JPH02229529A - Separation of fluid, separator and separation membrane - Google Patents

Separation of fluid, separator and separation membrane

Info

Publication number
JPH02229529A
JPH02229529A JP1049232A JP4923289A JPH02229529A JP H02229529 A JPH02229529 A JP H02229529A JP 1049232 A JP1049232 A JP 1049232A JP 4923289 A JP4923289 A JP 4923289A JP H02229529 A JPH02229529 A JP H02229529A
Authority
JP
Japan
Prior art keywords
separation membrane
separation
fluid
component
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1049232A
Other languages
Japanese (ja)
Inventor
Hiroshi Mori
博 森
Tamio Nakamura
中村 民夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1049232A priority Critical patent/JPH02229529A/en
Publication of JPH02229529A publication Critical patent/JPH02229529A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance permeating velocity of fluid by fluidizing the fluid consisting of a plurality of components along single side of a separation membrane and regulating the fluid side to low temp. and regulating the component permeating side to high temp. CONSTITUTION:The inside of a casing 12 is comparted into both a fluid supply chamber 14 of a central part and the outflow chambers 15 of the permeated components of the left and right both side parts. The outflow ports 12c of the components are equipped to the casing 12 which are opened to the respective outflow chambers 15 of the permeated components. A heating element 16 is inserted into the inner hole of a separation membrane 11 and connected to a lead wire 17. Calorific value is controlled by regulating impressed voltage and the heating temp. of the separation membrane 11 is regulated. A compressor is connected to the inflow port 12a of fluid of the casing 12 and compressed air is supplied to the fluid supply chamber 14. This compressed air is fluidized along the outer circumference of the separation membrane 11 and allowed to flow out through an outflow port 12b and water permeats the separation membrane 11 and is allowed to flow out through the outflow ports 12c.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複数の成分からなる液体、気体またはこれら両
者の混合物等流体の分離方法、分離装置および分離膜に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for separating fluids such as liquids, gases, or mixtures of the two, which are composed of a plurality of components, a separation device, and a separation membrane.

(従来技術》 上記した流体中の少くとも1種類の成分を分離する方法
としては、流体中の揮発性成分を分離するパーベーパレ
ーション、サーモパーベーパレーション、気体中の凝縮
性ガス成分を分離する凝縮性ガス分離法が知られており
、バーベパレーションの一例が特開昭62−27300
9号公報、特開昭63−258604号公報に、サーモ
パーベーバレーションの一例が刊行物「化学工学協会第
52年会講演要旨!(1987)、第28頁Jに、凝縮
性ガス分離法の例が特開昭53−145343号公報、
特開昭54−15349号公報、特開昭62−4272
3号公報等に示されている.これらの方法においてはい
ずれも流体中の成分を選択的に透過させる分離膜を用い
、同分離膜の一側に沿って処理すべき流体を流動させる
とともに分離膜の他側を減圧し、流体中の揮発性成分、
凝縮性成分を分離膜内に吸着、凝縮、溶解させて分離膜
の他側へ拡散させ、同他側から蒸発させるることにより
特定の成分を流体中から分離するものである. (発明が解決しようとする課題) ところで、これらの特定成分の分離において成分の透過
速度は蒸発速度に関係し、分離膜の他側の減圧状態を高
めて蒸発速度を上げることにより透過速度を上げること
ができる.しかしながら、分離膜の他側を高い真空度に
維持するには特別な装置、動力を必要とするとともに、
たとえ高い真空度に維持したとしても蒸発速度には限界
があり、透過速度を著しく上げて分離効率を著しく向上
させることは難しい.また、上記した特開昭63−25
8604号公報に示されているように分離膜内に加熱体
を埋設し、分離膜全体を加熱することにより被処理流体
を加熱して透過成分の透過時の圧力を上げて透過速度を
上げる試みがなされている.しかしながら、透過成分の
透過速度を支配しているものは透過側での透過成分の蒸
発速度であり、分離膜全体を加熱する手段によっては透
過速度をかならずしも十分に上げることができない.特
に被処理流体が湿潤空気であって除湿を行う等凝縮性ガ
ス分離を行う場合には、被処理流体(ガス)を加熱して
も蒸気圧は上らず透過速度を上げることができない.従
って、本発明の目的はかかる問題に対処することにある
(Prior art) Methods for separating at least one type of component in the fluid described above include pervaporation, thermopervaporation, which separates volatile components in the fluid, and separation of condensable gas components in the gas. Condensable gas separation methods are known, and an example of barbeparation is disclosed in Japanese Patent Application Laid-Open No. 62-27300.
9 and Japanese Patent Application Laid-Open No. 63-258604, an example of thermopervalation is described in the publication ``Summary of the 52nd Annual Meeting of the Society of Chemical Engineers!'' (1987), page 28 J, a condensable gas separation method. An example is JP-A-53-145343,
JP-A-54-15349, JP-A-62-4272
This is shown in Publication No. 3, etc. In all of these methods, a separation membrane that selectively permeates components in the fluid is used, and the fluid to be treated is made to flow along one side of the separation membrane while reducing the pressure on the other side of the separation membrane. volatile components of
Specific components are separated from a fluid by adsorbing, condensing, and dissolving condensable components within the separation membrane, diffusing them to the other side of the membrane, and evaporating them from the other side. (Problem to be solved by the invention) By the way, in the separation of these specific components, the permeation rate of the component is related to the evaporation rate, and the permeation rate can be increased by increasing the reduced pressure state on the other side of the separation membrane to increase the evaporation rate. be able to. However, maintaining a high degree of vacuum on the other side of the separation membrane requires special equipment and power, and
Even if a high degree of vacuum is maintained, there is a limit to the evaporation rate, and it is difficult to significantly increase the permeation rate and improve the separation efficiency. In addition, the above-mentioned Unexamined Patent Publication No. 63-25
As shown in Publication No. 8604, an attempt was made to increase the permeation rate by embedding a heating element in the separation membrane and heating the entire separation membrane to heat the fluid to be treated and increase the pressure during permeation of the permeated components. is being done. However, what controls the permeation rate of the permeate component is the evaporation rate of the permeate component on the permeate side, and the permeation rate cannot always be increased sufficiently depending on the means of heating the entire separation membrane. In particular, when the fluid to be treated is humid air and condensable gas separation is performed such as dehumidification, heating the fluid (gas) to be treated does not increase the vapor pressure and the permeation rate cannot be increased. It is therefore an object of the present invention to address such problems.

