JPS63137479A - Thin-film transistor - Google Patents

Thin-film transistor

Info

Publication number
JPS63137479A
JPS63137479A JP28495086A JP28495086A JPS63137479A JP S63137479 A JPS63137479 A JP S63137479A JP 28495086 A JP28495086 A JP 28495086A JP 28495086 A JP28495086 A JP 28495086A JP S63137479 A JPS63137479 A JP S63137479A
Authority
JP
Japan
Prior art keywords
layer
gate electrode
electrode
film
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28495086A
Other languages
Japanese (ja)
Other versions
JPH0529136B2 (en
Inventor
Mitsuhiro Mukaidono
充浩 向殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP28495086A priority Critical patent/JPS63137479A/en
Priority to DE3752301T priority patent/DE3752301T2/en
Priority to EP87310516A priority patent/EP0270323B1/en
Priority to US07/125,961 priority patent/US4862234A/en
Publication of JPS63137479A publication Critical patent/JPS63137479A/en
Publication of JPH0529136B2 publication Critical patent/JPH0529136B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78666Amorphous silicon transistors with normal-type structure, e.g. with top gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To keep OFF and ON resistances constant, and to increase the area of a display unit by forming a gate insulating layer, an a-Si semiconductor film having a shape that the semiconductor film is self-aligned with a gate electrode and a contact film onto the gate electrode consisting of an opaque metal and shaping a protective insulating film between the semiconductor film and the contact film. CONSTITUTION:A gate electrode 2 composed of Ta, etc., is laminated onto an insulating substrate 1. A gate insulating layer 3, an a-Si semiconductor layer 4 and a protective insulating film 5 are laminated onto the whole surface. An N<+> type a-Si layer 6A and a positive type photo-resist layer 10A are laminated onto the film 5. Exposure is executed from the substrate 1 side, and a resist 10 having a shape that the resist 10 is self-joined with the electrode 2 is shaped onto the layer 6A, using the gate electrode 2 as a photo-mask. Layers 6A, 4A are etched, employing the resist 10 as a mask, and an N<+> type a-Si layer 6B having a shape that the layer 6B is self-aligned with the electrode 2 and the active layer 4 are formed. The resist 10 is removed. A metal 8A and a resist layer 11 are laminated onto the whole surface, and the layers 8A, 6B are etched, using the layer 11 as a mask to form a source region 6, a drain region 7, a source electrode 8 and a drain electrode 9.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明はアモルファスシリコンから成る半導体膜を用
いた薄膜トランジスタに関し、特に液晶パネルと組合わ
せることにより表示装置として用いる場合の背面照明に
起用する薄膜トランジスタのoff抵抗の低下を防止す
る技術に関する。
Detailed Description of the Invention (a) Industrial Application Field This invention relates to a thin film transistor using a semiconductor film made of amorphous silicon, and in particular to a thin film transistor used for back lighting when used as a display device in combination with a liquid crystal panel. The present invention relates to a technique for preventing a decrease in off resistance of

(ロ)従来の技術 今日、ガラス等の絶縁性基板上に薄膜トランジスタをマ
トリクス状に配設し、液晶等と組合わせた大容量表示装
置の研究及び実用化が活発に行なわれている。殊にa−
3+(アモルファスシリコン)半導体膜を用いたWJI
Iトランジスタは、絶縁性基板に廉化であるガラスが使
用できること、大面積化が可能なこと等の理由から有望
視されている。
(B) Prior Art Today, research and practical use are actively being carried out on large-capacity display devices in which thin film transistors are arranged in a matrix on an insulating substrate such as glass, and are combined with a liquid crystal or the like. Especially a-
WJI using 3+ (amorphous silicon) semiconductor film
I transistors are viewed as promising because they can use inexpensive glass as an insulating substrate and can be made to have a large area.

さて、a 73i半導体膜を用いた従来の1at−ラン
ジスタT「は、その構成が第9図に示すとおりであった
。つまり、ゲート絶縁膜3a上に積層された能動層4a
はゲート電極2aに対応するよりも広く、又能動m4a
及び、ソース領域6aとドレイン領域7aを形成するn
◆型アモルファスシリコン半導体膜の厚さに工夫がなさ
れていなかった。なお、8a 、9aはそれぞれソース
電極とドレイン電極である。
Now, the conventional 1at-transistor T" using the a73i semiconductor film has the structure as shown in FIG.
is wider than that corresponding to the gate electrode 2a, and the active m4a
and n forming the source region 6a and drain region 7a.
◆ No consideration was given to the thickness of the amorphous silicon semiconductor film. Note that 8a and 9a are a source electrode and a drain electrode, respectively.

