JPS63137729A - Dehumidifying device - Google Patents

Dehumidifying device

Info

Publication number
JPS63137729A
JPS63137729A JP61284394A JP28439486A JPS63137729A JP S63137729 A JPS63137729 A JP S63137729A JP 61284394 A JP61284394 A JP 61284394A JP 28439486 A JP28439486 A JP 28439486A JP S63137729 A JPS63137729 A JP S63137729A
Authority
JP
Japan
Prior art keywords
membrane
temperature
piping
vacuum pump
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61284394A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzumura
洋 鈴村
Tetsuo Yoshida
哲夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61284394A priority Critical patent/JPS63137729A/en
Publication of JPS63137729A publication Critical patent/JPS63137729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To dehumidify without lowering the temperature by providing a thermometer and a hygrometer in the primary side chamber of a separating chamber and a control device communicating with said thermometer and hygrometer, a vacuum pump connected with said control device and a piping and the like connected with the secondary side chamber. CONSTITUTION:Air containing water vapor comes into the primary side 5-A of a membrane separating device 5 through a duct 1 at the normal temperature. The pressure of secondary side 5-B is reduced down to 5-20Torr by a vacuum pump 4. Water content only is permeated through a membrane 6, and water is obtained through a trap 7 and a separating water piping 8, while dehumidified air is exhausted out of the membrane separating device 5 through a dehumidified air piping 9. A membrane to permeate selectively water vapor only can be used as the membrane 6 of the membrane separating device 5, and a carrier with pores of around several microns for instance, a membrane constituted with an alumina carrier or the like coated with a coating agent such as silica sol or the like is suitable for the purpose.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は除湿装置に関し、特にランニングコストが安価
に操業でき、主としてクリーンルームやf、SI工場の
ような厳しい湿度基準を求められる部屋を良好な制御性
によって除湿が可能な同装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a dehumidifying device, which can be operated at low running cost, and which can be used mainly for rooms that require strict humidity standards such as clean rooms, F, and SI factories. The present invention relates to a device that can dehumidify with controllability.

〔従来の技術〕[Conventional technology]

従来の除湿装置としては、冷凍除湿を原理とした除湿装
置がある。これは一定量の水分を含む9気の温度を下げ
て、その降下し次温度における飽和湿度との差分を水滴
として除去する装置である。この従来例について、第4
図に示す低温度湿度図を用いて説明する。第4図のグラ
フの横軸は温度(C)、縦軸は絶対湿度(ky・水蒸気
/ ky・乾き空気)を示す。
As a conventional dehumidifier, there is a dehumidifier based on the principle of frozen dehumidification. This is a device that lowers the temperature of 9 air containing a certain amount of moisture and removes the difference between the temperature and the saturated humidity at the next temperature as water droplets. Regarding this conventional example, the fourth
This will be explained using the low temperature and humidity diagram shown in the figure. The horizontal axis of the graph in FIG. 4 shows temperature (C), and the vertical axis shows absolute humidity (ky/water vapor/ky/dry air).

入口側が温度30C1絶対湿度0.02 + 5(相対
湿度80%)の空気を絶対湿度0.0106(相対湿度
40%)まで落とす場合には、入口条件点Aより冷却す
ると、約22C付近(点B)で水滴〔この時の絶対湿度
0.0166 (相対湿度1oox)3に生じ始め、更
に冷却を約けて約15C’(点C)での飽和湿度が60
Cでの絶対湿度o、o 1Q 6 (相対湿度40%)
となる。
If air at the inlet side has a temperature of 30C1 and an absolute humidity of 0.02 + 5 (relative humidity 80%) and is to be reduced to an absolute humidity of 0.0106 (relative humidity 40%), if the air is cooled from the inlet condition point A, it will drop to around 22C (point At B), water droplets started to form at an absolute humidity of 0.0166 (relative humidity 1 oox), and after further cooling, the saturated humidity at about 15 C' (point C) reached 60
Absolute humidity at C o, o 1Q 6 (relative humidity 40%)
becomes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の冷却除湿の場合には、次の問題点がある。 Conventional cooling dehumidification has the following problems.

1)前述のケースで、30C’、相対湿度40%の空気
をつくるためには温度を15tll’程度まで下げて再
加熱する必要があった。
1) In the above case, in order to create air at 30C' and 40% relative humidity, it was necessary to lower the temperature to about 15tll' and reheat.

2)入口条件が変動する場合には、設定温度を変えてコ
ントロールするために、設定温度に対して±3C程度の
ばらつきがあり制御性が悪かった。
2) When the inlet conditions fluctuate, control is performed by changing the set temperature, which results in a variation of approximately ±3C from the set temperature, resulting in poor controllability.