(課題を解決するための手段) 本発明は複数の成分からなる液体、気体またはこれら両
者の混合物等流体の分離方法、分離装置および分離膜に
関するもので、本発明に係る分離方法は前記流体を分離
膜の一側に沿って流動させ、この間前記流体中の少くと
も1種類の成分を前記分離膜にて選択的に透過させて透
過成分を前記流体から分離する流体の分離方法において
、下記(1)〜(5)の事項をそれぞれ特徴とするもの
である。
(Means for Solving the Problems) The present invention relates to a method, a separation device, and a separation membrane for separating fluids such as liquids, gases, or mixtures of both, which are composed of a plurality of components. In a method for separating a fluid, the fluid is caused to flow along one side of a separation membrane, during which time at least one type of component in the fluid is selectively permeated through the separation membrane, and the permeated component is separated from the fluid. It is characterized by the items 1) to (5), respectively.

(l).前記流体側を低温にかつ前記成分透過側を高温
とすること. (2).前記分離膜の成分透過側を加熱すること。
(l). The fluid side is kept at a low temperature and the component permeation side is kept at a high temperature. (2). heating the component permeation side of the separation membrane;

(3).前記分離膜を同分離膜が成分透過側に一体的に
有する加熱手段により加熱すること.(4).前記分離
膜を同分離膜の成分透過側に配設した加熱手段により加
熱すること. (5).前記分離膜を同分離膜の成分透過側に加熱気体
を流動させることにより加熱すること.また、本発明に
係る分離装置は上記した分離方法を実施するための装置
であり、下記(6)〜(8)の事項をそれぞれ特徴とす
るものである.(6).ケーシング内に収容され前記流
体中の少くとも1種類の成分を選択的に透過させる分離
膜と、前記ケーシング内にて前記分離膜により区画され
て同分離膜の一側に位置し前記流体の流入口と流出口を
有する流体供給室、および前記分離膜の他側に位置し透
過成分の流出口を有する透過成分流出室と、前記分離膜
の加熱手段を備えていること。
(3). The separation membrane is heated by a heating means that the separation membrane has integrally on the component permeation side. (4). Heating the separation membrane using a heating means installed on the component permeation side of the separation membrane. (5). Heating the separation membrane by flowing heated gas through the component permeation side of the separation membrane. Further, the separation apparatus according to the present invention is an apparatus for carrying out the above-described separation method, and is characterized by the following items (6) to (8). (6). a separation membrane accommodated in a casing that selectively permeates at least one type of component in the fluid; A fluid supply chamber having an inlet and an outlet, a permeate component outflow chamber located on the other side of the separation membrane and having an outlet for the permeate component, and heating means for the separation membrane.

(7).前記分離がプレート状、パイプ状、モノリス状
またはハニカム状膜構造体であること。
(7). The separation is a plate-like, pipe-like, monolith-like or honeycomb-like membrane structure.

(♂》.前記加熱手段が前記分離膜が有する発熱体、前
記透過成分流出室側に配設された発熱体、または同流出
室に供給された加熱気体であること. さらにまた、本発明に係る分離膜は上記した分離方法に
採用される分離膜であり、下記(9)の事項を特徴とす
るものである. (9).前記流体中の少くとも1種類の成分が選択的に
透過する選択透過性膜と、同透過性膜の成分透過側に一
体的に設けられ少くとも同透過性膜を透過する成分が透
過可能でかつ通電により発熱する透過性発熱体とを備え
ていること. なお、本発明において分離膜は選択透過性膜のみからな
る単層構造であってもよく、また薄層の選択透過性膜と
これを支持する多孔質支持体とからなる複層楕造であっ
てもよく、選択透過性膜としてはポリテトラフルオ口エ
チレン膜、ポリイミド膜、シリコンゴム膜等の有機質膜
、多孔質のセラミック膜、ガラス膜、繊維状または粒状
カーボン質膜等無機質膜を挙げることができる。これら
の選択透過性膜は処理すべき流体の種類に応じて適宜選
定される。また、分離膜は加熱されることから耐熱性を
考慮して選定される。
(♂》.The heating means is a heating element included in the separation membrane, a heating element disposed on the permeate component outflow chamber side, or a heated gas supplied to the outflow chamber.Furthermore, the present invention Such a separation membrane is a separation membrane employed in the above-mentioned separation method, and is characterized by the following (9): (9) At least one type of component in the fluid selectively permeates. and a permeable heating element that is integrally provided on the component-permeable side of the permeable membrane, is permeable to at least the component that permeates the permeable membrane, and generates heat when energized. In the present invention, the separation membrane may have a single layer structure consisting only of a permselective membrane, or may have a multilayer elliptical structure consisting of a thin permselective membrane and a porous support supporting it. Examples of selectively permeable membranes include organic membranes such as polytetrafluoroethylene membranes, polyimide membranes, and silicone rubber membranes, and inorganic membranes such as porous ceramic membranes, glass membranes, and fibrous or granular carbon membranes. These permselective membranes are appropriately selected depending on the type of fluid to be treated.Furthermore, since the separation membrane is heated, it is selected in consideration of heat resistance.

また、本発明において加熱手段は電気ヒータ、熱媒体を
用いた輻射形ヒータ等適宜のヒータであってもよく、加
熱空気を供給する熱風送風機であってもよい.本発明に
係る分離膜の透過性発熱体としては金網状またはシート
状多孔性金属発熱体、ペロブスカイト形結晶で代表され
るセラミック発熱体、カーボン質発熱体等通電により発
熱する材質からなるものを挙げることができる.選択透
過性膜と透過性発熱体とを一体化する手段としては、透
過性膜が有機質膜である場合には圧着または接着剤を介
して一体化する方法、透過性膜が無機質膜である場合に
は無電解メッキ法、スパッタリング蒸着法、スラリーコ
ート法等により一体化する方法がある。
Further, in the present invention, the heating means may be an appropriate heater such as an electric heater or a radiant heater using a heat medium, or may be a hot air blower that supplies heated air. Examples of the permeable heating element of the separation membrane according to the present invention include those made of a material that generates heat when energized, such as wire mesh or sheet-like porous metal heating elements, ceramic heating elements typified by perovskite crystals, and carbon heating elements. be able to. As a means of integrating the permselective membrane and the permeable heating element, if the permeable membrane is an organic membrane, the method is to integrate it by pressure bonding or adhesive, and if the permeable membrane is an inorganic membrane, the method is to integrate the permselective membrane and the permeable heating element. There are methods of integrating such as electroless plating method, sputtering vapor deposition method, slurry coating method, etc.

(発明の作用・効果) 本発明に係る分離方法においては、流体側を低温にかつ
前記成分透過側を高温とすることにより、流体が大蚤に
流動する分離膜の流体側と流体に比較して極めて少量の
透過成分が流出する分離膜の成分透過側間に一層大きな
温度勾配が発生する。
(Operations and Effects of the Invention) In the separation method according to the present invention, by keeping the fluid side at a low temperature and the component permeation side at a high temperature, the fluid side of the separation membrane where the fluid flows rapidly is compared to the fluid side. A larger temperature gradient is generated between the component permeate side of the separation membrane through which a very small amount of permeate component flows out.