(ハ)発明が解決しようとする問題点 薄膜トランジスタTrを液晶と組合わせて表示装置を構
成して用いる場合、絶縁性基板1aであるガラス板側に
背面照明を置く。この時、薄膜トランジスタTrを0「
「状態(ゲート電極2aに負電圧を印加)において能動
JI4aのゲート電極2aに対して自己整合していない
部位にキャリアが生じoff抵抗が下がるという問題が
あった。
(c) Problems to be Solved by the Invention When a display device is constructed and used by combining the thin film transistor Tr with a liquid crystal, a backlight is placed on the glass plate side that is the insulating substrate 1a. At this time, the thin film transistor Tr is set to 0"
In this state (a negative voltage is applied to the gate electrode 2a), carriers are generated in a portion of the active JI 4a that is not self-aligned with the gate electrode 2a, resulting in a decrease in off resistance.

この問題を解決する方法として、a−3i半導体膜から
なる能動層4aの厚さを薄くするというのがある。因み
に、能動層4aの厚さを100Å以下とした場合では能
動114aに背面照明による影響は観察されない、しか
し、この能動層4aの厚さをある程度より薄くすると、
on状態の抵抗が高くなるという問題が生じる。
One way to solve this problem is to reduce the thickness of the active layer 4a made of an a-3i semiconductor film. Incidentally, when the thickness of the active layer 4a is set to 100 Å or less, no effect of backlighting is observed on the active layer 114a. However, if the thickness of the active layer 4a is made thinner to a certain extent,
A problem arises in that the resistance in the on state becomes high.

又、光シールドを形成することによってキャリアの発生
を防ぐ方法が考えられる。しかし、光シールドを形成す
ると、製造上の工程数が増加し、歩留りが悪くコストが
高くつ(という問題が生じる。
Another possible method is to prevent the generation of carriers by forming a light shield. However, forming a light shield increases the number of manufacturing steps, resulting in poor yield and high cost.

更に、?11!トランシタTrを、能動層4aがゲート
絶縁層3a上の対応する部位に位置し且つゲート電極2
aと同じ形状となる構成のものとする方法が考えられる
。しかし、薄膜トランジスタがこの構成となるように通
常のマスクアライメントを用いて形成すると、アライメ
ント誤差やサイドエッチ等を見込まなければならず薄膜
トランジスタのサイズは大きくなる。従って、薄膜トラ
ンジスタのサイズが大きいと表示装置における開口率が
低下し又ゲートドレイン間の負荷容量が増加し、結果的
に本来の目的である表示装置の大面積化が強くは望めな
いということになる。
Furthermore? 11! The transistor Tr is configured such that the active layer 4a is located at a corresponding portion on the gate insulating layer 3a and the gate electrode 2
A possible method is to use a configuration that has the same shape as a. However, if a thin film transistor is formed using normal mask alignment so as to have this configuration, alignment errors, side etching, etc. must be taken into account, and the size of the thin film transistor becomes large. Therefore, if the size of the thin film transistor is large, the aperture ratio in the display device will decrease, and the load capacitance between the gate and drain will increase, and as a result, the original purpose of increasing the area of the display device cannot be strongly expected. .

この発明は上記の事情に鑑みてなされたものであり、液
晶と組合わせて表示装置を構成して用いる場合において
、off抵抗とOn抵抗が所定の値に確保され、コスト
が高くならず、更には表示装置の大面積化に支障のない
薄膜トランジスタを提供するものである。
This invention was made in view of the above circumstances, and when a display device is constructed and used in combination with a liquid crystal, the off resistance and on resistance are ensured at predetermined values, the cost does not increase, and The present invention provides a thin film transistor that can be used to increase the area of a display device.