3)設定を変更して対応するまでに士数分ないし数十分
のオーダーの応答時間を必要とし追従性が悪かった。
3) It required a response time of several minutes to several tens of minutes to respond to a change in settings, resulting in poor follow-up performance.

4)理論上は+5Cまで温度を下げれば良いが、実際上
は10〜12C付近まで温度を下げて加湿操作を行って
いる。
4) In theory, it is sufficient to lower the temperature to +5C, but in practice, the humidification operation is performed by lowering the temperature to around 10 to 12C.

5)以上のような問題点のために、クリーン・ルームや
LSI工場のような厳しい湿度基準を求められる部屋の
除湿において製品の品質管理上問題があった。
5) Due to the above-mentioned problems, there have been problems in product quality control when dehumidifying rooms that require strict humidity standards such as clean rooms and LSI factories.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の冷却除湿法におけるような欠点を生
じない除湿装置を提供しようとするものである。
The present invention aims to provide a dehumidifying device that does not have the disadvantages of the conventional cooling dehumidifying method described above.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは膜分離装置を用いた様々なプロセスを検討
した結果、従来の冷却除湿よりも装置費・ランニングコ
ストの安い、しかも入口の変動条件に対して制御性・応
答性の良好で、温度を下げずに湿度のみをコントロール
可能な除湿装eft見い出し、本発明を完成するに至つ
ムすなわち本発明は分離膜を介して一次側室と二次側室
に分離された膜分離装置、該分離装置の一次側室に配さ
れた入口空気ダクト及び出口空気ダクト、該入口及び/
又は出口ダクト内に配された温度・湿度計、該温度・湿
度計と連絡する制御装置、該制御装置と連絡する真空ポ
ンプ、該真空ポンプと前記分離装置の二次側室と連通ず
る配管及び該配管の途中に設けられた水分トラップより
なることを特徴とする除湿装置である。
As a result of studying various processes using membrane separation equipment, the present inventors found that the equipment cost and running cost are lower than conventional cooling dehumidification, and it also has good controllability and responsiveness to fluctuating conditions at the inlet. After discovering a dehumidifier that can control only the humidity without lowering the temperature, we completed the present invention.In other words, the present invention is a membrane separation device that is separated into a primary side chamber and a secondary side chamber via a separation membrane, An inlet air duct and an outlet air duct arranged in the primary chamber of the device, the inlet and/or
or a temperature/hygrometer arranged in the outlet duct, a control device communicating with the temperature/hygrometer, a vacuum pump communicating with the control device, piping communicating the vacuum pump with the secondary side chamber of the separation device, and This dehumidification device is characterized by comprising a moisture trap installed in the middle of piping.

以下、本発明の一笑施態様t−第1図によって説明する
。第1図において、1は入口空気ダクト、2は同ダクト
1に設けられた温度・湿度計、3は制御装置、4は真空
ポンプ、5は膜分離装置、5Aはその一次側室、5Bは
二次側室、6は分離膜、7はトラップ、8は分離水配管
、9は除湿空気出口ダクトである。
Hereinafter, a simple embodiment of the present invention will be explained with reference to FIG. In Fig. 1, 1 is an inlet air duct, 2 is a temperature/hygrometer installed in the duct 1, 3 is a control device, 4 is a vacuum pump, 5 is a membrane separation device, 5A is its primary side chamber, and 5B is a secondary chamber. In the next side chamber, 6 is a separation membrane, 7 is a trap, 8 is a separated water pipe, and 9 is a dehumidified air outlet duct.

水蒸気を含む入口空気のダクト1中に温度・湿度計2を
挿入し、制御装置3f:経由して真空ポンプ4に接続す
る。一方、膜分離装置5は、例、tばアルミナ担体にア
ルミナゾルを塗布した膜のような水蒸気を含むガスから
水蒸気のみを選択的に透過する性質をもつ膜6t−使用
している。
A temperature/hygrometer 2 is inserted into a duct 1 for inlet air containing water vapor, and connected to a vacuum pump 4 via a control device 3f. On the other hand, the membrane separation device 5 uses a membrane 6t, which has a property of selectively permeating only water vapor from a gas containing water vapor, such as a membrane made of an alumina carrier coated with alumina sol.