このため、分離膜の流体側にて吸着、凝縮、溶解して蒸
発、拡散する透過成分は分離膜の成分透過側での蒸発を
助勢され、透過成分の透過速度が速くなる. このなめ、本発明に係る分離方法によれば従来の分離方
法に比較して分離効率を著しく向上させることができ、
また分離効率を従来と同等にした場合には分離膜の成分
透過側の減圧状態を低くすることができて減圧装置の小
型化、廃止等が可能となり、かつ動力を著しく低減させ
ることが可能となる, かかる有効な分離方法は本発明に係る上記した各分離装
置によって実施することができ、また分離膜として上記
した本発明に係る発熱体を備えた分離膜を採用すること
ができる。
Therefore, the permeate components that are adsorbed, condensed, dissolved, evaporated, and diffused on the fluid side of the separation membrane are assisted in evaporation on the component permeation side of the separation membrane, increasing the permeation rate of the permeation components. Due to this, the separation method according to the present invention can significantly improve separation efficiency compared to conventional separation methods,
Furthermore, if the separation efficiency is made the same as before, the reduced pressure state on the component permeation side of the separation membrane can be lowered, making it possible to downsize or abolish the pressure reducing device, and significantly reducing the power required. Such an effective separation method can be carried out by each of the above-mentioned separation apparatuses according to the present invention, and a separation membrane equipped with a heating element according to the present invention described above can be employed as the separation membrane.

(実施例) 本実施例では空気中の除湿実験を、第1図に示す電気ヒ
ータ加熱型の分離装置を使用して行った.(l).分離
装置10 パイプ状の分離膜11を筒状ケーシング12内に設けた
左右の隔壁13に支持してなるもので、ケーシング11
内は中央部の流体供給室14と、左右両側部の透過成分
流出室15に区画されている.ケーシング12は流体供
給室14に開口する流体流入口12aおよび流体流出口
12bを備えるとともに、各透過成分流出室15に開口
する成分流出口12cを備えており、また分離[11の
内孔内にはニクロム線等を絶縁してなる発熱体16が挿
入されている。発熱体15はケーシング11の成分流出
口12cを挿通ずるリード線17に接続されていて、付
与される電圧を加減することにより発熱量が制御され、
これにより分離膜11の加熱温度が調整される。また、
ケーシング12の流体流入口12aにはコンブレッサが
接続されていて、圧縮空気が流体供給室14に供給され
る.流体供給室14に流入した圧縮空気は分離膜11の
外周に沿って流動して流出口12bから流出し、この間
圧縮空気中の水分が分離Jllllを透過し成分流出室
15を経て流出口12cから流出する.(2l,分離1
1I11 外径11mm、内径8mflI、長さ500mmのアル
ミナ質のパイプ状多孔質支持体の外周にアルミナゾルを
担持させ、これを250℃にて焼成してなる水分を選択
透過する二層構造の分離膜を採用した.(3).除湿実
験 コンブレッサから供給される温度22℃、圧力4kg/
l2の圧縮空気をINI /winの流量で分離膜11
の外周を流動させ、一方分離膜11の内孔内温度を種々
の温度に設定して除湿実験を行った.各設定温度におけ
る除湿後の空気の大気圧露点を第1表に示す.なお、除
湿前の空気の大気圧露点は−6℃であり、また水分とと
もに透過した空気量は20Ncc 7ainであった. (以下余白) 第1表から明らかなように、分離膜の内孔内温度が高い
程露点が低く除湿効果が高い.この現象は分離膜の両側
間の温度勾配により、空気供給側での水分の侵入、凝縮
には支障を及ぼすことなく水分透過側での蒸発を助勢し
、設定温度を除く同一条件での水分の透過速度が速くな
ったためと理解される. (実施例2) 本実施例では空気中の除湿実験を、第2図に示す熱風加
熱型の分離装置を使用して行った.(1).分離装置2
0 複数のパイプ状の分離膜21を筒状ケーシング22内に
設けた左右の隔壁23に並列的に支持してなるもので、
ケーシング22内は中央部の流体供給室24と、左右両
側部の透過成分流出室25に区画されている.ケーシン
グ22の流入口22aにはコンプレッサが接続されてい
て、圧縮空気が流体供給室24に供給される.供給室2
4内に流入した圧縮空気は各分離膜21の外周に沿って
流動して流出口22bから流出し、この間圧縮空気中の
水分が各分離膜21を透過し成分流出室25を経て流出
口22cの一方から流出する.また、ケーシング22の
流出口22cの他方には熱風送風機が接続されていて、
各分l1i膜2lの内孔内へ各設定温度の熱風を供給す
る.熱風は各分離膜2lの内孔内を流動する間各分離膜
21を加熱する.(2J.除湿実験 分MH21として実施例と同じ分離膜を100本採用し
、コンプレッサから供給される温度20℃、圧力5kg
/cm2の圧縮空気を5Nm3/hrの流量で各分!J
iW21の外周を流動させ、一方各分離膜21の内孔内
に各設定温度の熱風を流動させて除湿実験を行った。各
設定温度における除湿後の空気の大気圧露点を第2表に
示す。なお、除湿前の空気の大気圧露点は−8℃であり
、また水分とともに透過した空気量は0.15Nm’/
 hrであった.第2表から明らかなように、加熱手段
として熱風を採用しかつ分離装置をスケールアップした
場合においても除湿効率が著しく高いことが認められる
. (実施例3) 実施例1で使用した分離装置10と同型で発熱体16を
内蔵した分離膜11を3本並列して支持してなる分離装
置を使用し、各分離膜11の内孔内温度を70℃に設定
して、コンブレッサがら供給される温度20℃、圧力4
kg / cm 2の圧縮空気を3N1/winの流量
で各分離膜11の外周に流動させて除湿実験を行った。
(Example) In this example, an air dehumidification experiment was conducted using an electric heater heating type separation device shown in Fig. 1. (l). Separation device 10 A pipe-shaped separation membrane 11 is supported by left and right partition walls 13 provided inside a cylindrical casing 12.
The interior is divided into a fluid supply chamber 14 in the center and permeated component outflow chambers 15 on both left and right sides. The casing 12 is provided with a fluid inlet 12a and a fluid outlet 12b that open to the fluid supply chamber 14, and a component outlet 12c that opens to each permeate component outlet chamber 15. A heating element 16 made of insulated nichrome wire or the like is inserted. The heating element 15 is connected to a lead wire 17 that passes through the component outlet 12c of the casing 11, and the amount of heat generated is controlled by adjusting the applied voltage.
Thereby, the heating temperature of the separation membrane 11 is adjusted. Also,
A compressor is connected to the fluid inlet 12a of the casing 12, and compressed air is supplied to the fluid supply chamber 14. The compressed air that has flowed into the fluid supply chamber 14 flows along the outer periphery of the separation membrane 11 and flows out from the outlet 12b, and during this time, moisture in the compressed air permeates through the separation chamber 15 and exits from the outlet 12c via the component outflow chamber 15. leak. (2l, separation 1
1I11 A two-layer separation membrane that selectively permeates moisture, made by carrying alumina sol on the outer periphery of an alumina pipe-shaped porous support with an outer diameter of 11 mm, an inner diameter of 8 mflI, and a length of 500 mm, and baking this at 250°C. It was adopted. (3). Temperature 22℃, pressure 4kg/supplied from dehumidification experiment compressor
12 of compressed air is passed through the separation membrane 11 at a flow rate of INI/win.
A dehumidification experiment was conducted by causing fluid flow around the outer periphery of the separation membrane 11, while setting the temperature inside the inner hole of the separation membrane 11 to various temperatures. Table 1 shows the atmospheric pressure dew point of the air after dehumidification at each set temperature. The atmospheric pressure dew point of the air before dehumidification was -6°C, and the amount of air that permeated with moisture was 20Ncc 7ain. (Left below) As is clear from Table 1, the higher the internal pore temperature of the separation membrane, the lower the dew point and the higher the dehumidification effect. This phenomenon is caused by the temperature gradient between both sides of the separation membrane, which facilitates evaporation on the moisture permeation side without causing any problems with moisture intrusion and condensation on the air supply side. This is understood to be due to an increase in the permeation rate. (Example 2) In this example, a dehumidification experiment in the air was conducted using a hot air heating type separation device shown in Fig. 2. (1). Separation device 2
0 A plurality of pipe-shaped separation membranes 21 are supported in parallel on left and right partition walls 23 provided in a cylindrical casing 22,
The interior of the casing 22 is divided into a fluid supply chamber 24 in the center and permeated component outflow chambers 25 on both left and right sides. A compressor is connected to the inlet 22a of the casing 22, and compressed air is supplied to the fluid supply chamber 24. Supply room 2
The compressed air flowing into the chamber 4 flows along the outer periphery of each separation membrane 21 and flows out from the outlet 22b, and during this time, moisture in the compressed air permeates through each separation membrane 21 and passes through the component outflow chamber 25 to the outlet 22c. It flows out from one side. Further, a hot air blower is connected to the other side of the outlet 22c of the casing 22,
Hot air at each set temperature is supplied into the inner hole of the l1i membrane 2l for each portion. The hot air heats each separation membrane 21 while flowing through the inner hole of each separation membrane 2l. (2J. Dehumidification experiment part 100 separation membranes as in the example were adopted as MH21, the temperature was 20℃ and the pressure was 5kg supplied from the compressor.
/cm2 of compressed air at a flow rate of 5Nm3/hr each minute! J
A dehumidification experiment was conducted by flowing the outer periphery of the iW 21 and flowing hot air at each set temperature into the inner hole of each separation membrane 21. Table 2 shows the atmospheric pressure dew point of the air after dehumidification at each set temperature. The atmospheric pressure dew point of the air before dehumidification is -8°C, and the amount of air that permeates with moisture is 0.15Nm'/
It was hr. As is clear from Table 2, the dehumidification efficiency is significantly high even when hot air is used as the heating means and the separation device is scaled up. (Example 3) A separation device in which three separation membranes 11 of the same type as the separation device 10 used in Example 1 and each having a built-in heating element 16 were supported in parallel was used. Set the temperature to 70℃, and the temperature supplied from the compressor is 20℃ and the pressure is 4.
A dehumidification experiment was conducted by flowing compressed air of kg/cm 2 around the outer periphery of each separation membrane 11 at a flow rate of 3N1/win.