(ニ)問題点を解決するための手段 この発明は、不透明金属のゲート電極をマスクとし露光
によってレジストを形成し、このレジストをマスクとし
てエツチングして能動層、及びソース領域とドレイン領
域を形成し、加えて能動層及び、ソース領域とドレイン
領域との間に保護絶縁膜を介在した薄膜トランジスタで
ある。
(D) Means for Solving the Problems This invention forms a resist by exposure using an opaque metal gate electrode as a mask, and etches using this resist as a mask to form an active layer, a source region, and a drain region. In addition, the thin film transistor has a protective insulating film interposed between the active layer and the source and drain regions.

その詳細な構成は、絶縁性基板上に不透明な金属からな
るゲート電極が積層され、さらに該ゲート電極と前記絶
縁性基板面上にゲート絶縁層が積層され、 前記ゲート絶縁層上には厚さが共に100Å以上で双方
の合計膜厚が100OA以下であるアモルファスシリコ
ン半導体膜とアモルファスシリコンコンタクト膜とがゲ
ート電極と自己整合された輪郭形状で積層され前記アモ
ルファスシリコン半導体膜とアモルファスシリコンコン
タクト膜との間には前記アモルファスシリコンコンタク
ト膜をソース領域とドレイン領域に分離する保護絶縁膜
が介在し、前記ソース領域とドレイン領域にはそれぞれ
ソース電極とドレイン電極が接合していることを特徴と
する薄膜トランジスタである。
The detailed structure is such that a gate electrode made of an opaque metal is laminated on an insulating substrate, a gate insulating layer is further laminated on the gate electrode and the surface of the insulating substrate, and a thickness is an amorphous silicon semiconductor film and an amorphous silicon contact film, both of which are 100 Å or more and whose total film thickness is 100 OA or less, are laminated with a contour shape that is self-aligned with the gate electrode, and the amorphous silicon semiconductor film and the amorphous silicon contact film are A thin film transistor characterized in that a protective insulating film is interposed between the amorphous silicon contact film to separate the amorphous silicon contact film into a source region and a drain region, and a source electrode and a drain electrode are connected to the source region and the drain region, respectively. be.

(ホ)作 用 能動層のゲート電極に自己整合する形状は、絶縁性基板
側からの光とポジ型フォトレジストにより形成されるレ
ジストをマスクとして、エツチングすると簡便に得られ
る。
(e) Operation A shape that is self-aligned with the gate electrode of the active layer can be easily obtained by etching using a resist formed by light from the insulating substrate side and a positive photoresist as a mask.

(へ)実施例 この発明を第1〜8図に示す実施例に基づき詳述するが
、これによってこの発明が限定されるものではない。
(f) Examples This invention will be described in detail based on the examples shown in FIGS. 1 to 8, but the invention is not limited thereby.

WIIIlトランジスタTの構成は第1図に示すとおり
であり、1は絶縁性基板、2はゲート電極、3はゲート
絶縁層、4は能動層、5は保護絶縁膜、6はソース領域
、7はドレイン領域、8はソース電極、9はドレイン電
極である。
The structure of the WIII transistor T is as shown in FIG. 1, where 1 is an insulating substrate, 2 is a gate electrode, 3 is a gate insulating layer, 4 is an active layer, 5 is a protective insulating film, 6 is a source region, and 7 is a In the drain region, 8 is a source electrode, and 9 is a drain electrode.

絶縁性基板1は、厚さが約11Illlのガラス板であ
る。ゲート電極2は、Ta、Cr、Mo、AR又はWを
材料としていて不透明である。能動層4は、a−3i膜
からなり、絶縁性基板1側からの光゛がポジ型フォトレ
ジスト層へ照射されゲート電極2に対応する部位のみが
残って得られたレジスト10をマスクとするエツチング
により、ゲート電極2に自己整合した形状となっている
。ソース領域6とドレイン領域7は、リンドープによる
n◆型a −8i Ii!から形成されており、ソース
電極8及び及びドレイン電極9とオーミックコンタクト
を得る。ソース電極8とドレイン電極9は、余尺膜から
形成されている。
The insulating substrate 1 is a glass plate with a thickness of about 11Ill. The gate electrode 2 is made of Ta, Cr, Mo, AR, or W and is opaque. The active layer 4 is made of an a-3i film, and uses the resist 10 obtained by irradiating the positive photoresist layer with light from the insulating substrate 1 side, leaving only the portion corresponding to the gate electrode 2 as a mask. By etching, it has a shape that is self-aligned with the gate electrode 2. The source region 6 and drain region 7 are n◆ type a −8i Ii! by phosphorus doping. The electrode 8 and drain electrode 9 form an ohmic contact with the source electrode 8 and the drain electrode 9. The source electrode 8 and the drain electrode 9 are formed from extra-sized films.