水蒸気を含む空気は、ダクト1t−経て常圧で膜分離装
置5の一次側5−Aに入る。二次側5−Bを真空ポンプ
4よす、5〜2 g 7orr  程度に減圧する。M
46f通して水分のみが透過し、トラップ7よジ分離水
配管8を経て水が得られ、除湿された空気は除湿空気配
管9t−経て膜分離装gt5よジ排出される。
Air containing water vapor enters the primary side 5-A of the membrane separator 5 at normal pressure through the duct 1t-. The pressure on the secondary side 5-B is reduced to about 5 to 2 g 7 orr using the vacuum pump 4. M
Only moisture permeates through 46f, water is obtained through trap 7 and separated water piping 8, and dehumidified air is discharged through membrane separator gt5 through dehumidified air piping 9t.

本発明における膜分離装置1t5の膜6としては、水蒸
気のみを選択的に透過する性質の膜であればよいが、数
ミクロン程度の細孔を有する担体、例えばアルミナ担体
、ジルコニア、ムライト等に、シリカゾル、シリカアル
ミナゾル、チタニアゾル等の塗布剤を塗布した膜等が挙
げられ、排ガスの種類に応じて適宜選択すれば良い。
The membrane 6 of the membrane separator 1t5 in the present invention may be any membrane that selectively permeates only water vapor, but it may be made of a carrier having pores of several microns, such as an alumina carrier, zirconia, mullite, etc. Examples include a film coated with a coating agent such as silica sol, silica alumina sol, titania sol, etc., and may be appropriately selected depending on the type of exhaust gas.

さて、このような凝縮性ガス分離膜における水蒸気透過
量は、次の(11式にて表わされる。
Now, the amount of water vapor permeation in such a condensable gas separation membrane is expressed by the following (Equation 11).

F=At−R・(p、・ψ−P2y)山ここで、F;水
の透過量(+moJ?/Hr )At;膜面積 (II
  ’) R;透過係数(w+o//m −Hr−Torr )P
8;その温度における一次側の飽和蒸気圧(Torr 
) ψ;相対湿度(%) P2;真空ポンプの圧力(Torr )y;二次側の水
蒸気モル分率(−) T13式において、二次側の水蒸気モル分率は、y−1
であり、膜を規定すれば、  kt−Rは一定である。
F=At-R・(p,・ψ-P2y) MountainHere, F: Water permeation amount (+moJ?/Hr) At: Membrane area (II
') R; Permeability coefficient (w+o//m -Hr-Torr)P
8; Saturated vapor pressure on the primary side at that temperature (Torr
) ψ: Relative humidity (%) P2: Vacuum pump pressure (Torr) y: Mole fraction of water vapor on the secondary side (-) In formula T13, the mole fraction of water vapor on the secondary side is y-1
, and if the membrane is defined, kt-R is constant.

それ故、入口側の温・湿度′5−測定して、P8とψを
求め透過tFを設定すれば、P2をコントロールするこ
とにより定湿度運転又は一定量透過運転全容易に行うこ
とができる。
Therefore, by measuring the temperature and humidity '5- on the inlet side, finding P8 and ψ, and setting the permeation tF, constant humidity operation or constant amount permeation operation can be easily performed by controlling P2.

〔実施例〕〔Example〕

(実施例1) 温度30C1湿度80%の入口供給空気を急激に湿度9
0%にし次時の追従性を実験した。
(Example 1) Inlet supply air with a temperature of 30C and a humidity of 80% is suddenly changed to a humidity of 9C.
0%, and the following followability was tested.

部屋の大きさは、66m  X2m  高さであり、入
口の供給ドライ空気(ml f 500 m3/’hr
とした。
The size of the room is 66m x 2m high and the inlet supply dry air (ml f 500 m3/'hr
And so.

従来のタイプとしての大型のエアコン及び加熱器、加湿
器を用いた場合と、第1図に示し次ような装置で直径1
0y*φ、長さ1mのアルミナ担体にアルミナゾル全塗
布し几膜面積20m2の膜を使用した本実施例の場合と
の比較結果を第2図に示す。なお部屋内部の設定湿度ヲ
55%とし九。
In the case of using a large air conditioner, heater, and humidifier as a conventional type, and in the case of using the following equipment as shown in Figure 1,
FIG. 2 shows the results of comparison with the present example in which a membrane having a membrane area of 20 m2 was used, in which an alumina carrier having a diameter of 0y*φ and a length of 1 m was completely coated with alumina sol. The humidity inside the room is set at 55%.

従来装置の場合は変動巾が湿度にして±5X程度あり、
追従するのに約20分根度かかつているが、本発明の実
施例による分離膜の場合は変動巾が湿度にして±1.5
%程度であり追従するのに2〜3分で充分であった。
In the case of conventional equipment, the fluctuation range is about ±5X in terms of humidity.
It takes about 20 minutes to follow up, but in the case of the separation membrane according to the embodiment of the present invention, the range of fluctuation is ±1.5 in terms of humidity.
%, and 2 to 3 minutes was sufficient to follow up.