この場合の各分離膜11を透過する空気量は69Ncc
 /minであった。
In this case, the amount of air passing through each separation membrane 11 is 69Ncc.
/min.

なお、比較例として上記分離装置において各分離膜11
を加熱せず、ケーシング12の流出口12cの一方に真
空ポンプを接続するとともに流出口12cの他方を密封
し、各分離M11の内孔内を20Torrの減圧状態に
維持して除湿実験を行った(比較例1).また、上記分
離装置において各分離膜11を加熱せず、除湿後の空気
を掃引空気として各分離膜11の内孔内へOjNl /
min , 0.6N1/1nの流量で流動させて除湿
実験を行った(比較例2)。さらにまた、上記分離装置
において各分離J1i11に換えて総空気透過量が0.
3NI/win、0.6NI /winである3本の分
離膜を採用し、各分離膜を加熱することなく除湿実験を
行った(比較例3). 各実験における除湿後の空気の大気圧露点、および空気
損失率を第3表に示す。なお、除湿前の空気の大気圧露
点は−6℃であり、また空気損失率は下記式により算出
する. 空気損失率(%)=(空気損失流量)/(供給空気流量
)XIOO 空気損失流量=(透過空気流量)+(掃引空気流量) 第3表 第3表から明らかなように、本実施例においては分離膜
の内孔内を高度に減圧した場合(比較例1)と同程度の
分離効率が達成されており、比較例1と同様の減圧を行
えば分離効率が一層向上するものと認められる. (実施例4) 本実施例では空気中の除湿実験を、第3図に示すハニカ
ム構造体を分離膜とする熱風加熱型の分離装置30、お
よび第2図に示す分離装置20における分離膜21を分
相ガラスの分離膜21Aに交換してなる熱風加熱型の分
離装置を使用して行った。
In addition, as a comparative example, each separation membrane 11 in the above separation device
A dehumidification experiment was conducted without heating, by connecting a vacuum pump to one of the outlet ports 12c of the casing 12 and sealing the other outlet port 12c, and maintaining the inner hole of each separation M11 at a reduced pressure of 20 Torr. (Comparative Example 1). In addition, in the above separation device, each separation membrane 11 is not heated, and the air after dehumidification is used as sweep air to flow OjNl /
A dehumidification experiment was conducted by flowing at a flow rate of min, 0.6N1/1n (Comparative Example 2). Furthermore, in the above separation device, each separation J1i11 has a total air permeation amount of 0.
Three separation membranes with a rate of 3NI/win and 0.6NI/win were used, and a dehumidification experiment was conducted without heating each separation membrane (Comparative Example 3). Table 3 shows the atmospheric pressure dew point of the air after dehumidification and the air loss rate in each experiment. The atmospheric pressure dew point of the air before dehumidification is -6°C, and the air loss rate is calculated using the following formula. Air loss rate (%) = (air loss flow rate) / (supply air flow rate) The same level of separation efficiency was achieved as when the inner pore of the separation membrane was highly depressurized (Comparative Example 1), and it is recognized that the separation efficiency would be further improved if the pressure was reduced in the same way as Comparative Example 1. .. (Example 4) In this example, an in-air dehumidification experiment was conducted using a hot air heating type separation device 30 using a honeycomb structure as a separation membrane shown in FIG. 3, and a separation membrane 21 in a separation device 20 shown in FIG. The separation was carried out using a hot air heating type separation apparatus in which the separation membrane 21A was replaced with a phase-separating glass separation membrane 21A.