能動層4の厚さは、200〜300人である。保護絶縁
膜5は能動層4上にあって、その両端は能動層4よりわ
ずかに中央側に位置してゲート電極2より幅は狭い。保
護絶縁膜5は、3! 3 N4又はAg2O3からなり
厚さは1000人〜1.a (2000人)である。又
、ソース領域6とドレイン領域7であるn◆型a−8i
膜のコンタクト層の厚さは、100〜500(200〜
300)入である。これらの値は、on状態の抵抗を所
定以下に確保し、且つ能動層4を形成するためのポジ型
フォトレジスト層10Aに絶縁性基板1側からの光を効
果があるように照射する場合を実験的に求めた値である
。なお、この実験的に求めた値には幅があり、能動層4
の厚さとjl+型a −8i II!5Aの厚さが共に
100Å以上で且つ両者の合計の厚さが1000A以下
であれば所定のMI!!トランジスタTは得られる。
The thickness of the active layer 4 is 200 to 300 layers. The protective insulating film 5 is located on the active layer 4, and both ends thereof are located slightly toward the center of the active layer 4 and are narrower than the gate electrode 2. The protective insulating film 5 is 3! 3 Made of N4 or Ag2O3 and has a thickness of 1,000 to 1. a (2000 people). In addition, the source region 6 and the drain region 7 are n◆ type a-8i.
The thickness of the contact layer of the membrane is 100~500 (200~
300) is included. These values ensure that the on-state resistance is below a predetermined value, and that the positive photoresist layer 10A for forming the active layer 4 is irradiated with light from the insulating substrate 1 side in an effective manner. This is a value determined experimentally. Note that this experimentally determined value has a wide range, and the active layer 4
Thickness and jl+type a-8i II! If the thickness of both 5A is 100A or more and the total thickness of both is 1000A or less, the specified MI! ! A transistor T is obtained.

この発明の薄膜トランジスタTは上述したように構成さ
れており、液晶と組合わiて表示装置(図示省略)を構
成して用いる場合において、絶縁性基板1側から光を照
射しても能動層4にキャリアが生じることはなく、従っ
てoff状態でoff抵抗が下がることはない。つまり
、以下に述べる実験結果のとおりである。能動IF4の
厚さが200人で、大きざが10μlllX12μmで
あるWsIl!トランジスタTを液晶と組合わせて表示
装置を構成して用いる場合において、ソース−ドレイ間
の電圧Vso=10Vで、絶縁性基板1側から照度が1
04Lxの光を照射した際、ドレイ領域6に流れる電流
1dとゲート−ドレイン間の電圧■りとの関係を示すI
 d −VG、特性曲線は第2図のC1で表わされるも
のであった。因に、絶縁性基板1側から光照射がない場
合のI d −ve特性曲線はC2であり、従来例にお
いて絶縁性基板1a側から照度がjo’Lxの光を照射
した場合にId −V他特性曲線C3であった。VG9
の一20V〜−3vにおいてoff特性の改善が明らか
に認められる。
The thin film transistor T of the present invention is configured as described above, and when used in combination with a liquid crystal to configure a display device (not shown), even if light is irradiated from the insulating substrate 1 side, the active layer 4 No carriers are generated in the OFF state, so the OFF resistance does not decrease in the OFF state. That is, the experimental results are as described below. The active IF4 has a thickness of 200 mm and a size of 10 μlll x 12 μm! When the transistor T is used in combination with a liquid crystal to form a display device, when the source-drain voltage Vso is 10 V, the illuminance is 1 from the insulating substrate 1 side.
I shows the relationship between the current 1d flowing in the drain region 6 and the voltage between the gate and drain when irradiated with light of 04Lx.
d-VG, the characteristic curve was as shown by C1 in FIG. Incidentally, the I d -ve characteristic curve when there is no light irradiation from the insulating substrate 1 side is C2, and the I d -V characteristic curve when light with an illuminance of jo'Lx is irradiated from the insulating substrate 1a side in the conventional example. The other characteristic curve was C3. VG9
An improvement in the OFF characteristics is clearly observed between -20V and -3V.