(実施例2) 実施例1においては、アルミナ担体にアルミナゾルを塗
付し次分離膜を使用したが、ジルコニア担体にシリカア
ルミナゾルを塗布した膜以外は、実施例1と全く同じ条
件で試験を行ったところ、第2図と全く同じ結果、制御
性・追従性が良いことを確認した。
(Example 2) In Example 1, an alumina sol was applied to an alumina carrier and a separation membrane was used. However, the test was conducted under exactly the same conditions as in Example 1 except for the membrane in which a zirconia support was applied with silica alumina sol. The results were exactly the same as those shown in Figure 2, and it was confirmed that the controllability and followability were good.

(実施例3) 温度30C,湿度6ONの入口供給空気を湿度90Xに
した時の追従性t−実験した。部屋の大きさ及び入口の
供給ドライ空気量は、実施例1と同様である。膜は、直
径101IIIφ、長さ1mのアルミナ担体にアルミナ
ゾル全塗布し次もの使用した。膜面積は20mとした。
(Example 3) An experiment was conducted on followability t when the inlet supply air at a temperature of 30C and a humidity of 6ON was changed to a humidity of 90X. The size of the room and the amount of dry air supplied at the inlet are the same as in Example 1. The following membrane was prepared by completely coating an alumina carrier with a diameter of 101IIIφ and a length of 1 m with alumina sol. The membrane area was 20 m.

部屋内部の設定湿度を55%とした。試験結果を、第3
図に示す。入口の変動が大きい程、分離膜を使用し九本
発明除湿装置が有効であること全確証した。
The humidity inside the room was set at 55%. Please send the test results to the third
As shown in the figure. It has been completely confirmed that the dehumidifying device of the present invention is more effective when the inlet fluctuation is large, using a separation membrane.

以上、本発明の実施例では温度・湿度計、制御装置及び
真空ポンプとの相関々係については説明していないが、
これらは当業者ならば容易に理解しうろことであるので
その説明を省略したものである。
Although the embodiments of the present invention do not explain the relationship between the temperature/hygrometer, the control device, and the vacuum pump,
Since these are easily understood by those skilled in the art, their explanation is omitted.

〔発明の効果〕〔Effect of the invention〕

本発明は、冷却除湿による従来装置と比較して、次のよ
うな特長をもつ。
The present invention has the following features compared to conventional devices using cooling dehumidification.

1)@度を下げずに除湿ができ、従来装置と比較して1
5〜20%ランニングコストカ安クプロセスり簡単であ
る。
1) Can dehumidify without lowering the temperature, 1% compared to conventional equipment
The running cost is 5-20% low and the process is simple.

2)入口の変動に対して制御が容易である。2) It is easy to control inlet fluctuations.

3)応答が数分以内である。3) Response is within a few minutes.

4)真空ポンプの真空度を変えるために、細かい巾の制
御が可能である。
4) Fine width control is possible to change the degree of vacuum of the vacuum pump.

5)湿度が製品に影響金与えるような工場の除湿に有用
である。
5) Useful for dehumidifying factories where humidity affects products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施態様を説明する図、第2図、第
3図は本発明の実施例による効果を説明する図表、第4
図は従来の低温除湿を説明するための低温度湿度図表で
ある。 復代理人 内 1)  明 復代理人 萩 原 亮 − 復代理人 安 西 篤 夫 第1図 第2図 経過時間(分) 経 過 哨 間 (分)
FIG. 1 is a diagram explaining the embodiment of the present invention, FIGS. 2 and 3 are diagrams explaining the effects of the embodiment of the present invention, and FIG.
The figure is a low temperature and humidity chart for explaining conventional low temperature dehumidification. Sub-agent 1) Meifuku agent Ryo Hagiwara - Sub-agent Atsuo Anzai Figure 1 Figure 2 Elapsed time (minutes) Elapsed time (minutes)

Claims (1)

