (en)
JPS5932201B2 (en) Hot rolling method for steel materials
KR100562641B1 (en) hot rolling method to contril the residual stress of stainless steels
JPS61117232A (en) Cooling apparatus of steel strip
JPS58176010A (en) Cold rolling method for controlling shape
JP3196677B2 (en) High temperature steel plate cooling system
JPH04253512A (en) Method for cooling work roll of cold rolling mill