(1).分離装置3〇 四角柱状の分離膜31を四角筒状のケーシング32内に
設けた左右の隔壁33に支持してなるもので、ケーシン
グ32内は中央部の透過成分流出室35、流体供給室3
4Aおよび流体流出室34Bに区画されている。流体供
給室34Aおよび流出室34Bには分離膜31の各セル
が開口しており、流入口32aから供給室34Aに流入
した圧縮空気が分離膜31の各セル内を流動して流出室
34Bに至り、流出口32bから流出する.この間圧縮
空気中の水分が分離膜31を透過して成分流出室35に
至り、流出口32cから流出する。
(1). Separation device 30 A square column-shaped separation membrane 31 is supported by left and right partition walls 33 provided in a square cylindrical casing 32. Inside the casing 32, there is a permeated component outflow chamber 35 in the center, and a fluid supply chamber. 3
4A and a fluid outflow chamber 34B. Each cell of the separation membrane 31 is open to the fluid supply chamber 34A and the outflow chamber 34B, and the compressed air that has flowed into the supply chamber 34A from the inlet 32a flows through each cell of the separation membrane 31 and flows into the outflow chamber 34B. The water reaches the outlet and flows out from the outlet 32b. During this time, moisture in the compressed air passes through the separation membrane 31, reaches the component outflow chamber 35, and flows out from the outflow port 32c.

一方、ケーシング32には成分流出室35に開口する熱
風供給口32dが設けられていて、供給口32dから成
分流出室35に流入した熱風は分離膜31の外周を流動
して流出口32cから流出する。この間熱風は分離M4
31を加熱する。
On the other hand, the casing 32 is provided with a hot air supply port 32d that opens into the component outflow chamber 35, and the hot air that flows into the component outflow chamber 35 from the supply port 32d flows around the outer periphery of the separation membrane 31 and flows out from the outflow port 32c. do. During this time, the hot air was separated into M4
Heat 31.

(′2.分離膜31 4行×4列配列の合計16個のセルを備え、セル形状が
正方形でピッチ4jmm 、壁厚1.Omm 、長さ5
00a+mのアルミナ質の多孔質支持体の各セル内壁に
アルミナゾルを担持させ、乾燥後250″Cで焼成して
なるハニカム構造体を採用した。
('2. Separation membrane 31 has a total of 16 cells arranged in 4 rows x 4 columns, the cell shape is square, the pitch is 4jmm, the wall thickness is 1.0mm, and the length is 5mm.
A honeycomb structure was employed in which an alumina sol was supported on the inner wall of each cell of an alumina porous support of 00a+m, dried and fired at 250''C.

(3).分離膜21A 外径10mm、内径7mm 、長さ500■のパイプ状
で平均細孔径が4OAである分相ガラス質の分離膜を7
本採用した。
(3). Separation membrane 21A A split-phase glass separation membrane with an outer diameter of 10 mm, an inner diameter of 7 mm, and a length of 500 cm and an average pore diameter of 4 OA.
This book was adopted.

(イ).除湿実験 コンプレッサから供給される温度25℃、圧力5kg 
/ cm 2の水蒸気飽和圧縮空気を6NI /win
の流量で分離膜31に対しては各セル内を流動させかつ
各分N膜2LAに対しては外周を流動させ、一方分離膜
31の外周および各分離膜21Aの内周を熱風にて各温
度に設定して除湿実験を行った.各設定温度における除
湿後の空気の大気圧露点および空気損失率を第4表に示
す。
(stomach). Temperature 25℃, pressure 5kg supplied from dehumidification experiment compressor
/cm2 of water vapor saturated compressed air at 6NI/win
For the separation membrane 31, the inside of each cell is made to flow, and for each N membrane 2LA, the outer periphery is made to flow, while the outer periphery of the separation membrane 31 and the inner periphery of each separation membrane 21A are heated with hot air. A dehumidification experiment was conducted with the temperature set. Table 4 shows the atmospheric pressure dew point and air loss rate of the air after dehumidification at each set temperature.

(以下余白) 第4表 7/ / (実施例5) 本実施例ではエタノールの脱水実験を第4図に示す分離
装置40を使用して行った.分離膜41は有底筒状のも
ので、外径10mm、内径8mn+で平均細孔径が0.
6μmのアルミナ質の多孔質支持体の外周にアルミナゾ
ルを担持させ、乾燥後300 ’Cにて焼成しその後さ
らに外周に500ppmのポリビニル/ アルコール水溶液を含浸させて乾燥したものを採用した
.この分離[41をケーシング42にセットし、分離膜
41の内孔内に発熱体43を挿入するとともに真空ボン
ブ44を接続し、タンク45内の70wt%のエタノー
ルを供給ボンプ46にて40℃でケーシング42内を通
して循環させ、分離膜41の内孔内の真空度をlOTo
rrに維持して各設定温度で脱水実験を行った。各設定
温度における水透過量および透過水中のエタノール濃度
を第5表に示す. (以下余白) 7/ 第5表 / 第5表から明らかなように、エタノール中の水透過量は
分離膜の内孔内温度の上昇に伴い増加し、脱水効率が向
上していることを示している。但し、透過水中のエタノ
ール温度についてはほとんど変化が認められない。
(The following is a blank space) Table 4 7/ / (Example 5) In this example, an ethanol dehydration experiment was conducted using the separation apparatus 40 shown in FIG. 4. The separation membrane 41 has a cylindrical shape with a bottom, an outer diameter of 10 mm, an inner diameter of 8 mm+, and an average pore diameter of 0.
Alumina sol was supported on the outer periphery of a 6 μm alumina porous support, dried and fired at 300°C, and then the outer periphery was further impregnated with 500 ppm polyvinyl/alcohol aqueous solution and dried. This separation [41] is set in the casing 42, a heating element 43 is inserted into the inner hole of the separation membrane 41, a vacuum bomb 44 is connected, and 70 wt% ethanol in the tank 45 is heated to 40°C with a supply bomb 46. It is circulated through the casing 42, and the degree of vacuum in the inner hole of the separation membrane 41 is increased to lOTo.
Dehydration experiments were conducted at each set temperature while maintaining the temperature at rr. Table 5 shows the amount of water permeated and the ethanol concentration in the permeated water at each set temperature. (Left below) 7/ Table 5/ As is clear from Table 5, the amount of water permeated in ethanol increases as the temperature inside the separation membrane increases, indicating that the dehydration efficiency improves. ing. However, almost no change was observed in the ethanol temperature in the permeated water.