しかも、能動層4が一定以上の厚さを持っていることか
らon状態においてOn抵抗が高くなることはない。又
、能動層4の形成は、絶縁性基板1側からの光とポジ型
フォトレジスト層9Aとによってゲート電極2に自己整
合した形状のレジスト9をマスクとして用いて行ってい
るので、薄膜トランジスタTの製造が簡便で煩雑になる
ことはなく、又サイズが大きくなることはない。
Moreover, since the active layer 4 has a thickness above a certain level, the On resistance does not become high in the on state. Furthermore, since the formation of the active layer 4 is carried out using the resist 9 having a shape that is self-aligned to the gate electrode 2 as a mask by the light from the insulating substrate 1 side and the positive photoresist layer 9A, the thin film transistor T is Manufacturing is simple and does not become complicated, and the size does not increase.

以下において、薄膜トランジスタTの製造方法を説明す
る。ガラス板からなる絶縁性基板1上に、Ta等の金属
を材料として所望形状のゲート電極2を積層する(第3
図を参照)。
A method for manufacturing the thin film transistor T will be described below. A gate electrode 2 of a desired shape is laminated on an insulating substrate 1 made of a glass plate using a metal such as Ta (third
(see diagram).

絶縁性基板1のゲート電極2を積層した側の面の全てに
プラズマCvD法によってゲート絶縁層3を、そのゲー
ト絶縁層3上に厚さ、が200人のa−8i半導体層4
Aを積層する。加えて、a −8i半導体114A上の
ゲート電極2と対応する部位に、ゲート電極2の内側に
入るパターンで保護絶縁膜5を積層する(第4図を参照
)。
A gate insulating layer 3 is formed on the entire surface of the insulating substrate 1 on the side where the gate electrode 2 is laminated by the plasma CVD method, and an a-8i semiconductor layer 4 with a thickness of 200 layers is formed on the gate insulating layer 3.
Stack A. In addition, a protective insulating film 5 is laminated on a portion of the a-8i semiconductor 114A corresponding to the gate electrode 2 in a pattern that goes inside the gate electrode 2 (see FIG. 4).

そのa−3i半導体層4A及び保護絶縁膜6上に厚さが
200OAのリンドープのn4型a−51層5Aを、更
にこのn”型a−3i層5A上にポジ型フォトシスト層
10Aを積層する(第5図を参照)。
A phosphorus-doped n4 type a-51 layer 5A with a thickness of 200 OA is laminated on the a-3i semiconductor layer 4A and the protective insulating film 6, and a positive photoresist layer 10A is further laminated on the n'' type a-3i layer 5A. (See Figure 5).

絶縁性基板1側から露光し、不透明であるゲート電極2
をフォトマスクとして作用させて、n′型a −8i 
1I5A上にゲート電極2に対して自己整合した形状の
レジスト10を形成する(第6図を参照)。なお、この
時n◆型a−3i層6Aとa−8i半導体層4Aとの合
計の厚さが100OA以下であることより、ポジ型フォ
トレジスト層10゜Aに光が効果的に働く。
The gate electrode 2 is exposed from the insulating substrate 1 side and is opaque.
is used as a photomask to form an n' type a-8i
A resist 10 having a shape self-aligned with the gate electrode 2 is formed on the 1I5A (see FIG. 6). At this time, since the total thickness of the n♦ type a-3i layer 6A and the a-8i semiconductor layer 4A is 100 OA or less, light acts effectively on the positive type photoresist layer 10°A.