【特許請求の範囲】[Claims] 分離膜を介して一次側室と二次側室に分離された膜分離
装置、該分離装置の一次側室に配された入口空気ダクト
及び出口空気ダクト、該入口及び/又は出口ダクト内に
配された温度・湿度計、該温度・湿度計と連絡する制御
装置、該制御装置と連絡する真空ポンプ、該真空ポンプ
と前記分離装置の二次側室と連通する配管及び該配管の
途中に設けられた水分トラップよりなることを特徴とす
る除湿装置。
A membrane separation device separated into a primary side chamber and a secondary side chamber via a separation membrane, an inlet air duct and an outlet air duct arranged in the primary side chamber of the separation device, and a temperature arranged in the inlet and/or outlet duct.・A hygrometer, a control device that communicates with the temperature/hygrometer, a vacuum pump that communicates with the control device, piping that communicates between the vacuum pump and the secondary side chamber of the separation device, and a moisture trap installed in the middle of the piping. A dehumidifying device characterized by:
JP61284394A 1986-12-01 1986-12-01 Dehumidifying device Pending JPS63137729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284394A JPS63137729A (en) 1986-12-01 1986-12-01 Dehumidifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284394A JPS63137729A (en) 1986-12-01 1986-12-01 Dehumidifying device

Publications (1)

Publication Number Publication Date
JPS63137729A true JPS63137729A (en) 1988-06-09

Family

ID=17678001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284394A Pending JPS63137729A (en) 1986-12-01 1986-12-01 Dehumidifying device

Country Status (1)

Country Link
JP (1) JPS63137729A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053058A (en) * 1989-12-29 1991-10-01 Uop Control process and apparatus for membrane separation systems
US5118327A (en) * 1989-10-05 1992-06-02 Andrew Corporation Dehumidifier for supplying gas having controlled dew point
US5681368A (en) * 1995-07-05 1997-10-28 Andrew Corporation Dehumidifier system using membrane cartridge
US6497749B2 (en) * 2001-03-30 2002-12-24 United Technologies Corporation Dehumidification process and apparatus using collodion membrane
WO2017022129A1 (en) * 2015-08-06 2017-02-09 株式会社 東芝 Ventilation device and air conditioning device
JP2018031548A (en) * 2016-08-25 2018-03-01 株式会社東芝 Air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354920A (en) * 1986-08-26 1988-03-09 Matsushita Electric Works Ltd Dehumidifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354920A (en) * 1986-08-26 1988-03-09 Matsushita Electric Works Ltd Dehumidifier

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118327A (en) * 1989-10-05 1992-06-02 Andrew Corporation Dehumidifier for supplying gas having controlled dew point
US5053058A (en) * 1989-12-29 1991-10-01 Uop Control process and apparatus for membrane separation systems
US5681368A (en) * 1995-07-05 1997-10-28 Andrew Corporation Dehumidifier system using membrane cartridge
US6497749B2 (en) * 2001-03-30 2002-12-24 United Technologies Corporation Dehumidification process and apparatus using collodion membrane
WO2017022129A1 (en) * 2015-08-06 2017-02-09 株式会社 東芝 Ventilation device and air conditioning device
JPWO2017022129A1 (en) * 2015-08-06 2017-09-21 株式会社東芝 Ventilation device and air conditioner
JP2018031548A (en) * 2016-08-25 2018-03-01 株式会社東芝 Air conditioner

Similar Documents

Publication Publication Date Title
US6497749B2 (en) Dehumidification process and apparatus using collodion membrane
US20140157985A1 (en) Dehumidification Systems and Methods Thereof
JPS642408B2 (en)
CN101535727A (en) Versatile dehumidification process and apparatus
JPS63137729A (en) Dehumidifying device
US6036746A (en) Condenser system for independently controlling humidity and temperature of treatable air in a closed environment
JP4629603B2 (en) Separation membrane and composite membrane comprising the separation membrane, humidifying element, dehumidifying element, humidifier, dehumidifier, and humidity control system
JP4786339B2 (en) Dry air generating apparatus, substrate processing system, and dry air generating method
US5188645A (en) Method and apparatus for dew point adjustment using dry dehumidifier
JP2671436B2 (en) Method for producing medical oxygen-enriched air
JPH02229529A (en) Separation of fluid, separator and separation membrane
JP2014004521A (en) High-pressure dry gas producing system
JPS60238120A (en) Air dehumidification apparatus
JPS63220026A (en) Air conditioning system
JPS62273028A (en) Gas dehumidifier
WO2016010486A1 (en) Membrane for removing moisture in the air
JPS63119834A (en) Air dehumidifying apparatus
JPS63315846A (en) Control method for temperature and humidity of air
JPH01274824A (en) Dehumidifying system
JPH02135118A (en) Production of low humidity air
RU2043124C1 (en) Method and device for producing hypoxic and hyperoxic mixtures
JPS60238119A (en) Air dehumidification apparatus
JPH0283015A (en) Gas dehumidification
JPS6231968B2 (en)
JPH02280812A (en) Dehumidifier