(実施例6) 本実施例ではエタノールの脱水実験を第4図に示す分離
装置40を使用して行った。分離膜41Aは有底筒状の
もので、外径10mm、内径8■で平均細孔径が0.6
μmのアルミナ質の多孔質支持体の外周にアルミナゾル
を担持させ乾燥後300℃にて焼成し、その後外周に3
00ppmのカーボンブラックを混合してなる濃度50
00ppmのポリビニルアルコール水溶液を含浸担持し
て80℃にて乾燥し、外周の薄膜が導電性を有する二層
楕遣のものを採用した. かかる分離fi41Aにおいては、第4図に示すごとく
その内孔内に発熱体を挿入して内周側を加熱して実験を
行うとともに(実施例)、その上端部と下端部に通電用
のリード線を圧着して外周の薄膜全体を加熱して実験を
行った(比較例)。なお、各実験のその他の条件は実施
例5と同じ条件である.各設定温度における水透過量お
よび透過水中のエタノール濃度を第6表に示す。
(Example 6) In this example, an ethanol dehydration experiment was conducted using a separation apparatus 40 shown in FIG. 4. The separation membrane 41A has a cylindrical shape with a bottom, an outer diameter of 10 mm, an inner diameter of 8 cm, and an average pore diameter of 0.6.
Alumina sol was supported on the outer periphery of a micrometer-sized alumina porous support, dried, and fired at 300°C.
Concentration 50 by mixing 00 ppm carbon black
A two-layer elliptical structure was adopted, which was impregnated with 00 ppm aqueous polyvinyl alcohol solution and dried at 80°C, and the thin film on the outer periphery was conductive. In this separation fi41A, as shown in FIG. 4, an experiment was conducted by inserting a heating element into the inner hole to heat the inner circumferential side (example), and conductive leads were installed at the upper and lower ends of the separation fi41A. An experiment was conducted by crimping the wire and heating the entire outer thin film (comparative example). The other conditions for each experiment were the same as in Example 5. Table 6 shows the amount of water permeated and the ethanol concentration in the permeated water at each set temperature.

第6表 第6表から明らかなように、分離膜の内周側(成分透過
側)を加熱した実施例においては分離膜の外周薄膜(流
体供給側)を加熱した比較例に比べ、脱水効率が向上し
ていることを示している。
Table 6 As is clear from Table 6, in the example in which the inner peripheral side of the separation membrane (component permeation side) was heated, the dehydration efficiency was higher than in the comparative example in which the outer peripheral thin film of the separation membrane (fluid supply side) was heated. shows that it is improving.

(実施例7) 本実施例では第5図に示すポリテトラフルオ口エチレン
のフイルム状の選択透過性膜51aと、炭素繊維からな
る布状カーボン質の透過性発熱体5lbとをプレスにて
圧縮して一体化してなる膜楕遺体(分離膜51)を用い
て、サーモパーベーパレーションによる1 0wt%硫
酸水溶液の濃縮実験を行い、水の透過速度を測定した。
(Example 7) In this example, a film-like permselective membrane 51a made of polytetrafluoroethylene shown in FIG. Using the integrated membrane ellipse (separation membrane 51), an experiment was conducted to concentrate a 10 wt % sulfuric acid aqueous solution by thermopervaporation, and the water permeation rate was measured.

分離膜5lの特性および実験条件は次の通りであり、水
の透過速度は0.90kg / m2−hrであった。
The characteristics and experimental conditions of the separation membrane 5L were as follows, and the water permeation rate was 0.90 kg/m2-hr.

矩1羨51 (1)透過性膜51a:細孔径0.1 μm .空隙率
78%厚さ0.2mm (21発熱体51b:繊維径400μm、(膜の一側に
接触する部分の水溶液が50 ℃となるよう印加電圧を調節) Kl1−   :室温22℃で膜横遣休の一側に供給 なお比較例として上記した透過性膜51のみを用い、上
記した硫酸水溶液を予め50゜Cに加熱して過性膜51
に供給し透過実験を行った。この場合の水の透過速度は
0.88kg/m2・h『であった。
Rectangle 1 Encircle 51 (1) Permeable membrane 51a: Pore diameter 0.1 μm. Porosity 78% Thickness 0.2 mm (21 heating element 51b: fiber diameter 400 μm, (adjust the applied voltage so that the aqueous solution in contact with one side of the membrane is 50 °C) Kl1-: side of the membrane at room temperature 22 °C As a comparative example, only the above-mentioned permeable membrane 51 was used, and the above-mentioned sulfuric acid aqueous solution was heated to 50°C in advance to form the permeable membrane 51.
A permeation experiment was conducted by supplying The water permeation rate in this case was 0.88 kg/m2·h.

(実施例8) 本実施例では第6図に示すパイプ状の多孔買支持体52
aの外周にアルミナ質の選択透過性膜52bを有し、か
つ同支持体52aの内周にチタン酸バリウム質の透過性
発熱体52cを有する膜構造体く分離膜52)を用いて
、バーベーパレーションによる空気中の除湿実験を行い
、水の透過速度を測定した.分離膜52の特性および実
験条件は次の通りであり、水の透過速度はOj kg/
m2・hrであった.この透過速度は、多孔質支持体5
2aの外周に透過性膜52bのみを有する膜構造体を用
いてその内周側を10torrの真空度に維持した場合
と同じ値であった。
(Example 8) In this example, the pipe-shaped porous support 52 shown in FIG.
A membrane structure (separation membrane 52) having an alumina permselective membrane 52b on the outer periphery of the support 52a and a barium titanate permeable heating element 52c on the inner periphery of the support 52a is used. We conducted an experiment to dehumidify the air using vaporization and measured the water permeation rate. The characteristics and experimental conditions of the separation membrane 52 are as follows, and the water permeation rate is Oj kg/
It was m2・hr. This permeation rate is determined by the porous support 5
This value was the same as that obtained when a membrane structure having only the permeable membrane 52b on the outer periphery of 2a was used and the inner periphery side was maintained at a vacuum level of 10 torr.