レジスト10をマスクとして、n4型a −3i1i6
A及びa−8i半導体層4Aをエツチングしてゲート電
極2に対して自己整合した形状のn’+型a−8i層6
B及び能動層4を形成する。その後、レジスト10を除
去する(第7図を参照)。
Using resist 10 as a mask, type n4 a-3i1i6
A and a-8i semiconductor layers 4A are etched to form an n'+ type a-8i layer 6 in a shape that is self-aligned with the gate electrode 2.
B and active layer 4 are formed. Thereafter, the resist 10 is removed (see FIG. 7).

n÷型a−3i層6Bのある側の面金てに金属層8Aを
積層し、金属層8Aのn÷型a−3i層6Bの中央部を
除いた部位上部に7オトレジスト11を積層する(第8
図を参照)。
A metal layer 8A is laminated on the side metal layer on the side where the n÷ type a-3i layer 6B is located, and a 7-otoresist 11 is laminated on the upper part of the metal layer 8A excluding the central part of the n÷ type a-3i layer 6B. (8th
(see diagram).

このフォトレジスト10をマスクとして金属層8A及び
n◆型a−8i層6Bをエツチングし、ソース領域6と
ドレイ領域7、及びソース電極8とドレイン領域9を形
成する。この後、フォトレジスト11を除去する(第1
図を参照)。
Using this photoresist 10 as a mask, the metal layer 8A and n♦ type a-8i layer 6B are etched to form a source region 6, a drain region 7, a source electrode 8, and a drain region 9. After that, the photoresist 11 is removed (the first
(see diagram).

(ト)発明の効果 この発明は、液晶と組合せて表示装置として用いる場合
に、ゲート電極に負電圧を印加した。H状態においても
能動層からのキャリアの発生を防いでいてoff抵抗が
所定の値に保たれるとともに、on状態において抵抗が
高くなることはなく、又製造が煩雑で歩留りが悪くなる
ということがないことによりコスト高とならず、更にサ
イズが大きくならないことにより表示装置の大面積化に
支障のない薄膜トランジスタである。
(G) Effects of the Invention In the present invention, when used in combination with a liquid crystal as a display device, a negative voltage is applied to the gate electrode. Even in the H state, generation of carriers from the active layer is prevented, and the OFF resistance is maintained at a predetermined value, and the resistance does not increase in the ON state, and the manufacturing process is complicated and the yield is low. This is a thin film transistor that does not increase the cost because there is no thin film transistor, and also does not have a problem in increasing the area of the display device because the size does not increase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成説明図、第2図
はこの実施例及び従来例の特性を示す説明図、第3〜8
図はこの実施例の製造過程を示す構成説明図、第9図は
従メモ第1図相当図である。 T・・・・・・Wiff!トランジスタ、1・・・・・
・絶縁性基板、 2・・・・・・ゲート電極、4・・・
・・・能動層、   6・・・・・・ソース領域、7・
・・・・・ドレイン領域、10・・・・・・レジスト。 第1図 工 第2図 第7図 第8図 第9図 r
Fig. 1 is an explanatory diagram showing the configuration of one embodiment of the present invention, Fig. 2 is an explanatory diagram showing the characteristics of this embodiment and the conventional example, and Figs.
The figure is a structural explanatory diagram showing the manufacturing process of this embodiment, and FIG. 9 is a diagram corresponding to FIG. 1 of the subordinate memo. T...Wiff! Transistor, 1...
・Insulating substrate, 2...gate electrode, 4...
...active layer, 6...source region, 7.
...Drain region, 10...Resist. Fig. 1 Fig. 2 Fig. 7 Fig. 8 Fig. 9 r

Claims (1)