た1liよ (1)支持体52a:アルミナ質、細孔径lμm、空隙
率38%、外径10mm、 肉厚1mII1 (2透過性膜52b:アルミナ質、細孔径20A空隙率
20%、厚さ7μ(支持 体52aの外周にアルミナゾ ルをコーティングし600℃で 焼成して形成) (3)発熱体52C:チタン酸バリウム質、粒子層厚さ
20μm、空隙率32%、( 径0.3μmのチタン酸バリウ ム粒子のスラリーを支持体5 2aにコーティングし、乾燥 後500℃で焼成して形成。実 験中80゜Cに維持した) 克一一一λ 圧力4.5 kg/cm2、温度23℃の圧縮空気を分
離膜52の外周側に供給する。
(1) Support 52a: Alumina, pore diameter 1μm, porosity 38%, outer diameter 10mm, wall thickness 1mII (2) Permeable membrane 52b: alumina, pore diameter 20A, porosity 20%, thickness 7μ (Formed by coating the outer periphery of the support 52a with alumina sol and firing at 600°C) (3) Heating element 52C: barium titanate, particle layer thickness 20 μm, porosity 32%, (titanic acid with a diameter of 0.3 μm) Formed by coating the support 52a with a slurry of barium particles, drying and firing at 500°C.The temperature was maintained at 80°C during the experiment) Katsuichiichiλ Pressure 4.5 kg/cm2, temperature 23°C compression Air is supplied to the outer peripheral side of the separation membrane 52.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1にて使用した分離装置の断面図、第2
図は実施例2にて使用した分離装置の断面図、第3図は
実施例4にて使用した分離装置の断面図、第4図は実施
例5・6にて使用した分離装置の概略図、第5図は実施
例7にて採用した分離膜の部分断面図、第6図は実施例
8にて採用した分離膜の部分縦断斜視図である. 符  号  の  説  明 10、20、30、40・・・分離装置、11、21、
21A、31、41、41A、51、52・分離膜、5
1a、52b・・・透過性膜、5lb、52c・・・発
熱体、12、22、32、42・・・ケーシング、14
、24、34・流体供給室、15、25、35・・・成
分流出室、16・・・発熱体。
Figure 1 is a sectional view of the separation device used in Example 1;
The figure is a sectional view of the separation device used in Example 2, FIG. 3 is a sectional view of the separation device used in Example 4, and FIG. 4 is a schematic diagram of the separation device used in Examples 5 and 6. , FIG. 5 is a partial cross-sectional view of the separation membrane employed in Example 7, and FIG. 6 is a partial longitudinal cross-sectional perspective view of the separation membrane employed in Example 8. Explanation of symbols 10, 20, 30, 40...separation device, 11, 21,
21A, 31, 41, 41A, 51, 52・Separation membrane, 5
1a, 52b... Permeable membrane, 5lb, 52c... Heating element, 12, 22, 32, 42... Casing, 14
, 24, 34・Fluid supply chamber, 15, 25, 35...Component outflow chamber, 16...Heating element.

Claims (9)

【特許請求の範囲】[Claims] (1)複数の成分からなる液体、気体またはこれら両者
の混合物等流体を分離膜の一側に沿つて流動させ、この
間前記流体中の少くとも1種類の成分を前記分離膜にて
選択的に透過させて透過成分を前記流体から分離する流
体の分離方法において、前記流体側を低温にかつ前記成
分透過側を高温とすることを特徴とする流体の分離方法
(1) A fluid such as a liquid, gas, or a mixture of the two, consisting of multiple components, is caused to flow along one side of the separation membrane, and during this time, at least one type of component in the fluid is selectively removed by the separation membrane. 1. A fluid separation method in which a permeated component is separated from the fluid by permeation, the fluid separation method comprising: keeping the fluid side at a low temperature and the component permeation side at a high temperature.
(2)第1項に記載の分離方法において、前記分離膜の
成分透過側を加熱することを特徴とする流体の分離方法
(2) A fluid separation method according to item 1, characterized in that the component permeation side of the separation membrane is heated.
(3)第2項に記載の分離方法において、前記分離膜を
同分離膜が成分透過側に一体的に有する加熱手段により
加熱することを特徴とする流体の分離方法。
(3) A method for separating fluids according to item 2, characterized in that the separation membrane is heated by a heating means integrally provided on the component permeation side of the separation membrane.
(4)第2項に記載の分離方法において、前記分離膜を
同分離膜の成分透過側に配設した加熱手段により加熱す
ることを特徴とする流体の分離方法。
(4) A fluid separation method according to item 2, characterized in that the separation membrane is heated by a heating means provided on the component permeation side of the separation membrane.
(5)第2項に記載の分離方法において、前記分離膜を
同分離膜の成分透過側に加熱気体を流動させることによ
り加熱することを特徴とする流体の分離方法。
(5) The method for separating fluids according to item 2, characterized in that the separation membrane is heated by flowing a heated gas through the component permeation side of the separation membrane.
(6)第1項に記載の分離方法を実施する分離装置であ
り、ケーシング内に収容され前記流体中の少くとも1種
類の成分を選択的に透過させる分離膜と、前記ケーシン
グ内にて前記分離膜により区画されて同分離膜の一側に
位置し前記流体の流入口と流出口を有する流体供給室、
および前記分離膜の他側に位置し透過成分の流出口を有
する透過成分流出室と、前記分離膜の加熱手段を備えて
いることを特徴とする流体の分離装置。
(6) A separation device for carrying out the separation method according to item 1, wherein the separation membrane is housed in a casing and selectively permeates at least one type of component in the fluid; a fluid supply chamber partitioned by a separation membrane and located on one side of the separation membrane and having an inlet and an outlet for the fluid;
and a permeate component outflow chamber located on the other side of the separation membrane and having an outlet for the permeate component, and heating means for the separation membrane.
(7)第6項に記載の分離装置において、前記分離膜が
プレート状、パイプ状、モノリス状、ハニカム状膜構造
体であるこを特徴とする流体の分離装置。
(7) The fluid separation device according to item 6, wherein the separation membrane is a plate-shaped, pipe-shaped, monolith-shaped, or honeycomb-shaped membrane structure.
(8)第6項または第7項に記載の分離装置において、
前記加熱手段が前記分離膜が成分透過側に一体的に有す
る発熱体、前記透過成分流出室側に配設された発熱体、
または同流出室に供給された加熱気体であることを特徴
とする流体の分離装置。
(8) In the separation device according to item 6 or 7,
The heating means includes a heating element integrally provided on the component permeation side of the separation membrane, a heating element disposed on the permeation component outflow chamber side,
Or a fluid separation device characterized in that the heated gas is supplied to the outflow chamber.
(9)第1項に記載の分離方法に採用される分離膜であ
り、前記流体中の少くとも1種類の成分が選択的に透過
する選択透過性膜と、同透過性膜の成分透過側に一体的
に設けられ少くとも同透過性膜を透過する成分が透過可
能かつ通電により発熱する透過性発熱体とを備えている
ことを特徴とする分離膜。
(9) A separation membrane employed in the separation method described in item 1, including a selectively permeable membrane through which at least one type of component in the fluid selectively permeates, and a component-permeable side of the permeable membrane. 1. A separation membrane comprising: a permeable heating element which is integrally provided with a permeable membrane, allows at least a component that passes through the permeable membrane to pass therethrough, and which generates heat when energized.
JP1049232A 1989-03-01 1989-03-01 Separation of fluid, separator and separation membrane Pending JPH02229529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049232A JPH02229529A (en) 1989-03-01 1989-03-01 Separation of fluid, separator and separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049232A JPH02229529A (en) 1989-03-01 1989-03-01 Separation of fluid, separator and separation membrane

Publications (1)

Publication Number Publication Date
JPH02229529A true JPH02229529A (en) 1990-09-12

Family

ID=12825157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049232A Pending JPH02229529A (en) 1989-03-01 1989-03-01 Separation of fluid, separator and separation membrane

Country Status (1)

Country Link
JP (1) JPH02229529A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995001828A1 (en) * 1993-07-03 1995-01-19 Kunitaka Mizobe Dehumidifier
US6332914B1 (en) * 2000-02-28 2001-12-25 The United States Of America As Represented By The Department Of Energy Method and apparatus for separation of heavy and tritiated water
US6355092B1 (en) * 1997-05-09 2002-03-12 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Ondersoek Tmo Apparatus and method for performing membrane gas/liquid absorption at elevated pressure
WO2007116634A1 (en) * 2006-03-22 2007-10-18 Ngk Insulators, Ltd. Bag tube shaped body with porous multilayer structure
WO2008010452A1 (en) * 2006-07-20 2008-01-24 Ngk Insulators, Ltd. Ceramic filter
WO2008111671A1 (en) * 2007-03-15 2008-09-18 Mitsubishi Heavy Industries, Ltd. Dehydration device, dehydration system, and dehydration method
WO2009001970A1 (en) * 2007-06-27 2008-12-31 Ngk Insulators, Ltd. Separation membrane complex, and method for production of separation membrane complex
EP2119666A1 (en) * 2007-03-15 2009-11-18 Mitsubishi Heavy Industries, Ltd. Method of transporting fluid
EP2123347A1 (en) * 2007-03-15 2009-11-25 Mitsubishi Heavy Industries, Ltd. Dehydration system and dehydration method
JP2010000507A (en) * 2007-03-15 2010-01-07 Mitsubishi Heavy Ind Ltd Dehydrating apparatus, dehydration system, and dehydration method
EP2196253A2 (en) 2008-11-13 2010-06-16 Mitsubishi Heavy Industries, Ltd. Membrane container
US8585904B2 (en) 2008-03-14 2013-11-19 Mitsubishi Heavy Industries, Ltd. Dehydration system and dehydration method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258604A (en) * 1987-04-16 1988-10-26 Mitsubishi Rayon Co Ltd Membrane separation method
JPH01236905A (en) * 1988-03-18 1989-09-21 Ngk Insulators Ltd Functional membrane structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258604A (en) * 1987-04-16 1988-10-26 Mitsubishi Rayon Co Ltd Membrane separation method
JPH01236905A (en) * 1988-03-18 1989-09-21 Ngk Insulators Ltd Functional membrane structure

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995001828A1 (en) * 1993-07-03 1995-01-19 Kunitaka Mizobe Dehumidifier
US6355092B1 (en) * 1997-05-09 2002-03-12 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Ondersoek Tmo Apparatus and method for performing membrane gas/liquid absorption at elevated pressure
US6332914B1 (en) * 2000-02-28 2001-12-25 The United States Of America As Represented By The Department Of Energy Method and apparatus for separation of heavy and tritiated water
WO2007116634A1 (en) * 2006-03-22 2007-10-18 Ngk Insulators, Ltd. Bag tube shaped body with porous multilayer structure
WO2008010452A1 (en) * 2006-07-20 2008-01-24 Ngk Insulators, Ltd. Ceramic filter
US8858798B2 (en) 2006-10-05 2014-10-14 Mitsubishi Heavy Industries, Ltd. Dehydration method
US8496731B2 (en) 2007-03-15 2013-07-30 Mitsubishi Heavy Industries, Ltd. Method for transporting fluid
WO2008111671A1 (en) * 2007-03-15 2008-09-18 Mitsubishi Heavy Industries, Ltd. Dehydration device, dehydration system, and dehydration method
EP2123347A1 (en) * 2007-03-15 2009-11-25 Mitsubishi Heavy Industries, Ltd. Dehydration system and dehydration method
JP2010000507A (en) * 2007-03-15 2010-01-07 Mitsubishi Heavy Ind Ltd Dehydrating apparatus, dehydration system, and dehydration method
US9149769B2 (en) 2007-03-15 2015-10-06 Mitsubishi Heavy Industries, Ltd. Dehydration system and dehydration method
EP2119666A4 (en) * 2007-03-15 2012-01-04 Mitsubishi Heavy Ind Ltd Method of transporting fluid
EP2123347A4 (en) * 2007-03-15 2012-01-04 Mitsubishi Heavy Ind Ltd Dehydration system and dehydration method
EP2522420A3 (en) * 2007-03-15 2013-03-13 Mitsubishi Heavy Industries Dehydration device, and dehydration system
EP2119666A1 (en) * 2007-03-15 2009-11-18 Mitsubishi Heavy Industries, Ltd. Method of transporting fluid
US7971729B2 (en) 2007-06-27 2011-07-05 Ngk Insulators, Ltd. Separation membrane complex, and method for manufacturing the separation membrane complex
WO2009001970A1 (en) * 2007-06-27 2008-12-31 Ngk Insulators, Ltd. Separation membrane complex, and method for production of separation membrane complex
US8585904B2 (en) 2008-03-14 2013-11-19 Mitsubishi Heavy Industries, Ltd. Dehydration system and dehydration method
EP2196253A3 (en) * 2008-11-13 2014-03-05 Mitsubishi Heavy Industries, Ltd. Membrane container
EP2196253A2 (en) 2008-11-13 2010-06-16 Mitsubishi Heavy Industries, Ltd. Membrane container

Similar Documents

Publication Publication Date Title
JPH02229529A (en) Separation of fluid, separator and separation membrane
Shukla et al. Process intensification by coupling the Joule effect with pervaporation and sweeping gas membrane distillation
US3367787A (en) Evaporation concentration of liquids
US8685145B2 (en) System and method for efficient multi-stage air dehumidification and liquid recovery
KR20020019040A (en) Method for the purification of a liquid by membrane distillation, in particular for the production of desalinated water from seawater or brackish water or process water
BR112013011866B1 (en) dehumidification system for removing water vapor from an air stream and method
US5250091A (en) Apparatus for separating a gas-water vapor mixture
Ma et al. Pervaporation of water/ethanol mixtures through microporous silica membranes
JP2012040549A (en) Silica membrane and method for manufacturing the same
Nik et al. Separation of ethylene glycol/water mixtures using NaA zeolite membranes
JP6500499B2 (en) Separation membrane module and method of operating the same
US6277483B1 (en) Composite membrane with support structure made of microporous material
JP7191091B2 (en) Apparatus for preparing liquid samples for gas chromatography
JPH08103640A (en) Nonporous high-molecular film on porous inorganic substrate
JPS61146319A (en) Dehumidifying method
JPH0671530B2 (en) Functional membrane structure
JPS63240904A (en) Apparatus having membrane for separating one or more kind of substance from substance mixture
JPS62273028A (en) Gas dehumidifier
JPS63197502A (en) Production of volatile organic liquid concentrate
CN214051187U (en) Gas processing device, dry process equipment for film production and film production equipment
CN116056778A (en) Gas separation system and method for separating mixed gas
JPS63137729A (en) Dehumidifying device
KR100454089B1 (en) Gas molecular sieve type porous ceramic membrane and and its preparing method
JPS6231968B2 (en)
JPH11300141A (en) Air treating device