【特許請求の範囲】 1、絶縁性基板上に不透明な金属からなるゲート電極が
積層され、さらに該ゲート電極と前記絶縁性基板面上に
ゲート絶縁層が積層され、 前記ゲート絶縁層上には厚さが共に100Å以上で双方
の合計膜厚が1000Å以下であるアモルファスシリコ
ン半導体膜とアモルファスシリコンコンタクト膜とがゲ
ート電極と自己整合された輪郭形状で積層され前記アモ
ルファスシリコン半導体膜とアモルファスシリコンコン
タクト膜との間には前記アモルファスシリコンコンタク
ト膜をソース領域とドレイン領域に分離する保護絶縁膜
が介在し、前記ソース領域とドレイン領域にはそれぞれ
ソース電極とドレイン電極が接合していることを特徴と
する薄膜トランジスタ。
[Claims] 1. A gate electrode made of an opaque metal is laminated on an insulating substrate, a gate insulating layer is further laminated on the gate electrode and the surface of the insulating substrate, and on the gate insulating layer, An amorphous silicon semiconductor film and an amorphous silicon contact film, each having a thickness of 100 Å or more and a total thickness of 1000 Å or less, are laminated in a contour shape that is self-aligned with the gate electrode, and the amorphous silicon semiconductor film and the amorphous silicon contact film are laminated with a contour shape that is self-aligned with the gate electrode. A protective insulating film is interposed between the amorphous silicon contact film to separate the amorphous silicon contact film into a source region and a drain region, and a source electrode and a drain electrode are connected to the source region and the drain region, respectively. Thin film transistor.
JP28495086A 1986-11-29 1986-11-29 Thin-film transistor Granted JPS63137479A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP28495086A JPS63137479A (en) 1986-11-29 1986-11-29 Thin-film transistor
DE3752301T DE3752301T2 (en) 1986-11-29 1987-11-27 Method of manufacturing a thin film transistor
EP87310516A EP0270323B1 (en) 1986-11-29 1987-11-27 Method of manufacture of a thin-film transistor
US07/125,961 US4862234A (en) 1986-11-29 1987-11-27 Thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28495086A JPS63137479A (en) 1986-11-29 1986-11-29 Thin-film transistor

Publications (2)

Publication Number Publication Date
JPS63137479A true JPS63137479A (en) 1988-06-09
JPH0529136B2 JPH0529136B2 (en) 1993-04-28

Family

ID=17685169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28495086A Granted JPS63137479A (en) 1986-11-29 1986-11-29 Thin-film transistor

Country Status (1)

Country Link
JP (1) JPS63137479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888855A (en) * 1994-12-14 1999-03-30 Kabushiki Kaisha Toshiba Method of manufacturing active matrix display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187272A (en) * 1985-02-14 1986-08-20 Matsushita Electric Ind Co Ltd Thin-film field-effect transistor and manufacture thereof
JPS61191072A (en) * 1985-02-20 1986-08-25 Seiko Instr & Electronics Ltd Thin film transistor and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187272A (en) * 1985-02-14 1986-08-20 Matsushita Electric Ind Co Ltd Thin-film field-effect transistor and manufacture thereof
JPS61191072A (en) * 1985-02-20 1986-08-25 Seiko Instr & Electronics Ltd Thin film transistor and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888855A (en) * 1994-12-14 1999-03-30 Kabushiki Kaisha Toshiba Method of manufacturing active matrix display

Also Published As

Publication number Publication date
JPH0529136B2 (en) 1993-04-28

Similar Documents

Publication Publication Date Title
EP0270323B1 (en) Method of manufacture of a thin-film transistor
US4700458A (en) Method of manufacture thin film transistor
US20030169382A1 (en) Semipermeable liquid crystal display device and manufacturing method thereof
KR0145899B1 (en) Manufacturing method of thin film transistor for self aligned type liquid crystal
US6043000A (en) Method for manufacturing a semiconductor device
JP3296975B2 (en) Thin film transistor and method of manufacturing the same
JPH06326314A (en) Thin film transistor and its manufacture
TW416151B (en) Thin film transistor of liquid crystal display
KR0171648B1 (en) Thin film device and method of producing the same
JPS63137479A (en) Thin-film transistor
JP2004518173A (en) Pixelated devices such as active matrix liquid crystal displays and methods of making the same
JPH02170135A (en) Thin-film field effect type transistor element array
CN113703219A (en) Display panel, manufacturing method and projector
JPS61191072A (en) Thin film transistor and manufacture thereof
JPS62152174A (en) Manufacture of thin-film transistor
KR20020002051A (en) Method of manufacturing tft-lcd
KR20020091695A (en) Method for maunufacturing thin film transistor
JPS63226071A (en) Thin film transistor
JPS63142868A (en) Thin-film transistor
JP2877363B2 (en) Method for manufacturing thin film transistor
JPH0323429A (en) Thin-film transistor
JPH09246554A (en) Manufacture of thin-film transistor and liquid-crystal display device
JPH07131019A (en) Thin film transistor and fabrication thereof
JP2931394B2 (en) Method for manufacturing thin film transistor array
JPH07211914A (en) Thin film transistor and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term